QGIS/external/nmea/gmath.c
Denis Rouzaud 0eb52d7171 move nmea
2018-01-22 06:58:26 -09:00

396 lines
12 KiB
C

/*
* Copyright Tim (xtimor@gmail.com)
*
* NMEA library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*/
/*
*
* NMEA library
* URL: http://nmea.sourceforge.net
* Author: Tim (xtimor@gmail.com)
* Licence: http://www.gnu.org/licenses/lgpl.html
* $Id: gmath.c 17 2008-03-11 11:56:11Z xtimor $
*
*/
//! \file gmath.h
#include "gmath.h"
#include <math.h>
#include <float.h>
/**
* \fn nmea_degree2radian
* \brief Convert degree to radian
*/
double nmea_degree2radian( double val )
{ return ( val * NMEA_PI180 ); }
/**
* \fn nmea_radian2degree
* \brief Convert radian to degree
*/
double nmea_radian2degree( double val )
{ return ( val / NMEA_PI180 ); }
/**
* \brief Convert NDEG (NMEA degree) to fractional degree
*/
double nmea_ndeg2degree( double val )
{
double deg = ( ( int )( val / 100 ) );
val = deg + ( val - deg * 100 ) / 60;
return val;
}
/**
* \brief Convert fractional degree to NDEG (NMEA degree)
*/
double nmea_degree2ndeg( double val )
{
double int_part;
double fra_part;
fra_part = modf( val, &int_part );
val = int_part * 100 + fra_part * 60;
return val;
}
/**
* \fn nmea_ndeg2radian
* \brief Convert NDEG (NMEA degree) to radian
*/
double nmea_ndeg2radian( double val )
{ return nmea_degree2radian( nmea_ndeg2degree( val ) ); }
/**
* \fn nmea_radian2ndeg
* \brief Convert radian to NDEG (NMEA degree)
*/
double nmea_radian2ndeg( double val )
{ return nmea_degree2ndeg( nmea_radian2degree( val ) ); }
/**
* \brief Calculate PDOP (Position Dilution Of Precision) factor
*/
double nmea_calc_pdop( double hdop, double vdop )
{
return sqrt( pow( hdop, 2 ) + pow( vdop, 2 ) );
}
double nmea_dop2meters( double dop )
{ return ( dop * NMEA_DOP_FACTOR ); }
double nmea_meters2dop( double meters )
{ return ( meters / NMEA_DOP_FACTOR ); }
/**
* \brief Calculate distance between two points
* \return Distance in meters
*/
double nmea_distance(
const nmeaPOS *from_pos, //!< From position in radians
const nmeaPOS *to_pos //!< To position in radians
)
{
double dist = ( ( double )NMEA_EARTHRADIUS_M ) * acos(
sin( to_pos->lat ) * sin( from_pos->lat ) +
cos( to_pos->lat ) * cos( from_pos->lat ) * cos( to_pos->lon - from_pos->lon )
);
return dist;
}
/**
* \brief Calculate distance between two points
* This function uses an algorithm for an oblate spheroid earth model.
* The algorithm is described here:
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
* \return Distance in meters
*/
double nmea_distance_ellipsoid(
const nmeaPOS *from_pos, //!< From position in radians
const nmeaPOS *to_pos, //!< To position in radians
double *from_azimuth, //!< (O) azimuth at "from" position in radians
double *to_azimuth //!< (O) azimuth at "to" position in radians
)
{
/* All variables */
double f, a, b, sqr_a, sqr_b;
double L, phi1, phi2, U1, U2, sin_U1, sin_U2, cos_U1, cos_U2;
double sigma, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, sqr_cos_alpha, lambda, sin_lambda, cos_lambda, delta_lambda;
int remaining_steps;
double sqr_u, A, B, delta_sigma;
/* Check input */
NMEA_ASSERT( from_pos != 0 );
NMEA_ASSERT( to_pos != 0 );
if ( ( from_pos->lat == to_pos->lat ) && ( from_pos->lon == to_pos->lon ) )
{
/* Identical points */
if ( from_azimuth != 0 )
*from_azimuth = 0;
if ( to_azimuth != 0 )
*to_azimuth = 0;
return 0;
} /* Identical points */
/* Earth geometry */
f = NMEA_EARTH_FLATTENING;
a = NMEA_EARTH_SEMIMAJORAXIS_M;
