761 Commits

Author SHA1 Message Date
Tom Lane
8d19d0e139 Teach parser to transform "x IS [NOT] DISTINCT FROM NULL" to a NullTest.
Now that we've nailed down the principle that NullTest with !argisrow
is fully equivalent to SQL's IS [NOT] DISTINCT FROM NULL, let's teach
the parser about it.  This produces a slightly more compact parse tree
and is much more amenable to optimization than a DistinctExpr, since
the planner knows a good deal about NullTest and next to nothing about
DistinctExpr.

I'm not sure that there are all that many queries in the wild that could
be improved by this, but at least one source of such cases is the patch
just made to postgres_fdw to emit IS [NOT] DISTINCT FROM NULL when
IS [NOT] NULL isn't semantically correct.

No back-patch, since to the extent that this does affect planning results,
it might be considered undesirable plan destabilization.
2016-07-28 17:23:13 -04:00
Tom Lane
45639a0525 Avoid invalidating all foreign-join cached plans when user mappings change.
We must not push down a foreign join when the foreign tables involved
should be accessed under different user mappings.  Previously we tried
to enforce that rule literally during planning, but that meant that the
resulting plans were dependent on the current contents of the
pg_user_mapping catalog, and we had to blow away all cached plans
containing any remote join when anything at all changed in pg_user_mapping.
This could have been improved somewhat, but the fact that a syscache inval
callback has very limited info about what changed made it hard to do better
within that design.  Instead, let's change the planner to not consider user
mappings per se, but to allow a foreign join if both RTEs have the same
checkAsUser value.  If they do, then they necessarily will use the same
user mapping at runtime, and we don't need to know specifically which one
that is.  Post-plan-time changes in pg_user_mapping no longer require any
plan invalidation.

This rule does give up some optimization ability, to wit where two foreign
table references come from views with different owners or one's from a view
and one's directly in the query, but nonetheless the same user mapping
would have applied.  We'll sacrifice the first case, but to not regress
more than we have to in the second case, allow a foreign join involving
both zero and nonzero checkAsUser values if the nonzero one is the same as
the prevailing effective userID.  In that case, mark the plan as only
runnable by that userID.

The plancache code already had a notion of plans being userID-specific,
in order to support RLS.  It was a little confused though, in particular
lacking clarity of thought as to whether it was the rewritten query or just
the finished plan that's dependent on the userID.  Rearrange that code so
that it's clearer what depends on which, and so that the same logic applies
to both RLS-injected role dependency and foreign-join-injected role
dependency.

Note that this patch doesn't remove the other issue mentioned in the
original complaint, which is that while we'll reliably stop using a foreign
join if it's disallowed in a new context, we might fail to start using a
foreign join if it's now allowed, but we previously created a generic
cached plan that didn't use one.  It was agreed that the chance of winning
that way was not high enough to justify the much larger number of plan
invalidations that would have to occur if we tried to cause it to happen.

In passing, clean up randomly-varying spelling of EXPLAIN commands in
postgres_fdw.sql, and fix a COSTS ON example that had been allowed to
leak into the committed tests.

This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the
previous attempt at ensuring we wouldn't push down foreign joins that
span permissions contexts.

Etsuro Fujita and Tom Lane

Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 17:23:02 -04:00
Robert Haas
5ce5e4a12e Set consider_parallel correctly for upper planner rels.
Commit 3fc6e2d7f5b652b417fa6937c34de2438d60fa9f introduced new "upper"
RelOptInfo structures but didn't set consider_parallel for them
correctly, a point I completely missed when reviewing it.  Later,
commit e06a38965b3bcdaa881e7e06892d4d8ab6c2c980 made the situation
worse by doing it incorrectly for the grouping relation.  Try to
straighten all of that out.  Along the way, get rid of the annoying
wholePlanParallelSafe flag, which was only necessarily because of
the fact that upper planning stages didn't use paths at the time
that code was written.

The most important immediate impact of these changes is that
force_parallel_mode will provide useful test coverage in quite a few
more scenarios than it did previously, but it's also necessary
preparation for fixing some problems related to subqueries.

Patch by me, reviewed by Tom Lane.
2016-07-01 11:52:56 -04:00
Tom Lane
19e972d558 Rethink node-level representation of partial-aggregation modes.
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.

Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are).  By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.

While at it, get rid of Aggref.aggoutputtype.  That's not needed since
commit 59a3795c2 got rid of setrefs.c's special-purpose Aggref comparison
code, and it likewise seemed more confusing than helpful.

Assorted comment cleanup as well (there's still more that I want to do
in that line).

catversion bump for change in Aggref node contents.  Should be the last
one for partial-aggregation changes.

