Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link. We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells. That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.
In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links. Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header. (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)
Of course this is not without downsides. The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.
For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state. We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value. (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.
The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext(). The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell(). However, we no longer
need a previous-cell pointer to delete a list cell efficiently. Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)
There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents. To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen. This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).
There are two notable API differences from the previous code:
* lnext() now requires the List's header pointer in addition to the
current cell's address.
* list_delete_cell() no longer requires a previous-cell argument.
These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.
Programmers should be aware of these significant performance changes:
* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.
* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.) Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long. Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.
* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index. These have the
data-movement penalty explained above, but there's no search penalty.
* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists. The second argument is
now declared "const List *" to reflect that it isn't changed.
This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests. As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.
Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit. Code using those should have been gone a dozen years ago.
Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
One would have needed out-of-tree code to observe the defects. Remove
unreferenced fields instead of completing their support functions.
Since in-tree code can't reach _readIntoClause(), no catversion bump.
Previously, gen_partprune_steps() always built executor pruning steps
using all suitable clauses, including those containing PARAM_EXEC
Params. This meant that the pruning steps were only completely safe
for executor run-time (scan start) pruning. To prune at executor
startup, we had to ignore the steps involving exec Params. But this
doesn't really work in general, since there may be logic changes
needed as well --- for example, pruning according to the last operator's
btree strategy is the wrong thing if we're not applying that operator.
The rules embodied in gen_partprune_steps() and its minions are
sufficiently complicated that tracking their incremental effects in
other logic seems quite impractical.
Short of a complete redesign, the only safe fix seems to be to run
gen_partprune_steps() twice, once to create executor startup pruning
steps and then again for run-time pruning steps. We can save a few
cycles however by noting during the first scan whether we rejected
any clauses because they involved exec Params --- if not, we don't
need to do the second scan.
In support of this, refactor the internal APIs in partprune.c to make
more use of passing information in the GeneratePruningStepsContext
struct, rather than as separate arguments.
This is, I hope, the last piece of our response to a bug report from
Alan Jackson. Back-patch to v11 where this code came in.
Discussion: https://postgr.es/m/FAD28A83-AC73-489E-A058-2681FA31D648@tvsquared.com
Commit ca4103025dfe left a few loose ends. The most important one
(broken pg_dump output) is already fixed by virtue of commit
3b23552ad8bb, but some things remained:
* When ALTER TABLE rewrites tables, the indexes must remain in the
tablespace they were originally in. This didn't work because
index recreation during ALTER TABLE runs manufactured SQL (yuck),
which runs afoul of default_tablespace in competition with the parent
relation tablespace. To fix, reset default_tablespace to the empty
string temporarily, and add the TABLESPACE clause as appropriate.
* Setting a partitioned rel's tablespace to the database default is
confusing; if it worked, it would direct the partitions to that
tablespace regardless of default_tablespace. But in reality it does
not work, and making it work is a larger project. Therefore, throw
an error when this condition is detected, to alert the unwary.
Add some docs and tests, too.
Author: Álvaro Herrera
Discussion: https://postgr.es/m/CAKJS1f_1c260nOt_vBJ067AZ3JXptXVRohDVMLEBmudX1YEx-A@mail.gmail.com
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results. This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.
However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child. Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would). This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.
David Rowley, reviewed by Julien Rouhaud and Antonin Houska
Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.
This implements one kind of generated column: stored (computed on
write). Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
This adds a flag "deterministic" to collations. If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal. That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.
This functionality is only supported with the ICU provider. At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.
The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).
This patch makes changes in three areas:
- CREATE COLLATION DDL changes and system catalog changes to support
this new flag.
- Many executor nodes and auxiliary code are extended to track
collations. Previously, this code would just throw away collation
information, because the eventually-called user-defined functions
didn't use it since they only cared about equality, which didn't
need collation information.
- String data type functions that do equality comparisons and hashing
are changed to take the (non-)deterministic flag into account. For
comparison, this just means skipping various shortcuts and tie
breakers that use byte-wise comparison. For hashing, we first need
to convert the input string to a canonical "sort key" using the ICU
analogue of strxfrm().
Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
We still require AccessExclusiveLock on the partition itself, because
otherwise an insert that violates the newly-imposed partition
constraint could be in progress at the same time that we're changing
that constraint; only the lock level on the parent relation is
weakened.
To make this safe, we have to cope with (at least) three separate
problems. First, relevant DDL might commit while we're in the process
of building a PartitionDesc. If so, find_inheritance_children() might
see a new partition while the RELOID system cache still has the old
partition bound cached, and even before invalidation messages have
been queued. To fix that, if we see that the pg_class tuple seems to
be missing or to have a null relpartbound, refetch the value directly
from the table. We can't get the wrong value, because DETACH PARTITION
still requires AccessExclusiveLock throughout; if we ever want to
change that, this will need more thought. In testing, I found it quite
difficult to hit even the null-relpartbound case; the race condition
is extremely tight, but the theoretical risk is there.
Second, successive calls to RelationGetPartitionDesc might not return
the same answer. The query planner will get confused if lookup up the
PartitionDesc for a particular relation does not return a consistent
answer for the entire duration of query planning. Likewise, query
execution will get confused if the same relation seems to have a
different PartitionDesc at different times. Invent a new
PartitionDirectory concept and use it to ensure consistency. This
ensures that a single invocation of either the planner or the executor
sees the same view of the PartitionDesc from beginning to end, but it
does not guarantee that the planner and the executor see the same
view. Since this allows pointers to old PartitionDesc entries to
survive even after a relcache rebuild, also postpone removing the old
PartitionDesc entry until we're certain no one is using it.
For the most part, it seems to be OK for the planner and executor to
have different views of the PartitionDesc, because the executor will
just ignore any concurrently added partitions which were unknown at
plan time; those partitions won't be part of the inheritance
expansion, but invalidation messages will trigger replanning at some
point. Normally, this happens by the time the very next command is
executed, but if the next command acquires no locks and executes a
prepared query, it can manage not to notice until a new transaction is
started. We might want to tighten that up, but it's material for a
separate patch. There would still be a small window where a query
that started just after an ATTACH PARTITION command committed might
fail to notice its results -- but only if the command starts before
the commit has been acknowledged to the user. All in all, the warts
here around serializability seem small enough to be worth accepting
for the considerable advantage of being able to add partitions without
a full table lock.
Although in general the consequences of new partitions showing up
between planning and execution are limited to the query not noticing
the new partitions, run-time partition pruning will get confused in
that case, so that's the third problem that this patch fixes.
Run-time partition pruning assumes that indexes into the PartitionDesc
are stable between planning and execution. So, add code so that if
new partitions are added between plan time and execution time, the
indexes stored in the subplan_map[] and subpart_map[] arrays within
the plan's PartitionedRelPruneInfo get adjusted accordingly. There
does not seem to be a simple way to generalize this scheme to cope
with partitions that are removed, mostly because they could then get
added back again with different bounds, but it works OK for added
partitions.
This code does not try to ensure that every backend participating in
a parallel query sees the same view of the PartitionDesc. That
currently doesn't matter, because we never pass PartitionDesc
indexes between backends. Each backend will ignore the concurrently
added partitions which it notices, and it doesn't matter if different
backends are ignoring different sets of concurrently added partitions.
If in the future that matters, for example because we allow writes in
parallel query and want all participants to do tuple routing to the same
set of partitions, the PartitionDirectory concept could be improved to
share PartitionDescs across backends. There is a draft patch to
serialize and restore PartitionDescs on the thread where this patch
was discussed, which may be a useful place to start.
Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs,
Amit Langote, and Michael Paquier for discussion, and to Alvaro
Herrera for some review.
Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
This includes a catversion bump, as IntoClause is theoretically
speaking part of storable rules. In practice I don't think that can
happen, but there's no reason to be stingy here.
Per buildfarm member calliphoridae.