b = ( 1 - f ) * a;
sqr_a = a * a;
sqr_b = b * b;
/* Calculation */
L = to_pos->lon - from_pos->lon;
phi1 = from_pos->lat;
phi2 = to_pos->lat;
U1 = atan( ( 1 - f ) * tan( phi1 ) );
U2 = atan( ( 1 - f ) * tan( phi2 ) );
sin_U1 = sin( U1 );
sin_U2 = sin( U2 );
cos_U1 = cos( U1 );
cos_U2 = cos( U2 );
/* Initialize iteration */
sigma = 0;
sin_sigma = sin( sigma );
cos_sigma = cos( sigma );
cos_2_sigmam = 0;
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
sqr_cos_alpha = 0;
lambda = L;
sin_lambda = sin( lambda );
cos_lambda = cos( lambda );
delta_lambda = lambda;
remaining_steps = 20;
while ( ( delta_lambda > 1e-12 ) && ( remaining_steps > 0 ) )
{
/* Iterate */
/* Variables */
double tmp1, tmp2, sin_alpha, cos_alpha, C, lambda_prev;
/* Calculation */
tmp1 = cos_U2 * sin_lambda;
tmp2 = cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda;
sin_sigma = sqrt( tmp1 * tmp1 + tmp2 * tmp2 );
cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda;
sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma;
cos_alpha = cos( asin( sin_alpha ) );
sqr_cos_alpha = cos_alpha * cos_alpha;
cos_2_sigmam = cos_sigma - 2 * sin_U1 * sin_U2 / sqr_cos_alpha;
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
C = f / 16 * sqr_cos_alpha * ( 4 + f * ( 4 - 3 * sqr_cos_alpha ) );
lambda_prev = lambda;
sigma = asin( sin_sigma );
lambda = L +
( 1 - C ) * f * sin_alpha
* ( sigma + C * sin_sigma * ( cos_2_sigmam + C * cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) ) );
delta_lambda = lambda_prev - lambda;
if ( delta_lambda < 0 ) delta_lambda = -delta_lambda;
sin_lambda = sin( lambda );
cos_lambda = cos( lambda );
remaining_steps--;
} /* Iterate */
/* More calculation */
sqr_u = sqr_cos_alpha * ( sqr_a - sqr_b ) / sqr_b;
A = 1 + sqr_u / 16384 * ( 4096 + sqr_u * ( -768 + sqr_u * ( 320 - 175 * sqr_u ) ) );
B = sqr_u / 1024 * ( 256 + sqr_u * ( -128 + sqr_u * ( 74 - 47 * sqr_u ) ) );
delta_sigma = B * sin_sigma * (
cos_2_sigmam + B / 4 * (
cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) -
B / 6 * cos_2_sigmam * ( -3 + 4 * sin_sigma * sin_sigma ) * ( -3 + 4 * sqr_cos_2_sigmam )
) );
/* Calculate result */
if ( from_azimuth != 0 )
{
double tan_alpha_1 = cos_U2 * sin_lambda / ( cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda );
*from_azimuth = atan( tan_alpha_1 );
}
if ( to_azimuth != 0 )
{
double tan_alpha_2 = cos_U1 * sin_lambda / ( -sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda );
*to_azimuth = atan( tan_alpha_2 );
}
return b * A * ( sigma - delta_sigma );
}
/**
* \brief Horizontal move of point position
*/
int nmea_move_horz(
const nmeaPOS *start_pos, //!< Start position in radians
nmeaPOS *end_pos, //!< Result position in radians
double azimuth, //!< Azimuth (degree) [0, 359]
double distance //!< Distance (km)
)
{
nmeaPOS p1 = *start_pos;
int RetVal = 1;
distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
azimuth = nmea_degree2radian( azimuth );
end_pos->lat = asin(
sin( p1.lat ) * cos( distance ) + cos( p1.lat ) * sin( distance ) * cos( azimuth ) );
end_pos->lon = p1.lon + atan2(
sin( azimuth ) * sin( distance ) * cos( p1.lat ), cos( distance ) - sin( p1.lat ) * sin( end_pos->lat ) );
if ( NMEA_POSIX( isnan )( end_pos->lat ) || NMEA_POSIX( isnan )( end_pos->lon ) )
{
end_pos->lat = 0;
end_pos->lon = 0;
RetVal = 0;
}
return RetVal;
}
/**
* \brief Horizontal move of point position
* This function uses an algorithm for an oblate spheroid earth model.