Discussion: <29309.1466699160@sss.pgh.pa.us>
2016-06-26 14:33:38 -04:00
Tom Lane
8b9d323cb9 Refactor planning of projection steps that don't need a Result plan node.
The original upper-planner-pathification design (commit 3fc6e2d7f5b652b4)
assumed that we could always determine during Path formation whether or not
we would need a Result plan node to perform projection of a targetlist.
That turns out not to work very well, though, because createplan.c still
has some responsibilities for choosing the specific target list associated
with sorting/grouping nodes (in particular it might choose to add resjunk
columns for sorting).  We might not ever refactor that --- doing so would
push more work into Path formation, which isn't attractive --- and we
certainly won't do so for 9.6.  So, while create_projection_path and
apply_projection_to_path can tell for sure what will happen if the subpath
is projection-capable, they can't tell for sure when it isn't.  This is at
least a latent bug in apply_projection_to_path, which might think it can
apply a target to a non-projecting node when the node will end up computing
something different.

Also, I'd tied the creation of a ProjectionPath node to whether or not a
Result is needed, but it turns out that we sometimes need a ProjectionPath
node anyway to avoid modifying a possibly-shared subpath node.  Callers had
to use create_projection_path for such cases, and we added code to them
that knew about the potential omission of a Result node and attempted to
adjust the cost estimates for that.  That was uncertainly correct and
definitely ugly/unmaintainable.

To fix, have create_projection_path explicitly check whether a Result
is needed and adjust its cost estimate accordingly, though it creates
a ProjectionPath in either case.  apply_projection_to_path is now mostly
just an optimized version that can avoid creating an extra Path node when
the input is known to not be shared with any other live path.  (There
is one case that create_projection_path doesn't handle, which is pushing
parallel-safe expressions below a Gather node.  We could make it do that
by duplicating the GatherPath, but there seems no need as yet.)

create_projection_plan still has to recheck the tlist-match condition,
which means that if the matching situation does get changed by createplan.c
then we'll have made a slightly incorrect cost estimate.  But there seems
no help for that in the near term, and I doubt it occurs often enough,
let alone would change planning decisions often enough, to be worth
stressing about.

I added a "dummypp" field to ProjectionPath to track whether
create_projection_path thinks a Result is needed.  This is not really
necessary as-committed because create_projection_plan doesn't look at the
flag; but it seems like a good idea to remember what we thought when
forming the cost estimate, if only for debugging purposes.

In passing, get rid of the target_parallel parameter added to
apply_projection_to_path by commit 54f5c5150.  I don't think that's a good
idea because it involves callers in what should be an internal decision,
and opens us up to missing optimization opportunities if callers think they
don't need to provide a valid flag, as most don't.  For the moment, this
just costs us an extra has_parallel_hazard call when planning a Gather.
If that starts to look expensive, I think a better solution would be to
teach PathTarget to carry/cache knowledge of parallel-safety of its
contents.
2016-06-21 18:38:20 -04:00
Tom Lane
100340e2dc Restore foreign-key-aware estimation of join relation sizes.
This patch provides a new implementation of the logic added by commit
137805f89 and later removed by 77ba61080.  It differs from the original
primarily in expending much less effort per joinrel in large queries,
which it accomplishes by doing most of the matching work once per query not
once per joinrel.  Hopefully, it's also less buggy and better commented.
The never-documented enable_fkey_estimates GUC remains gone.

There remains work to be done to make the selectivity estimates account
for nulls in FK referencing columns; but that was true of the original
patch as well.  We may be able to address this point later in beta.
In the meantime, any error should be in the direction of overestimating
rather than underestimating joinrel sizes, which seems like the direction
we want to err in.

Tomas Vondra and Tom Lane

Discussion: <31041.1465069446@sss.pgh.pa.us>
2016-06-18 15:22:34 -04:00
Tom Lane
915b703e16 Fix handling of argument and result datatypes for partial aggregation.
When doing partial aggregation, the args list of the upper (combining)
Aggref node is replaced by a Var representing the output of the partial
aggregation steps, which has either the aggregate's transition data type
or a serialized representation of that.  However, nodeAgg.c blindly
continued to use the args list as an indication of the user-level argument
types.  This broke resolution of polymorphic transition datatypes at
executor startup (though it accidentally failed to fail for the ANYARRAY
case, which is likely the only one anyone had tested).  Moreover, the
constructed FuncExpr passed to the finalfunc contained completely wrong
information, which would have led to bogus answers or crashes for any case
where the finalfunc examined that information (which is only likely to be
with polymorphic aggregates using a non-polymorphic transition type).

