mirror of
https://github.com/qgis/QGIS.git
synced 2025-03-09 00:35:20 -05:00
125 lines
4.7 KiB
XML
125 lines
4.7 KiB
XML
<root>
|
|
<key>TrainRegression-knn</key>
|
|
<exec>otbcli_TrainRegression</exec>
|
|
<longname>TrainRegression (knn)</longname>
|
|
<group>Learning</group>
|
|
<description>Train a classifier from multiple images to perform regression.</description>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
|
|
<key>io.il</key>
|
|
<name>Input Image List</name>
|
|
<description>A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.</description>
|
|
<datatype />
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
|
|
<key>io.csv</key>
|
|
<name>Input CSV file</name>
|
|
<description>Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given</description>
|
|
<isFolder />
|
|
<optional>True</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
|
|
<key>io.imstat</key>
|
|
<name>Input XML image statistics file</name>
|
|
<description>Input XML file containing the mean and the standard deviation of the input images.</description>
|
|
<isFolder />
|
|
<optional>True</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
|
|
<key>io.out</key>
|
|
<name>Output regression model</name>
|
|
<description>Output file containing the model estimated (.txt format).</description>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
|
|
<key>io.mse</key>
|
|
<name>Mean Square Error</name>
|
|
<description>Mean square error computed with the validation predictors</description>
|
|
<minValue />
|
|
<maxValue />
|
|
<default>0.0</default>
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
|
|
<key>sample.mt</key>
|
|
<name>Maximum training predictors</name>
|
|
<description>Maximum number of training predictors (default = 1000) (no limit = -1).</description>
|
|
<minValue />
|
|
<maxValue />
|
|
<default>1000</default>
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
|
|
<key>sample.mv</key>
|
|
<name>Maximum validation predictors</name>
|
|
<description>Maximum number of validation predictors (default = 1000) (no limit = -1).</description>
|
|
<minValue />
|
|
<maxValue />
|
|
<default>1000</default>
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
|
|
<key>sample.vtr</key>
|
|
<name>Training and validation sample ratio</name>
|
|
<description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
|
|
<minValue />
|
|
<maxValue />
|
|
<default>0.5</default>
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
|
|
<key>classifier</key>
|
|
<name>Classifier to use for the training</name>
|
|
<description>Choice of the classifier to use for the training.</description>
|
|
<options>
|
|
<choices>
|
|
<choice>knn</choice>
|
|
</choices>
|
|
</options>
|
|
<default>0</default>
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
|
|
<key>classifier.knn.k</key>
|
|
<name>Number of Neighbors</name>
|
|
<description>The number of neighbors to use.</description>
|
|
<minValue />
|
|
<maxValue />
|
|
<default>32</default>
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
|
|
<key>classifier.knn.rule</key>
|
|
<name>Decision rule</name>
|
|
<description>Decision rule for regression output</description>
|
|
<options>
|
|
<choices>
|
|
<choice>mean</choice>
|
|
<choice>median</choice>
|
|
</choices>
|
|
</options>
|
|
<default>0</default>
|
|
<optional>False</optional>
|
|
</parameter>
|
|
<parameter>
|
|
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
|
|
<key>rand</key>
|
|
<name>set user defined seed</name>
|
|
<description>Set specific seed. with integer value.</description>
|
|
<minValue />
|
|
<maxValue />
|
|
<default>0</default>
|
|
<optional>True</optional>
|
|
</parameter>
|
|
</root>
|