Historically we've always materialized the full output of a CTE query,
treating WITH as an optimization fence (so that, for example, restrictions
from the outer query cannot be pushed into it). This is appropriate when
the CTE query is INSERT/UPDATE/DELETE, or is recursive; but when the CTE
query is non-recursive and side-effect-free, there's no hazard of changing
the query results by pushing restrictions down.
Another argument for materialization is that it can avoid duplicate
computation of an expensive WITH query --- but that only applies if
the WITH query is called more than once in the outer query. Even then
it could still be a net loss, if each call has restrictions that
would allow just a small part of the WITH query to be computed.
Hence, let's change the behavior for WITH queries that are non-recursive
and side-effect-free. By default, we will inline them into the outer
query (removing the optimization fence) if they are called just once.
If they are called more than once, we will keep the old behavior by
default, but the user can override this and force inlining by specifying
NOT MATERIALIZED. Lastly, the user can force the old behavior by
specifying MATERIALIZED; this would mainly be useful when the query had
deliberately been employing WITH as an optimization fence to prevent a
poor choice of plan.
Andreas Karlsson, Andrew Gierth, David Fetter
Discussion: https://postgr.es/m/87sh48ffhb.fsf@news-spur.riddles.org.uk
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes. This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.
We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition. This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator. To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo(). For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.
Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original. This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.
Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.
This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state. I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.
Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
The old name of this file was never a very good indication of what it
was for. Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.
While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.
Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
In commit 8b08f7d4820f I added member relationId to IndexStmt struct.
I'm now not sure why; DefineIndex doesn't need it, since the relation
OID is passed as a separate argument anyway. Remove it.
Also remove a redundant assignment to the relationId argument (it wasn't
redundant when added by commit e093dcdd285, but should have been removed
in commit 5f173040e3), and use relationId instead of stmt->relation when
locking the relation in the second phase of CREATE INDEX CONCURRENTLY,
which is not only confusing but it means we resolve the name twice for
no reason.
Although copyfuncs.c has a check_stack_depth call in its recursion,
equalfuncs.c, outfuncs.c, and readfuncs.c lacked one. This seems
unwise.
Likewise fix planstate_tree_walker(), in branches where that exists.
Discussion: https://postgr.es/m/30253.1544286631@sss.pgh.pa.us
The original code to propagate NOT NULL and default expressions
specified when creating a partition was mostly copy-pasted from
typed-tables creation, but not being a great match it contained some
duplicity, inefficiency and bugs.
This commit fixes the bug that NOT NULL constraints declared in the
parent table would not be honored in the partition. One reported issue
that is not fixed is that a DEFAULT declared in the child is not used
when inserting through the parent. That would amount to a behavioral
change that's better not back-patched.
This rewrite makes the code simpler:
1. instead of checking for duplicate column names in its own block,
reuse the original one that already did that;
2. instead of concatenating the list of columns from parent and the one
declared in the partition and scanning the result to (incorrectly)
propagate defaults and not-null constraints, just scan the latter
searching the former for a match, and merging sensibly. This works
because we know the list in the parent is already correct and there can
only be one parent.
This rewrite makes ColumnDef->is_from_parent unused, so it's removed
on branch master; on released branches, it's kept as an unused field in
order not to cause ABI incompatibilities.
This commit also adds a test case for creating partitions with
collations mismatching that on the parent table, something that is
closely related to the code being patched. No code change is introduced
though, since that'd be a behavior change that could break some (broken)
working applications.
Amit Langote wrote a less invasive fix for the original
NOT NULL/defaults bug, but while I kept the tests he added, I ended up
not using his original code. Ashutosh Bapat reviewed Amit's fix. Amit
reviewed mine.