As an independent bug, apply_partialaggref_adjustment neglected to resolve
a polymorphic transition datatype before assigning it as the output type
of the lower-level Aggref node.  This again accidentally failed to fail
for ANYARRAY but would be unlikely to work in other cases.

To fix the first problem, record the user-level argument types in a
separate OID-list field of Aggref, and look to that rather than the args
list when asking what the argument types were.  (It turns out to be
convenient to include any "direct" arguments in this list too, although
those are not currently subject to being overwritten.)

Rather than adding yet another resolve_aggregate_transtype() call to fix
the second problem, add an aggtranstype field to Aggref, and store the
resolved transition type OID there when the planner first computes it.
(By doing this in the planner and not the parser, we can allow the
aggregate's transition type to change from time to time, although no DDL
support yet exists for that.)  This saves nothing of consequence for
simple non-polymorphic aggregates, but for polymorphic transition types
we save a catalog lookup during executor startup as well as several
planner lookups that are new in 9.6 due to parallel query planning.

In passing, fix an error that was introduced into count_agg_clauses_walker
some time ago: it was applying exprTypmod() to something that wasn't an
expression node at all, but a TargetEntry.  exprTypmod silently returned
-1 so that there was not an obvious failure, but this broke the intended
sensitivity of aggregate space consumption estimates to the typmod of
varchar and similar data types.  This part needs to be back-patched.

Catversion bump due to change of stored Aggref nodes.

Discussion: <8229.1466109074@sss.pgh.pa.us>
2016-06-17 21:44:37 -04:00
Tom Lane
3303ea1a32 Remove reltarget_has_non_vars flag.
Commit b12fd41c6 added a "reltarget_has_non_vars" field to RelOptInfo,
but failed to maintain it accurately.  Since its only purpose was to skip
calls to has_parallel_hazard() in the simple case where a rel's targetlist
is all Vars, and that call is really pretty cheap in that case anyway, it
seems like this is just a case of premature optimization.  Let's drop the
flag and do the calls unconditionally until it's proven that we need more
smarts here.
2016-06-10 16:20:03 -04:00
Robert Haas
b12fd41c69 Don't generate parallel paths for rels with parallel-restricted outputs.
Such paths are unsafe.  To make it cheaper to detect when this case
applies, track whether a relation's default PathTarget contains any
non-Vars.  In most cases, the answer will be no, which enables us to
determine cheaply that the target list for a proposed path is
parallel-safe.  However, subquery pull-up can create cases that
require us to inspect the target list more carefully.

Amit Kapila, reviewed by me.
2016-06-09 12:43:36 -04:00
Robert Haas
c9ce4a1c61 Eliminate "parallel degree" terminology.
This terminology provoked widespread complaints.  So, instead, rename
the GUC max_parallel_degree to max_parallel_workers_per_gather
(leaving room for a possible future GUC max_parallel_workers that acts
as a system-wide limit), and rename the parallel_degree reloption to
parallel_workers.  Rename structure members to match.

These changes create a dump/restore hazard for users of PostgreSQL
9.6beta1 who have set the reloption (or applied the GUC using ALTER
USER or ALTER DATABASE).
2016-06-09 10:00:26 -04:00
Tom Lane
77ba610805 Revert "Use Foreign Key relationships to infer multi-column join selectivity".
This commit reverts 137805f89 as well as the associated commits 015e88942,
5306df283, and 68d704edb.  We found multiple bugs in this feature, and
there was concern about possible planner slowdown (though to be fair,
exhibiting a very large slowdown proved difficult).  The way forward
requires a considerable rewrite, which may or may not be possible to
accomplish in time for beta2.  In my judgment reviewing the rewrite will
be easier to accomplish starting from a clean slate, so let's temporarily
revert what's there now.  This also leaves us in a safe state if it turns
out to be necessary to postpone the rewrite to the next development cycle.

Discussion: <20160429102531.GA13701@huehner.biz>
2016-06-07 17:21:17 -04:00
Robert Haas
59eb551279 Fix EXPLAIN VERBOSE output for parallel aggregate.
The way that PartialAggregate and FinalizeAggregate plan nodes were
displaying output columns before was bogus.  Now, FinalizeAggregate
produces the same outputs as an Aggregate would have produced, while
PartialAggregate produces each of those outputs prefixed by the word
PARTIAL.

Discussion: 12585.1460737650@sss.pgh.pa.us

Patch by me, reviewed by David Rowley.
2016-04-27 07:37:40 -04:00
Andres Freund
c1ddd2361f Expose more out/readfuncs support functions.
Previously bcac23d exposed a subset of support functions, namely the
ones Kaigai found useful. In
20160304193704.elq773pyg5fyl3mi@alap3.anarazel.de I mentioned that
there's some functions missing to use the facility in an external
project.

