# -*- coding: utf-8 -*- """ *************************************************************************** NearestNeighbourAnalysis.py --------------------- Date : August 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ from builtins import next from builtins import str __author__ = 'Victor Olaya' __date__ = 'August 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os import math import codecs from qgis.PyQt.QtGui import QIcon from qgis.core import QgsFeatureRequest, QgsFeature, QgsDistanceArea, QgsProcessingUtils from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm from processing.core.parameters import ParameterVector from processing.core.outputs import OutputHTML from processing.core.outputs import OutputNumber from processing.tools import dataobjects pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] class NearestNeighbourAnalysis(QgisAlgorithm): POINTS = 'POINTS' OUTPUT = 'OUTPUT' OBSERVED_MD = 'OBSERVED_MD' EXPECTED_MD = 'EXPECTED_MD' NN_INDEX = 'NN_INDEX' POINT_COUNT = 'POINT_COUNT' Z_SCORE = 'Z_SCORE' def icon(self): return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png')) def group(self): return self.tr('Vector analysis tools') def __init__(self): super().__init__() self.addParameter(ParameterVector(self.POINTS, self.tr('Points'), [dataobjects.TYPE_VECTOR_POINT])) self.addOutput(OutputHTML(self.OUTPUT, self.tr('Nearest neighbour'))) self.addOutput(OutputNumber(self.OBSERVED_MD, self.tr('Observed mean distance'))) self.addOutput(OutputNumber(self.EXPECTED_MD, self.tr('Expected mean distance'))) self.addOutput(OutputNumber(self.NN_INDEX, self.tr('Nearest neighbour index'))) self.addOutput(OutputNumber(self.POINT_COUNT, self.tr('Number of points'))) self.addOutput(OutputNumber(self.Z_SCORE, self.tr('Z-Score'))) def name(self): return 'nearestneighbouranalysis' def displayName(self): return self.tr('Nearest neighbour analysis') def processAlgorithm(self, parameters, context, feedback): layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.POINTS), context) output = self.getOutputValue(self.OUTPUT) spatialIndex = QgsProcessingUtils.createSpatialIndex(layer, context) neighbour = QgsFeature() distance = QgsDistanceArea() sumDist = 0.00 A = layer.extent() A = float(A.width() * A.height()) features = QgsProcessingUtils.getFeatures(layer, context) count = QgsProcessingUtils.featureCount(layer, context) total = 100.0 / count if count else 1 for current, feat in enumerate(features): neighbourID = spatialIndex.nearestNeighbor( feat.geometry().asPoint(), 2)[1] request = QgsFeatureRequest().setFilterFid(neighbourID).setSubsetOfAttributes([]) neighbour = next(layer.getFeatures(request)) sumDist += distance.measureLine(neighbour.geometry().asPoint(), feat.geometry().asPoint()) feedback.setProgress(int(current * total)) do = float(sumDist) / count de = float(0.5 / math.sqrt(count / A)) d = float(do / de) SE = float(0.26136 / math.sqrt(count ** 2 / A)) zscore = float((do - de) / SE) data = [] data.append('Observed mean distance: ' + str(do)) data.append('Expected mean distance: ' + str(de)) data.append('Nearest neighbour index: ' + str(d)) data.append('Number of points: ' + str(count)) data.append('Z-Score: ' + str(zscore)) self.createHTML(output, data) self.setOutputValue(self.OBSERVED_MD, float(data[0].split(': ')[1])) self.setOutputValue(self.EXPECTED_MD, float(data[1].split(': ')[1])) self.setOutputValue(self.NN_INDEX, float(data[2].split(': ')[1])) self.setOutputValue(self.POINT_COUNT, float(data[3].split(': ')[1])) self.setOutputValue(self.Z_SCORE, float(data[4].split(': ')[1])) def createHTML(self, outputFile, algData): with codecs.open(outputFile, 'w', encoding='utf-8') as f: f.write('
') f.write('') for s in algData: f.write('' + str(s) + '
') f.write('')