Author: Álvaro Herrera, Amit Langote
Reviewed-by: Ashutosh Bapat, Amit Langote
Reported-by: Jürgen Strobel (bug #15212)
Discussion: https://postgr.es/m/152746742177.1291.9847032632907407358@wrigleys.postgresql.org
There was no code to handle foreign key constraints on partitioned
tables in the case of ALTER TABLE DETACH; and if you happened to ATTACH
a partition that already had an equivalent constraint, that one was
ignored and a new constraint was created. Adding this to the fact that
foreign key cloning reuses the constraint name on the partition instead
of generating a new name (as it probably should, to cater to SQL
standard rules about constraint naming within schemas), the result was a
pretty poor user experience -- the most visible failure was that just
detaching a partition and re-attaching it failed with an error such as
ERROR: duplicate key value violates unique constraint "pg_constraint_conrelid_contypid_conname_index"
DETAIL: Key (conrelid, contypid, conname)=(26702, 0, test_result_asset_id_fkey) already exists.
because it would try to create an identically-named constraint in the
partition. To make matters worse, if you tried to drop the constraint
in the now-independent partition, that would fail because the constraint
was still seen as dependent on the constraint in its former parent
partitioned table:
ERROR: cannot drop inherited constraint "test_result_asset_id_fkey" of relation "test_result_cbsystem_0001_0050_monthly_2018_09"
This fix attacks the problem from two angles: first, when the partition
is detached, the constraint is also marked as independent, so the drop
now works. Second, when the partition is re-attached, we scan existing
constraints searching for one matching the FK in the parent, and if one
exists, we link that one to the parent constraint. So we don't end up
with a duplicate -- and better yet, we don't need to scan the referenced
table to verify that the constraint holds.
To implement this I made a small change to previously planner-only
struct ForeignKeyCacheInfo to contain the constraint OID; also relcache
now maintains the list of FKs for partitioned tables too.
Backpatch to 11.
Reported-by: Michael Vitale (bug #15425)
Discussion: https://postgr.es/m/15425-2dbc9d2aa999f816@postgresql.org
In the wake of commit f2343653f, we no longer need some fields that
were used before to control executor lock acquisitions:
* PlannedStmt.nonleafResultRelations can go away entirely.
* partitioned_rels can go away from Append, MergeAppend, and ModifyTable.
However, ModifyTable still needs to know the RT index of the partition
root table if any, which was formerly kept in the first entry of that
list. Add a new field "rootRelation" to remember that. rootRelation is
partly redundant with nominalRelation, in that if it's set it will have
the same value as nominalRelation. However, the latter field has a
different purpose so it seems best to keep them distinct.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
Create an array estate->es_relations[] paralleling the es_range_table,
and store references to Relations (relcache entries) there, so that any
given RT entry is opened and closed just once per executor run. Scan
nodes typically still call ExecOpenScanRelation, but ExecCloseScanRelation
is no more; relation closing is now done centrally in ExecEndPlan.
This is slightly more complex than one would expect because of the
interactions with relcache references held in ResultRelInfo nodes.
The general convention is now that ResultRelInfo->ri_RelationDesc does
not represent a separate relcache reference and so does not need to be
explicitly closed; but there is an exception for ResultRelInfos in the
es_trig_target_relations list, which are manufactured by
ExecGetTriggerResultRel and have to be cleaned up by
ExecCleanUpTriggerState. (That much was true all along, but these
ResultRelInfos are now more different from others than they used to be.)
To allow the partition pruning logic to make use of es_relations[] rather
than having its own relcache references, adjust PartitionedRelPruneInfo
to store an RT index rather than a relation OID.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
some mods by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
Add RangeTblEntry.rellockmode, which records the appropriate lock mode for
each RTE_RELATION rangetable entry (either AccessShareLock, RowShareLock,
or RowExclusiveLock depending on the RTE's role in the query).
This patch creates the field and makes all creators of RTE nodes fill it
in reasonably, but for the moment nothing much is done with it. The plan
is to replace assorted post-parser logic that re-determines the right
lockmode to use with simple uses of rte->rellockmode. For now, just add
Asserts in each of those places that the rellockmode matches what they are
computing today. (In some cases the match isn't perfect, so the Asserts
are weaker than you might expect; but this seems OK, as per discussion.)