To avoid having to add functions piecemeal, add all the functions which
are used to define READ_* and WRITE_* macros; users of the extensible
node functionality are likely to need these. Additionally expose
outDatum(), which doesn't have it's own WRITE_ macro, as it needs
information from the embedding struct.

Discussion: 20160304193704.elq773pyg5fyl3mi@alap3.anarazel.de
2016-04-08 14:26:36 -07:00
Teodor Sigaev
8b99edefca Revert CREATE INDEX ... INCLUDING ...
It's not ready yet, revert two commits
690c543550b0d2852060c18d270cdb534d339d9a - unstable test output
386e3d7609c49505e079c40c65919d99feb82505 - patch itself
2016-04-08 21:52:13 +03:00
Teodor Sigaev
386e3d7609 CREATE INDEX ... INCLUDING (column[, ...])
Now indexes (but only B-tree for now) can contain "extra" column(s) which
doesn't participate in index structure, they are just stored in leaf
tuples. It allows to use index only scan by using single index instead
of two or more indexes.

Author: Anastasia Lubennikova with minor editorializing by me
Reviewers: David Rowley, Peter Geoghegan, Jeff Janes
2016-04-08 19:45:59 +03:00
Simon Riggs
015e88942a Load FK defs into relcache for use by planner
Fastpath ignores this if no triggers defined.

Author: Tomas Vondra, with fastpath and comments added by me
Reviewers: David Rowley, Simon Riggs
2016-04-07 12:08:33 +01:00
Tom Lane
de94e2af18 Run pgindent on a batch of (mostly-planner-related) source files.
Getting annoyed at the amount of unrelated chatter I get from pgindent'ing
Rowley's unique-joins patch.  Re-indent all the files it touches.
2016-04-06 11:34:02 -04:00
Tom Lane
f9aefcb91f Support using index-only scans with partial indexes in more cases.
Previously, the planner would reject an index-only scan if any restriction
clause for its table used a column not available from the index, even
if that restriction clause would later be dropped from the plan entirely
because it's implied by the index's predicate.  This is a fairly common
situation for partial indexes because predicates using columns not included
in the index are often the most useful kind of predicate, and we have to
duplicate (or at least imply) the predicate in the WHERE clause in order
to get the index to be considered at all.  So index-only scans were
essentially unavailable with such partial indexes.

To fix, we have to do detection of implied-by-predicate clauses much
earlier in the planner.  This patch puts it in check_index_predicates
(nee check_partial_indexes), meaning it gets done for every partial index,
whereas we previously only considered this issue at createplan time,
so that the work was only done for an index actually selected for use.
That could result in a noticeable planning slowdown for queries against
tables with many partial indexes.  However, testing suggested that there
isn't really a significant cost, especially not with reasonable numbers
of partial indexes.  We do get a small additional benefit, which is that
cost_index is more accurate since it correctly discounts the evaluation
cost of clauses that will be removed.  We can also avoid considering such
clauses as potential indexquals, which saves useless matching cycles in
the case where the predicate columns aren't in the index, and prevents
generating bogus plans that double-count the clause's selectivity when
the columns are in the index.

Tomas Vondra and Kyotaro Horiguchi, reviewed by Kevin Grittner and
Konstantin Knizhnik, and whacked around a little by me
2016-03-31 14:49:10 -04:00
Robert Haas
5fe5a2cee9 Allow aggregate transition states to be serialized and deserialized.
This is necessary infrastructure for supporting parallel aggregation
for aggregates whose transition type is "internal".  Such values
can't be passed between cooperating processes, because they are
just pointers.

David Rowley, reviewed by Tomas Vondra and by me.
2016-03-29 15:04:05 -04:00
Robert Haas
f9143d102f Rework custom scans to work more like the new extensible node stuff.
Per discussion, the new extensible node framework is thought to be
better designed than the custom path/scan/scanstate stuff we added
in PostgreSQL 9.5.  Rework the latter to be more like the former.

This is not backward-compatible, but we generally don't promise that
for C APIs, and there probably aren't many people using this yet
anyway.

KaiGai Kohei, reviewed by Petr Jelinek and me.  Some further
cosmetic changes by me.
2016-03-29 11:28:04 -04:00
Robert Haas
e06a38965b Support parallel aggregation.
Parallel workers can now partially aggregate the data and pass the
transition values back to the leader, which can combine the partial
results to produce the final answer.

David Rowley, based on earlier work by Haribabu Kommi.  Reviewed by
Álvaro Herrera, Tomas Vondra, Amit Kapila, James Sewell, and me.
2016-03-21 09:30:18 -04:00
Robert Haas
0bf3ae88af Directly modify foreign tables.
postgres_fdw can now sent an UPDATE or DELETE statement directly to
the foreign server in simple cases, rather than sending a SELECT FOR
UPDATE statement and then updating or deleting rows one-by-one.

