mirror of
https://github.com/qgis/QGIS.git
synced 2025-03-04 00:30:59 -05:00
Instead we output an empty layer - this may be critical for multi-step models where there is validly no features present in a source layer
141 lines
5.4 KiB
Python
141 lines
5.4 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
***************************************************************************
|
|
NearestNeighbourAnalysis.py
|
|
---------------------
|
|
Date : August 2012
|
|
Copyright : (C) 2012 by Victor Olaya
|
|
Email : volayaf at gmail dot com
|
|
***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************
|
|
"""
|
|
from builtins import next
|
|
from builtins import str
|
|
|
|
__author__ = 'Victor Olaya'
|
|
__date__ = 'August 2012'
|
|
__copyright__ = '(C) 2012, Victor Olaya'
|
|
|
|
# This will get replaced with a git SHA1 when you do a git archive
|
|
|
|
__revision__ = '$Format:%H$'
|
|
|
|
import os
|
|
import math
|
|
import codecs
|
|
|
|
from qgis.PyQt.QtGui import QIcon
|
|
|
|
from qgis.core import QgsFeatureRequest, QgsFeature, QgsDistanceArea, QgsProcessingUtils
|
|
|
|
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
|
|
from processing.core.parameters import ParameterVector
|
|
from processing.core.outputs import OutputHTML
|
|
from processing.core.outputs import OutputNumber
|
|
from processing.tools import dataobjects
|
|
|
|
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
|
|
|
|
|
|
class NearestNeighbourAnalysis(QgisAlgorithm):
|
|
|
|
POINTS = 'POINTS'
|
|
OUTPUT = 'OUTPUT'
|
|
OBSERVED_MD = 'OBSERVED_MD'
|
|
EXPECTED_MD = 'EXPECTED_MD'
|
|
NN_INDEX = 'NN_INDEX'
|
|
POINT_COUNT = 'POINT_COUNT'
|
|
Z_SCORE = 'Z_SCORE'
|
|
|
|
def icon(self):
|
|
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png'))
|
|
|
|
def group(self):
|
|
return self.tr('Vector analysis tools')
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.addParameter(ParameterVector(self.POINTS,
|
|
self.tr('Points'), [dataobjects.TYPE_VECTOR_POINT]))
|
|
|
|
self.addOutput(OutputHTML(self.OUTPUT, self.tr('Nearest neighbour')))
|
|
|
|
self.addOutput(OutputNumber(self.OBSERVED_MD,
|
|
self.tr('Observed mean distance')))
|
|
self.addOutput(OutputNumber(self.EXPECTED_MD,
|
|
self.tr('Expected mean distance')))
|
|
self.addOutput(OutputNumber(self.NN_INDEX,
|
|
self.tr('Nearest neighbour index')))
|
|
self.addOutput(OutputNumber(self.POINT_COUNT,
|
|
self.tr('Number of points')))
|
|
self.addOutput(OutputNumber(self.Z_SCORE, self.tr('Z-Score')))
|
|
|
|
def name(self):
|
|
return 'nearestneighbouranalysis'
|
|
|
|
def displayName(self):
|
|
return self.tr('Nearest neighbour analysis')
|
|
|
|
def processAlgorithm(self, parameters, context, feedback):
|
|
layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.POINTS), context)
|
|
output = self.getOutputValue(self.OUTPUT)
|
|
|
|
spatialIndex = QgsProcessingUtils.createSpatialIndex(layer, context)
|
|
|
|
neighbour = QgsFeature()
|
|
distance = QgsDistanceArea()
|
|
|
|
sumDist = 0.00
|
|
A = layer.extent()
|
|
A = float(A.width() * A.height())
|
|
|
|
features = QgsProcessingUtils.getFeatures(layer, context)
|
|
count = QgsProcessingUtils.featureCount(layer, context)
|
|
total = 100.0 / count if count else 1
|
|
for current, feat in enumerate(features):
|
|
neighbourID = spatialIndex.nearestNeighbor(
|
|
feat.geometry().asPoint(), 2)[1]
|
|
request = QgsFeatureRequest().setFilterFid(neighbourID).setSubsetOfAttributes([])
|
|
neighbour = next(layer.getFeatures(request))
|
|
sumDist += distance.measureLine(neighbour.geometry().asPoint(),
|
|
feat.geometry().asPoint())
|
|
|
|
feedback.setProgress(int(current * total))
|
|
|
|
do = float(sumDist) / count
|
|
de = float(0.5 / math.sqrt(count / A))
|
|
d = float(do / de)
|
|
SE = float(0.26136 / math.sqrt(count ** 2 / A))
|
|
zscore = float((do - de) / SE)
|
|
|
|
data = []
|
|
data.append('Observed mean distance: ' + str(do))
|
|
data.append('Expected mean distance: ' + str(de))
|
|
data.append('Nearest neighbour index: ' + str(d))
|
|
data.append('Number of points: ' + str(count))
|
|
data.append('Z-Score: ' + str(zscore))
|
|
|
|
self.createHTML(output, data)
|
|
|
|
self.setOutputValue(self.OBSERVED_MD, float(data[0].split(': ')[1]))
|
|
self.setOutputValue(self.EXPECTED_MD, float(data[1].split(': ')[1]))
|
|
self.setOutputValue(self.NN_INDEX, float(data[2].split(': ')[1]))
|
|
self.setOutputValue(self.POINT_COUNT, float(data[3].split(': ')[1]))
|
|
self.setOutputValue(self.Z_SCORE, float(data[4].split(': ')[1]))
|
|
|
|
def createHTML(self, outputFile, algData):
|
|
with codecs.open(outputFile, 'w', encoding='utf-8') as f:
|
|
f.write('<html><head>')
|
|
f.write('<meta http-equiv="Content-Type" content="text/html; \
|
|
charset=utf-8" /></head><body>')
|
|
for s in algData:
|
|
f.write('<p>' + str(s) + '</p>')
|
|
f.write('</body></html>')
|