This passes check-world for me, but it seems worth pushing in this state
to see if the buildfarm finds any problems in cases I failed to test.
catversion bump due to change of stored rules.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
A test patch to pass parse and plan trees through outfuncs + readfuncs
exposed several issues that need to be fixed to get clean matches:
Query.withCheckOptions failed to get copied; it's intentionally ignored
by outfuncs/readfuncs on the grounds that it'd always be NIL anyway in
stored rules. This seems less than future-proof, and it's not even
saving very much, so just undo the decision and treat the field like
all others.
Several places that convert a view RTE into a subquery RTE, or similar
manipulations, failed to clear out fields that were specific to the
original RTE type and should be zero in a subquery RTE. Since readfuncs.c
will leave such fields as zero, equalfuncs.c thinks the nodes are different
leading to a reported mismatch. It seems like a good idea to clear out the
no-longer-needed fields, even though in principle nothing should look at
them; the node ought to be indistinguishable from how it would look if
we'd built a new node instead of scribbling on the old one.
BuildOnConflictExcludedTargetlist randomly set the resname of some
TargetEntries to "" not NULL. outfuncs/readfuncs don't distinguish those
cases, and so the string will read back in as NULL ... but equalfuncs.c
does distinguish. Perhaps we ought to try to make things more consistent
in this area --- but it's just useless extra code space for
BuildOnConflictExcludedTargetlist to not use NULL here, so I fixed it for
now by making it do that.
catversion bumped because the change in handling of Query.withCheckOptions
affects stored rules.
Discussion: https://postgr.es/m/17114.1537138992@sss.pgh.pa.us
I noticed while poking at a report from Andrey Lepikhov that the
recent addition of RawStmt nodes at the top of raw parse trees
makes it impossible to print any raw parse trees whatsoever,
because outfuncs.c doesn't know RawStmt and hence fails to descend
into it.
While we generally lack outfuncs.c support for utility statements,
there is reasonably complete support for what you can find in a
raw SELECT statement. It was not my intention to make that all
dead code ... so let's add support for RawStmt.
Back-patch to v10 where RawStmt appeared.
Commit f49842d, which added support for partitionwise joins, built the
child's tlist by applying adjust_appendrel_attrs() to the parent's. So in
the case where the parent's included a whole-row Var for the parent, the
child's contained a ConvertRowtypeExpr. To cope with that, that commit
added code to the planner, such as setrefs.c, but some code paths still
assumed that the tlist for a scan (or join) rel would only include Vars
and PlaceHolderVars, which was true before that commit, causing errors:
* When creating an explicit sort node for an input path for a mergejoin
path for a child join, prepare_sort_from_pathkeys() threw the 'could not
find pathkey item to sort' error.
* When deparsing a relation participating in a pushed down child join as a
subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw
the 'unexpected expression in subquery output' error.
* When performing set_plan_references() on a local join plan generated by
contrib/postgres_fdw for EvalPlanQual support for a pushed down child
join, fix_join_expr() threw the 'variable not found in subplan target
lists' error.
To fix these, two approaches have been proposed: one by Ashutosh Bapat and
one by me. While the former keeps building the child's tlist with a
ConvertRowtypeExpr, the latter builds it with a whole-row Var for the
child not to violate the planner assumption, and tries to fix it up later,
But both approaches need more work, so refuse to generate partitionwise
join paths when whole-row Vars are involved, instead. We don't need to
handle ConvertRowtypeExprs in the child's tlists for now, so this commit
also removes the changes to the planner.
Previously, partitionwise join computed attr_needed data for each child
separately, and built the child join's tlist using that data, which also
required an extra step for adding PlaceHolderVars to that tlist, but it
would be more efficient to build it from the parent join's tlist through
the adjust_appendrel_attrs() transformation. So this commit builds that
list that way, and simplifies build_joinrel_tlist() and placeholder.c as
well as part of set_append_rel_size() to basically what they were before
partitionwise join went in.