Etsuro Fujita, reviewed by Rushabh Lathia, Shigeru Hanada, Kyotaro
Horiguchi, Albe Laurenz, Thom Brown, and me.
2016-03-18 13:55:52 -04:00
Tom Lane
307c78852f Rethink representation of PathTargets.
In commit 19a541143a09c067 I did not make PathTarget a subtype of Node,
and embedded a RelOptInfo's reltarget directly into it rather than having
a separately-allocated Node.  In hindsight that was misguided
micro-optimization, enabled by the fact that at that point we didn't have
any Paths with custom PathTargets.  Now that PathTarget processing has
been fleshed out some more, it's easier to see that it's better to have
PathTarget as an indepedent Node type, even if it does cost us one more
palloc to create a RelOptInfo.  So change it while we still can.

This commit just changes the representation, without doing anything more
interesting than that.
2016-03-14 16:59:59 -04:00
Tom Lane
9e8b99420f Improve handling of group-column indexes in GroupingSetsPath.
Instead of having planner.c compute a groupColIdx array and store it in
GroupingSetsPaths, make create_groupingsets_plan() find the grouping
columns by searching in the child plan node's tlist.  Although that's
probably a bit slower for create_groupingsets_plan(), it's more like
the way every other plan node type does this, and it provides positive
confirmation that we know which child output columns we're supposed to be
grouping on.  (Indeed, looking at this now, I'm not at all sure that it
wasn't broken before, because create_groupingsets_plan() isn't demanding
an exact tlist match from its child node.)  Also, this allows substantial
simplification in planner.c, because it no longer needs to compute the
groupColIdx array at all; no other cases were using it.

I'd intended to put off this refactoring until later (like 9.7), but
in view of the likely bug fix and the need to rationalize planner.c's
tlist handling so we can do something sane with Konstantin Knizhnik's
function-evaluation-postponement patch, I think it can't wait.
2016-03-08 22:32:11 -05:00
Tom Lane
3fc6e2d7f5 Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is.  This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps.  Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step.  We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.

In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan.  It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation.  (A couple of regression test outputs change in consequence of
that.  However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)

There is a great deal left to do here.  This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations.  (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.)  I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.

Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
Tom Lane
19a541143a Add an explicit representation of the output targetlist to Paths.
Up to now, there's been an assumption that all Paths for a given relation
compute the same output column set (targetlist).  However, there are good
reasons to remove that assumption.  For example, an indexscan on an
expression index might be able to return the value of an expensive function
"for free".  While we have the ability to generate such a plan today in
simple cases, we don't have a way to model that it's cheaper than a plan
that computes the function from scratch, nor a way to create such a plan
in join cases (where the function computation would normally happen at
the topmost join node).  Also, we need this so that we can have Paths
representing post-scan/join steps, where the targetlist may well change
from one step to the next.  Therefore, invent a "struct PathTarget"
representing the columns we expect a plan step to emit.  It's convenient
to include the output tuple width and tlist evaluation cost in this struct,
and there will likely be additional fields in future.

While Path nodes that actually do have custom outputs will need their own
PathTargets, it will still be true that most Paths for a given relation
will compute the same tlist.  To reduce the overhead added by this patch,
keep a "default PathTarget" in RelOptInfo, and allow Paths that compute
that column set to just point to their parent RelOptInfo's reltarget.
(In the patch as committed, actually every Path is like that, since we
do not yet have any cases of custom PathTargets.)

I took this opportunity to provide some more-honest costing of
PlaceHolderVar evaluation.  Up to now, the assumption that "scan/join
reltargetlists have cost zero" was applied not only to Vars, where it's
reasonable, but also PlaceHolderVars where it isn't.  Now, we add the eval
cost of a PlaceHolderVar's expression to the first plan level where it can
be computed, by including it in the PathTarget cost field and adding that
to the cost estimates for Paths.  This isn't perfect yet but it's much
better than before, and there is a way forward to improve it more.  This
costing change affects the join order chosen for a couple of the regression
tests, changing expected row ordering.
2016-02-18 20:02:03 -05:00
Robert Haas
bcac23de73 Introduce extensible node types.
An extensible node is always tagged T_Extensible, but the extnodename
field identifies it more specifically; it may also include arbitrary
private data.  Extensible nodes can be copied, tested for equality,
serialized, and deserialized, but the core system doesn't know
anything about them otherwise.  Some extensions may find it useful to
include these nodes in fdw_private or custom_private lists in lieu of
arm-wrestling their data into a format that the core code can
understand.

