TrainRegression-knn
otbcli_TrainRegression
TrainRegression (knn)
Learning
Train a classifier from multiple images to perform regression.
ParameterMultipleInput
io.il
Input Image List
A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.
False
ParameterFile
io.csv
Input CSV file
Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given
True
ParameterFile
io.imstat
Input XML image statistics file
Input XML file containing the mean and the standard deviation of the input images.
True
OutputFile
io.out
Output regression model
Output file containing the model estimated (.txt format).
ParameterNumber
io.mse
Mean Square Error
Mean square error computed with the validation predictors
0.0
False
ParameterNumber
sample.mt
Maximum training predictors
Maximum number of training predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.mv
Maximum validation predictors
Maximum number of validation predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.vtr
Training and validation sample ratio
Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).
0.5
False
ParameterSelection
classifier
Classifier to use for the training
Choice of the classifier to use for the training.
knn
0
False
ParameterNumber
classifier.knn.k
Number of Neighbors
The number of neighbors to use.
32
False
ParameterSelection
classifier.knn.rule
Decision rule
Decision rule for regression output
mean
median
0
False
ParameterNumber
rand
set user defined seed
Set specific seed. with integer value.
0
True