* The algorithm is described here:
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
*/
int nmea_move_horz_ellipsoid(
const nmeaPOS *start_pos, //!< Start position in radians
nmeaPOS *end_pos, //!< (O) Result position in radians
double azimuth, //!< Azimuth in radians
double distance, //!< Distance (km)
double *end_azimuth //!< (O) Azimuth at end position in radians
)
{
/* Variables */
double f, a, b, sqr_a, sqr_b;
double phi1, tan_U1, sin_U1, cos_U1, s, alpha1, sin_alpha1, cos_alpha1;
double sigma1, sin_alpha, sqr_cos_alpha, sqr_u, A, B;
double sigma_initial, sigma, sigma_prev, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, delta_sigma;
int remaining_steps;
double tmp1, phi2, lambda, C, L;
/* Check input */
NMEA_ASSERT( start_pos != 0 );
NMEA_ASSERT( end_pos != 0 );
if ( fabs( distance ) < 1e-12 )
{
/* No move */
*end_pos = *start_pos;
if ( end_azimuth != 0 ) *end_azimuth = azimuth;
return !( NMEA_POSIX( isnan )( end_pos->lat ) || NMEA_POSIX( isnan )( end_pos->lon ) );
} /* No move */
/* Earth geometry */
f = NMEA_EARTH_FLATTENING;
a = NMEA_EARTH_SEMIMAJORAXIS_M;
b = ( 1 - f ) * a;
sqr_a = a * a;
sqr_b = b * b;
/* Calculation */
phi1 = start_pos->lat;
tan_U1 = ( 1 - f ) * tan( phi1 );
cos_U1 = 1 / sqrt( 1 + tan_U1 * tan_U1 );
sin_U1 = tan_U1 * cos_U1;
s = distance;
alpha1 = azimuth;
sin_alpha1 = sin( alpha1 );
cos_alpha1 = cos( alpha1 );
sigma1 = atan2( tan_U1, cos_alpha1 );
sin_alpha = cos_U1 * sin_alpha1;
sqr_cos_alpha = 1 - sin_alpha * sin_alpha;
sqr_u = sqr_cos_alpha * ( sqr_a - sqr_b ) / sqr_b;
A = 1 + sqr_u / 16384 * ( 4096 + sqr_u * ( -768 + sqr_u * ( 320 - 175 * sqr_u ) ) );
B = sqr_u / 1024 * ( 256 + sqr_u * ( -128 + sqr_u * ( 74 - 47 * sqr_u ) ) );
/* Initialize iteration */
sigma_initial = s / ( b * A );
sigma = sigma_initial;
sin_sigma = sin( sigma );
cos_sigma = cos( sigma );
cos_2_sigmam = cos( 2 * sigma1 + sigma );
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
delta_sigma = 0;
sigma_prev = 2 * NMEA_PI;
remaining_steps = 20;
while ( ( fabs( sigma - sigma_prev ) > 1e-12 ) && ( remaining_steps > 0 ) )
{
/* Iterate */
cos_2_sigmam = cos( 2 * sigma1 + sigma );
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
sin_sigma = sin( sigma );
cos_sigma = cos( sigma );
delta_sigma = B * sin_sigma * (
cos_2_sigmam + B / 4 * (
cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) -
B / 6 * cos_2_sigmam * ( -3 + 4 * sin_sigma * sin_sigma ) * ( -3 + 4 * sqr_cos_2_sigmam )
) );
sigma_prev = sigma;
sigma = sigma_initial + delta_sigma;
remaining_steps --;
} /* Iterate */
/* Calculate result */
tmp1 = ( sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_alpha1 );
phi2 = atan2(
sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_alpha1,
( 1 - f ) * sqrt( sin_alpha * sin_alpha + tmp1 * tmp1 )
);
lambda = atan2(
sin_sigma * sin_alpha1,
cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_alpha1
);
C = f / 16 * sqr_cos_alpha * ( 4 + f * ( 4 - 3 * sqr_cos_alpha ) );
L = lambda -
( 1 - C ) * f * sin_alpha * (
sigma + C * sin_sigma *
( cos_2_sigmam + C * cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) )
);
/* Result */
end_pos->lon = start_pos->lon + L;
end_pos->lat = phi2;
if ( end_azimuth != 0 )
{
*end_azimuth = atan2(
sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_alpha1
);
}
return !( NMEA_POSIX( isnan )( end_pos->lat ) || NMEA_POSIX( isnan )( end_pos->lon ) );
}
/**
* \brief Convert position from INFO to radians position
*/
void nmea_info2pos( const nmeaINFO *info, nmeaPOS *pos )
{
pos->lat = nmea_ndeg2radian( info->lat );
pos->lon = nmea_ndeg2radian( info->lon );
}
/**
* \brief Convert radians position to INFOs position
*/
void nmea_pos2info( const nmeaPOS *pos, nmeaINFO *info )
{
info->lat = nmea_radian2ndeg( pos->lat );
info->lon = nmea_radian2ndeg( pos->lon );
}