Along the way, so as not to burden the authors of such extensible
node types too much, expose the functions for writing serialized
tokens, and for serializing and deserializing bitmapsets.

KaiGai Kohei, per a design suggested by me.  Reviewed by Andres Freund
and by me, and further edited by me.
2016-02-12 09:38:11 -05:00
Robert Haas
7c944bd903 Introduce a new GUC force_parallel_mode for testing purposes.
When force_parallel_mode = true, we enable the parallel mode restrictions
for all queries for which this is believed to be safe.  For the subset of
those queries believed to be safe to run entirely within a worker, we spin
up a worker and run the query there instead of running it in the
original process.  When force_parallel_mode = regress, make additional
changes to allow the regression tests to run cleanly even though parallel
workers have been injected under the hood.

Taken together, this facilitates both better user testing and better
regression testing of the parallelism code.

Robert Haas, with help from Amit Kapila and Rushabh Lathia.
2016-02-07 11:41:33 -05:00
Robert Haas
f2305d40ec Remove CustomPath's TextOutCustomPath method.
You can't really do anything useful with this in the form it currently
exists; among other problems, there's no way to reread whatever
information might be produced when the path is output.  Work is
underway to replace this with a more useful and more general system of
extensible nodes, but let's start by getting rid of this bit.

Extracted from a larger patch by KaiGai Kohei.
2016-02-03 10:38:50 -05:00
Robert Haas
fbe5a3fb73 Only try to push down foreign joins if the user mapping OIDs match.
Previously, the foreign join pushdown infrastructure left the question
of security entirely up to individual FDWs, but it would be easy for
a foreign data wrapper to inadvertently open up subtle security holes
that way.  So, make it the core code's job to determine which user
mapping OID is relevant, and don't attempt join pushdown unless it's
the same for all relevant relations.

Per a suggestion from Tom Lane.  Shigeru Hanada and Ashutosh Bapat,
reviewed by Etsuro Fujita and KaiGai Kohei, with some further
changes by me.
2016-01-28 14:05:36 -05:00
Robert Haas
45be99f8cd Support parallel joins, and make related improvements.
The core innovation of this patch is the introduction of the concept
of a partial path; that is, a path which if executed in parallel will
generate a subset of the output rows in each process.  Gathering a
partial path produces an ordinary (complete) path.  This allows us to
generate paths for parallel joins by joining a partial path for one
side (which at the baserel level is currently always a Partial Seq
Scan) to an ordinary path on the other side.  This is subject to
various restrictions at present, especially that this strategy seems
unlikely to be sensible for merge joins, so only nested loops and
hash joins paths are generated.

This also allows an Append node to be pushed below a Gather node in
the case of a partitioned table.

Testing revealed that early versions of this patch made poor decisions
in some cases, which turned out to be caused by the fact that the
original cost model for Parallel Seq Scan wasn't very good.  So this
patch tries to make some modest improvements in that area.

There is much more to be done in the area of generating good parallel
plans in all cases, but this seems like a useful step forward.

Patch by me, reviewed by Dilip Kumar and Amit Kapila.
2016-01-20 14:40:26 -05:00
Robert Haas
a7de3dc5c3 Support multi-stage aggregation.
Aggregate nodes now have two new modes: a "partial" mode where they
output the unfinalized transition state, and a "finalize" mode where
they accept unfinalized transition states rather than individual
values as input.

These new modes are not used anywhere yet, but they will be necessary
for parallel aggregation.  The infrastructure also figures to be
useful for cases where we want to aggregate local data and remote
data via the FDW interface, and want to bring back partial aggregates
from the remote side that can then be combined with locally generated
partial aggregates to produce the final value.  It may also be useful
even when neither FDWs nor parallelism are in play, as explained in
the comments in nodeAgg.c.

David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki
Linnakangas, Haribabu Kommi, and me.
2016-01-20 13:46:50 -05:00
Tom Lane
65c5fcd353 Restructure index access method API to hide most of it at the C level.
This patch reduces pg_am to just two columns, a name and a handler
function.  All the data formerly obtained from pg_am is now provided
in a C struct returned by the handler function.  This is similar to
the designs we've adopted for FDWs and tablesample methods.  There
are multiple advantages.  For one, the index AM's support functions
are now simple C functions, making them faster to call and much less
error-prone, since the C compiler can now check function signatures.
For another, this will make it far more practical to define index access
methods in installable extensions.

A disadvantage is that SQL-level code can no longer see attributes
of index AMs; in particular, some of the crosschecks in the opr_sanity
regression test are no longer possible from SQL.  We've addressed that
by adding a facility for the index AM to perform such checks instead.
(Much more could be done in that line, but for now we're content if the
amvalidate functions more or less replace what opr_sanity used to do.)
We might also want to expose some sort of reporting functionality, but
this patch doesn't do that.