Back-patch to PG11 where partitionwise join was introduced.
Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also
provided some of regression tests. Patch by me, reviewed by Robert Haas.
Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
The previous coding here supposed that if run-time partitioning applied to
a particular Append/MergeAppend plan, then all child plans of that node
must be members of a single partitioning hierarchy. This is totally wrong,
since an Append could be formed from a UNION ALL: we could have multiple
hierarchies sharing the same Append, or child plans that aren't part of any
hierarchy.
To fix, restructure the related plan-time and execution-time data
structures so that we can have a separate list or array for each
partitioning hierarchy. Also track subplans that are not part of any
hierarchy, and make sure they don't get pruned.
Per reports from Phil Florent and others. Back-patch to v11, since
the bug originated there.
David Rowley, with a lot of cosmetic adjustments by me; thanks also
to Amit Langote for review.
Discussion: https://postgr.es/m/HE1PR03MB17068BB27404C90B5B788BCABA7B0@HE1PR03MB1706.eurprd03.prod.outlook.com
nodeWindowAgg.c failed to cope with the possibility that no ordering
columns are defined in the window frame for GROUPS mode or RANGE OFFSET
mode, leading to assertion failures or odd errors, as reported by Masahiko
Sawada and Lukas Eder. In RANGE OFFSET mode, an ordering column is really
required, so add an Assert about that. In GROUPS mode, the code would
work, except that the node initialization code wasn't in sync with the
execution code about when to set up tuplestore read pointers and spare
slots. Fix the latter for consistency's sake (even though I think the
changes described below make the out-of-sync cases unreachable for now).
Per SQL spec, a single ordering column is required for RANGE OFFSET mode,
and at least one ordering column is required for GROUPS mode. The parser
enforced the former but not the latter; add a check for that.
We were able to reach the no-ordering-column cases even with fully spec
compliant queries, though, because the planner would drop partitioning
and ordering columns from the generated plan if they were redundant with
earlier columns according to the redundant-pathkey logic, for instance
"PARTITION BY x ORDER BY y" in the presence of a "WHERE x=y" qual.
While in principle that's an optimization that could save some pointless
comparisons at runtime, it seems unlikely to be meaningful in the real
world. I think this behavior was not so much an intentional optimization
as a side-effect of an ancient decision to construct the plan node's
ordering-column info by reverse-engineering the PathKeys of the input
path. If we give up redundant-column removal then it takes very little
code to generate the plan node info directly from the WindowClause,
ensuring that we have the expected number of ordering columns in all
cases. (If anyone does complain about this, the planner could perhaps
be taught to remove redundant columns only when it's safe to do so,
ie *not* in RANGE OFFSET mode. But I doubt anyone ever will.)
With these changes, the WindowAggPath.winpathkeys field is not used for
anything anymore, so remove it.
The test cases added here are not actually very interesting given the
removal of the redundant-column-removal logic, but they would represent
important corner cases if anyone ever tries to put that back.
Tom Lane and Masahiko Sawada. Back-patch to v11 where RANGE OFFSET
and GROUPS modes were added.
Discussion: https://postgr.es/m/CAD21AoDrWqycq-w_+Bx1cjc+YUhZ11XTj9rfxNiNDojjBx8Fjw@mail.gmail.com
Discussion: https://postgr.es/m/153086788677.17476.8002640580496698831@wrigleys.postgresql.org
These struct definitions were originally dropped into primnodes.h,
which is a poor choice since that's mainly intended for primitive
expression node types; these are not in that category. What they
are is auxiliary info in Plan trees, so move them to plannodes.h.
For consistency, also relocate some related code that was apparently
placed with the aid of a dartboard.
There's no interesting code changes in this commit, just reshuffling.
David Rowley and Tom Lane
Discussion: https://postgr.es/m/CAFj8pRBjrufA3ocDm8o4LPGNye9Y+pm1b9kCwode4X04CULG3g@mail.gmail.com
The initial coding of the run-time-pruning feature only coped with cases
where the partition key(s) are compared to Params. That is a bit silly;
we can allow it to work with any non-Var-containing stable expression, as
long as we take special care with expressions containing PARAM_EXEC Params.
