QGIS/python/plugins/processing/algs/qgis/NearestNeighbourAnalysis.py
Nyall Dawson 99cfb8faf3 Fix processing algs crash when no source features exist
Instead we output an empty layer - this may be critical for
multi-step models where there is validly no features present
in a source layer
2017-06-23 13:49:32 +10:00

141 lines
5.4 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
NearestNeighbourAnalysis.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from builtins import next
from builtins import str
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
import math
import codecs
from qgis.PyQt.QtGui import QIcon
from qgis.core import QgsFeatureRequest, QgsFeature, QgsDistanceArea, QgsProcessingUtils
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
from processing.core.parameters import ParameterVector
from processing.core.outputs import OutputHTML
from processing.core.outputs import OutputNumber
from processing.tools import dataobjects
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class NearestNeighbourAnalysis(QgisAlgorithm):
POINTS = 'POINTS'
OUTPUT = 'OUTPUT'
OBSERVED_MD = 'OBSERVED_MD'
EXPECTED_MD = 'EXPECTED_MD'
NN_INDEX = 'NN_INDEX'
POINT_COUNT = 'POINT_COUNT'
Z_SCORE = 'Z_SCORE'
def icon(self):
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png'))
def group(self):
return self.tr('Vector analysis tools')
def __init__(self):
super().__init__()
self.addParameter(ParameterVector(self.POINTS,
self.tr('Points'), [dataobjects.TYPE_VECTOR_POINT]))
self.addOutput(OutputHTML(self.OUTPUT, self.tr('Nearest neighbour')))
self.addOutput(OutputNumber(self.OBSERVED_MD,
self.tr('Observed mean distance')))
self.addOutput(OutputNumber(self.EXPECTED_MD,
self.tr('Expected mean distance')))
self.addOutput(OutputNumber(self.NN_INDEX,
self.tr('Nearest neighbour index')))
self.addOutput(OutputNumber(self.POINT_COUNT,
self.tr('Number of points')))
self.addOutput(OutputNumber(self.Z_SCORE, self.tr('Z-Score')))
def name(self):
return 'nearestneighbouranalysis'
def displayName(self):
return self.tr('Nearest neighbour analysis')
def processAlgorithm(self, parameters, context, feedback):
layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.POINTS), context)
output = self.getOutputValue(self.OUTPUT)
spatialIndex = QgsProcessingUtils.createSpatialIndex(layer, context)
neighbour = QgsFeature()
distance = QgsDistanceArea()
sumDist = 0.00
A = layer.extent()
A = float(A.width() * A.height())
features = QgsProcessingUtils.getFeatures(layer, context)
count = QgsProcessingUtils.featureCount(layer, context)
total = 100.0 / count if count else 1
for current, feat in enumerate(features):
neighbourID = spatialIndex.nearestNeighbor(
feat.geometry().asPoint(), 2)[1]
request = QgsFeatureRequest().setFilterFid(neighbourID).setSubsetOfAttributes([])
neighbour = next(layer.getFeatures(request))
sumDist += distance.measureLine(neighbour.geometry().asPoint(),
feat.geometry().asPoint())
feedback.setProgress(int(current * total))
do = float(sumDist) / count
de = float(0.5 / math.sqrt(count / A))
d = float(do / de)
SE = float(0.26136 / math.sqrt(count ** 2 / A))
zscore = float((do - de) / SE)
data = []
data.append('Observed mean distance: ' + str(do))
data.append('Expected mean distance: ' + str(de))
data.append('Nearest neighbour index: ' + str(d))
data.append('Number of points: ' + str(count))
data.append('Z-Score: ' + str(zscore))
self.createHTML(output, data)
self.setOutputValue(self.OBSERVED_MD, float(data[0].split(': ')[1]))
self.setOutputValue(self.EXPECTED_MD, float(data[1].split(': ')[1]))
self.setOutputValue(self.NN_INDEX, float(data[2].split(': ')[1]))
self.setOutputValue(self.POINT_COUNT, float(data[3].split(': ')[1]))
self.setOutputValue(self.Z_SCORE, float(data[4].split(': ')[1]))
def createHTML(self, outputFile, algData):
with codecs.open(outputFile, 'w', encoding='utf-8') as f:
f.write('<html><head>')
f.write('<meta http-equiv="Content-Type" content="text/html; \
charset=utf-8" /></head><body>')
for s in algData:
f.write('<p>' + str(s) + '</p>')
f.write('</body></html>')