Alexander Korotkov, reviewed by Petr Jelínek, and rather heavily
editorialized on by me.
2016-01-17 19:36:59 -05:00
Bruce Momjian
ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Peter Eisentraut
30c0c4bf12 Remove unnecessary escaping in C character literals
'\"' is more commonly written simply as '"'.
2015-12-22 22:43:46 -05:00
Tom Lane
6efbded6e4 Allow omitting one or both boundaries in an array slice specifier.
Omitted boundaries represent the upper or lower limit of the corresponding
array subscript.  This allows simpler specification of many common
use-cases.

(Revised version of commit 9246af6799819847faa33baf441251003acbb8fe)

YUriy Zhuravlev
2015-12-22 21:05:29 -05:00
Teodor Sigaev
bbbd807097 Revert 9246af6799819847faa33baf441251003acbb8fe because
I miss too much. Patch is returned to commitfest process.
2015-12-18 21:35:22 +03:00
Teodor Sigaev
9246af6799 Allow to omit boundaries in array subscript
Allow to omiy lower or upper or both boundaries in array subscript
for selecting slice of array.

Author: YUriy Zhuravlev
2015-12-18 15:18:58 +03:00
Tom Lane
4fcf48450d Get rid of the planner's LateralJoinInfo data structure.
I originally modeled this data structure on SpecialJoinInfo, but after
commit acfcd45cacb6df23 that looks like a pretty poor decision.
All we really need is relid sets identifying laterally-referenced rels;
and most of the time, what we want to know about includes indirect lateral
references, a case the LateralJoinInfo data was unsuited to compute with
any efficiency.  The previous commit redefined RelOptInfo.lateral_relids
as the transitive closure of lateral references, so that it easily supports
checking indirect references.  For the places where we really do want just
direct references, add a new RelOptInfo field direct_lateral_relids, which
is easily set up as a copy of lateral_relids before we perform the
transitive closure calculation.  Then we can just drop lateral_info_list
and LateralJoinInfo and the supporting code.  This makes the planner's
handling of lateral references noticeably more efficient, and shorter too.

Such a change can't be back-patched into stable branches for fear of
breaking extensions that might be looking at the planner's data structures;
but it seems not too late to push it into 9.5, so I've done so.
2015-12-11 15:52:38 -05:00
Robert Haas
385f337c9f Allow foreign and custom joins to handle EvalPlanQual rechecks.
Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 provided basic
infrastructure for allowing a foreign data wrapper or custom scan
provider to replace a join of one or more tables with a scan.
However, this infrastructure failed to take into account the need
for possible EvalPlanQual rechecks, and ExecScanFetch would fail
an assertion (or just overwrite memory) if such a check was attempted
for a plan containing a pushed-down join.  To fix, adjust the EPQ
machinery to skip some processing steps when scanrelid == 0, making
those the responsibility of scan's recheck method, which also has
the responsibility in this case of correctly populating the relevant
slot.

To allow foreign scans to gain control in the right place to make
use of this new facility, add a new, optional RecheckForeignScan
method.  Also, allow a foreign scan to have a child plan, which can
be used to correctly populate the slot (or perhaps for something
else, but this is the only use currently envisioned).

KaiGai Kohei, reviewed by Robert Haas, Etsuro Fujita, and Kyotaro
Horiguchi.
2015-12-08 12:31:03 -05:00
Tom Lane
edca44b152 Simplify LATERAL-related calculations within add_paths_to_joinrel().
While convincing myself that commit 7e19db0c09719d79 would solve both of
the problems recently reported by Andreas Seltenreich, I realized that
add_paths_to_joinrel's handling of LATERAL restrictions could be made
noticeably simpler and faster if we were to retain the minimum possible
parameterization for each joinrel (that is, the set of relids supplying
unsatisfied lateral references in it).  We already retain that for
baserels, in RelOptInfo.lateral_relids, so we can use that field for
joinrels too.

I re-pgindent'd the files touched here, which affects some unrelated
comments.

This is, I believe, just a minor optimization not a bug fix, so no
back-patch.
2015-12-07 18:56:17 -05:00
Robert Haas
a05dc4d7fd Provide readfuncs support for custom scans.
Commit a0d9f6e434bb56f7e5441b7988f3982feead33b3 added this support for
all other plan node types; this fills in the gap.

Since TextOutCustomScan complicates this and is pretty well useless,
remove it.