The code is hardly any longer this way, and it's considerably clearer
(IMO at least). Per gripe from Pavel Stehule.
David Rowley, whacked around a bit by me
Discussion: https://postgr.es/m/CAFj8pRBjrufA3ocDm8o4LPGNye9Y+pm1b9kCwode4X04CULG3g@mail.gmail.com
This controls both plan-time and execution-time new-style partition
pruning. While finer-grain control is possible (maybe using an enum GUC
instead of boolean), there doesn't seem to be much need for that.
This new parameter controls partition pruning for all queries:
trivially, SELECT queries that affect partitioned tables are naturally
under its control since they are using the new technology. However,
while UPDATE/DELETE queries do not use the new code, we make the new GUC
control their behavior also (stealing control from
constraint_exclusion), because it is more natural, and it leads to a
more natural transition to the future in which those queries will also
use the new pruning code.
Constraint exclusion still controls pruning for regular inheritance
situations (those not involving partitioned tables).
Author: David Rowley
Review: Amit Langote, Ashutosh Bapat, Justin Pryzby, David G. Johnston
Discussion: https://postgr.es/m/CAKJS1f_0HwsxJG9m+nzU+CizxSdGtfe6iF_ykPYBiYft302DCw@mail.gmail.com
This reverts commits d204ef63776b8a00ca220adec23979091564e465,
83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
This patch introduces INCLUDE clause to index definition. This clause
specifies a list of columns which will be included as a non-key part in
the index. The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans. Also, such columns don't need to have
appropriate operator classes. Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.
Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine. For now, only B-tree indexes support INCLUDE clause.
In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys). Therefore, B-tree indexes
now might have variable number of attributes. This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid. Free 13th bit of t_info is used for indicating
that. This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.
Bump catalog version
Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
Add a new module backend/partitioning/partprune.c, implementing a more
sophisticated algorithm for partition pruning. The new module uses each
partition's "boundinfo" for pruning instead of constraint exclusion,
based on an idea proposed by Robert Haas of a "pruning program": a list
of steps generated from the query quals which are run iteratively to
obtain a list of partitions that must be scanned in order to satisfy
those quals.
At present, this targets planner-time partition pruning, but there exist
further patches to apply partition pruning at execution time as well.
This commit also moves some definitions from include/catalog/partition.h
to a new file include/partitioning/partbounds.h, in an attempt to
rationalize partitioning related code.
Authors: Amit Langote, David Rowley, Dilip Kumar
Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen.
Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
This adds simple cost based plan time decision about whether JIT
should be performed. jit_above_cost, jit_optimize_above_cost are
compared with the total cost of a plan, and if the cost is above them
JIT is performed / optimization is performed respectively.
For that PlannedStmt and EState have a jitFlags (es_jit_flags) field
that stores information about what JIT operations should be performed.
EState now also has a new es_jit field, which can store a
JitContext. When there are no errors the context is released in
standard_ExecutorEnd().
It is likely that the default values for jit_[optimize_]above_cost
will need to be adapted further, but in my test these values seem to
work reasonably.
Author: Andres Freund, with feedback by Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
A Value node would store an integer as a long. This causes needless
portability risks, as long can be of varying sizes. Change it to use
int instead. All code using this was already careful to only store
32-bit values anyway.
Reviewed-by: Michael Paquier <michael@paquier.xyz>
The LIKE INCLUDING ALL clause to CREATE TABLE intuitively indicates
cloning of extended statistics on the source table, but it failed to do
so. Patch it up so that it does. Also include an INCLUDING STATISTICS
option to the LIKE clause, so that the behavior can be requested
individually, or excluded individually.
While at it, reorder the INCLUDING options, both in code and in docs, in
alphabetical order which makes more sense than feature-implementation
order that was previously used.
Backpatch this to Postgres 10, where extended statistics were
introduced, because this is seen as an oversight in a fresh feature
which is better to get consistent from the get-go instead of changing
only in pg11.
In pg11, comments on statistics objects are cloned too. In pg10 they
are not, because I (Álvaro) was too coward to change the parse node as
required to support it. Also, in pg10 I chose not to renumber the
parser symbols for the various INCLUDING options in LIKE, for the same
reason. Any corresponding user-visible changes (docs) are backpatched,
though.
Reported-by: Stephen Froehlich
Author: David Rowley
Reviewed-by: Álvaro Herrera, Tomas Vondra
Discussion: https://postgr.es/m/CY1PR0601MB1927315B45667A1B679D0FD5E5EF0@CY1PR0601MB1927.namprd06.prod.outlook.com
This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING"
frame boundaries in window functions. We'd punted on that back in the
original patch to add window functions, because it was not clear how to
do it in a reasonably data-type-extensible fashion. That problem is
resolved here by adding the ability for btree operator classes to provide
an "in_range" support function that defines how to add or subtract the
RANGE offset value. Factoring it this way also allows the operator class
to avoid overflow problems near the ends of the datatype's range, if it
wishes to expend effort on that. (In the committed patch, the integer
opclasses handle that issue, but it did not seem worth the trouble to
avoid overflow failures for datetime types.)
The patch includes in_range support for the integer_ops opfamily
(int2/int4/int8) as well as the standard datetime types. Support for
other numeric types has been requested, but that seems like suitable
material for a follow-on patch.
In addition, the patch adds GROUPS mode which counts the offset in
ORDER-BY peer groups rather than rows, and it adds the frame_exclusion
options specified by SQL:2011. As far as I can see, we are now fully
up to spec on window framing options.
Existing behaviors remain unchanged, except that I changed the errcode
for a couple of existing error reports to meet the SQL spec's expectation
that negative "offset" values should be reported as SQLSTATE 22013.
Internally and in relevant parts of the documentation, we now consistently
use the terminology "offset PRECEDING/FOLLOWING" rather than "value
PRECEDING/FOLLOWING", since the term "value" is confusingly vague.
Oliver Ford, reviewed and whacked around some by me
Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
Investigation of 2d2d06b7e27e3177d5bef0061801c75946871db3 revealed that
identity values were not applied in some further cases, including
logical replication subscribers, VALUES RTEs, and ALTER TABLE ... ADD
COLUMN. To fix all that, apply the identity column expression in
build_column_default() instead of repeating the same logic at each call
site.
For ALTER TABLE ... ADD COLUMN ... IDENTITY, the previous coding
completely ignored that existing rows for the new column should have
values filled in from the identity sequence. The coding using
build_column_default() fails for this because the sequence ownership
isn't registered until after ALTER TABLE, and we can't do it before
because we don't have the column in the catalog yet. So we specially
remember in ColumnDef the sequence name that we decided on and build a
custom NextValueExpr using that.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
When CREATE INDEX is run on a partitioned table, create catalog entries
for an index on the partitioned table (which is just a placeholder since
the table proper has no data of its own), and recurse to create actual
indexes on the existing partitions; create them in future partitions
also.
As a convenience gadget, if the new index definition matches some
existing index in partitions, these are picked up and used instead of
creating new ones. Whichever way these indexes come about, they become
attached to the index on the parent table and are dropped alongside it,
and cannot be dropped on isolation unless they are detached first.
To support pg_dump'ing these indexes, add commands
CREATE INDEX ON ONLY <table>
(which creates the index on the parent partitioned table, without
recursing) and
ALTER INDEX ATTACH PARTITION
(which is used after the indexes have been created individually on each
partition, to attach them to the parent index). These reconstruct prior
database state exactly.
Reviewed-by: (in alphabetical order) Peter Eisentraut, Robert Haas, Amit
Langote, Jesper Pedersen, Simon Riggs, David Rowley
Discussion: https://postgr.es/m/20171113170646.gzweigyrgg6pwsg4@alvherre.pgsql