KaiGai Kohei, with some modifications by me.
2015-11-12 07:40:31 -05:00
Robert Haas
80558c1f5a Generate parallel sequential scan plans in simple cases.
Add a new flag, consider_parallel, to each RelOptInfo, indicating
whether a plan for that relation could conceivably be run inside of
a parallel worker.  Right now, we're pretty conservative: for example,
it might be possible to defer applying a parallel-restricted qual
in a worker, and later do it in the leader, but right now we just
don't try to parallelize access to that relation.  That's probably
the right decision in most cases, anyway.

Using the new flag, generate parallel sequential scan plans for plain
baserels, meaning that we now have parallel sequential scan in
PostgreSQL.  The logic here is pretty unsophisticated right now: the
costing model probably isn't right in detail, and we can't push joins
beneath Gather nodes, so the number of plans that can actually benefit
from this is pretty limited right now.  Lots more work is needed.
Nevertheless, it seems time to enable this functionality so that all
this code can actually be tested easily by users and developers.

Note that, if you wish to test this functionality, it will be
necessary to set max_parallel_degree to a value greater than the
default of 0.  Once a few more loose ends have been tidied up here, we
might want to consider changing the default value of this GUC, but
I'm leaving it alone for now.

Along the way, fix a bug in cost_gather: the previous coding thought
that a Gather node's transfer overhead should be costed on the basis of
the relation size rather than the number of tuples that actually need
to be passed off to the leader.

Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 09:02:52 -05:00
Robert Haas
f0661c4e8c Make sequential scans parallel-aware.
In addition, this path fills in a number of missing bits and pieces in
the parallel infrastructure.  Paths and plans now have a parallel_aware
flag indicating whether whatever parallel-aware logic they have should
be engaged.  It is believed that we will need this flag for a number of
path/plan types, not just sequential scans, which is why the flag is
generic rather than part of the SeqScan structures specifically.
Also, execParallel.c now gives parallel nodes a chance to initialize
their PlanState nodes from the DSM during parallel worker startup.

Amit Kapila, with a fair amount of adjustment by me.  Review of previous
patch versions by Haribabu Kommi and others.
2015-11-11 08:57:52 -05:00
Robert Haas
f764ecd81b Add outfuncs.c support for GatherPath.
I dunno how commit 3bd909b220930f21d6e15833a17947be749e7fde missed
this, but it evidently did.
2015-11-11 06:29:03 -05:00
Robert Haas
5fc4c26db5 Allow FDWs to push down quals without breaking EvalPlanQual rechecks.
This fixes a long-standing bug which was discovered while investigating
the interaction between the new join pushdown code and the EvalPlanQual
machinery: if a ForeignScan appears on the inner side of a paramaterized
nestloop, an EPQ recheck would re-return the original tuple even if
it no longer satisfied the pushed-down quals due to changed parameter
values.

This fix adds a new member to ForeignScan and ForeignScanState and a
new argument to make_foreignscan, and requires changes to FDWs which
push down quals to populate that new argument with a list of quals they
have chosen to push down.  Therefore, I'm only back-patching to 9.5,
even though the bug is not new in 9.5.

Etsuro Fujita, reviewed by me and by Kyotaro Horiguchi.
2015-10-15 13:00:40 -04:00
Stephen Frost
4158cc3793 Do not write out WCOs in Query
The WithCheckOptions list in Query are only populated during rewrite and
do not need to be written out or read in as part of a Query structure.

Further, move WithCheckOptions to the bottom and add comments to clarify
that it is only populated during rewrite.

Back-patch to 9.5 with a catversion bump, as we are still in alpha.
2015-10-05 07:38:58 -04:00
Robert Haas
286a3a68dc Fix readfuncs/outfuncs problems in last night's Gather patch.
KaiGai Kohei, with one correction by me.
2015-10-01 09:19:26 -04:00
Robert Haas
3bd909b220 Add a Gather executor node.
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream.  It can also run the plan itself, if the workers are
unavailable or haven't started up yet.  It is intended to work with
the Partial Seq Scan node which will be added in future commits.

It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used.  In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results.  So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes.  Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.

There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne.  But we're getting
close.

Amit Kapila.  Some designs suggestions were provided by me, and I also
reviewed the patch.  Single-copy mode, documentation, and other minor
changes also by me.
2015-09-30 19:23:36 -04:00
Robert Haas
d1b7c1ffe7 Parallel executor support.
This code provides infrastructure for a parallel leader to start up
parallel workers to execute subtrees of the plan tree being executed
in the master.  User-supplied parameters from ParamListInfo are passed
down, but PARAM_EXEC parameters are not.  Various other constructs,
such as initplans, subplans, and CTEs, are also not currently shared.
Nevertheless, there's enough here to support a basic implementation of
parallel query, and we can lift some of the current restrictions as
needed.

Amit Kapila and Robert Haas
2015-09-28 21:55:57 -04:00