QGIS/external/pdal_wrench/to_raster_tin.cpp

263 lines
9.5 KiB
C++
Raw Normal View History

/*****************************************************************************
* Copyright (c) 2023, Lutra Consulting Ltd. and Hobu, Inc. *
* *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
****************************************************************************/
#include <iostream>
#include <filesystem>
#include <thread>
#include <pdal/PipelineManager.hpp>
#include <pdal/Stage.hpp>
#include <pdal/util/ProgramArgs.hpp>
#include "utils.hpp"
#include "alg.hpp"
#include "vpc.hpp"
using namespace pdal;
namespace fs = std::filesystem;
/*
memory requirements to keep in mind:
- delaunator-cpp: 136 bytes per point -> 10M pts ~ 1.36 GB
- mesh in pdal: 48 bytes per point -> 10M pts ~ 0.5 GB
*/
void ToRasterTin::addArgs()
{
argOutput = &programArgs.add("output,o", "Output raster file", outputFile);
argRes = &programArgs.add("resolution,r", "Resolution of the output grid", resolution);
argTileSize = &programArgs.add("tile-size", "Size of a tile for parallel runs", tileAlignment.tileSize);
argTileOriginX = &programArgs.add("tile-origin-x", "X origin of a tile for parallel runs", tileAlignment.originX);
argTileOriginY = &programArgs.add("tile-origin-y", "Y origin of a tile for parallel runs", tileAlignment.originY);
}
bool ToRasterTin::checkArgs()
{
if (!argOutput->set())
{
std::cerr << "missing output" << std::endl;
return false;
}
if (!argRes->set())
{
std::cerr << "missing resolution" << std::endl;
return false;
}
if (!argTileSize->set())
{
tileAlignment.tileSize = 1000;
}
if (!argTileOriginX->set())
tileAlignment.originX = -1;
if (!argTileOriginY->set())
tileAlignment.originY = -1;
collarSize = resolution*10; // what's the right collar size?
return true;
}
std::unique_ptr<PipelineManager> pipeline(ParallelJobInfo *tile, double resolution)
{
std::unique_ptr<PipelineManager> manager( new PipelineManager );
std::vector<Stage*> readers;
for (const std::string &f : tile->inputFilenames)
{
readers.push_back(&manager->makeReader(f, ""));
}
if (tile->mode == ParallelJobInfo::Spatial)
{
for (Stage* reader : readers)
{
// with COPC files, we can also specify bounds at the reader
// that will only read the required parts of the file
if (reader->getName() == "readers.copc")
{
pdal::Options copc_opts;
copc_opts.add(pdal::Option("threads", 1));
copc_opts.add(pdal::Option("bounds", box_to_pdal_bounds(tile->boxWithCollar)));
reader->addOptions(copc_opts);
}
}
}
Stage &delaunay = manager->makeFilter("filters.delaunay");
for (Stage *stage : readers)
{
delaunay.setInput(*stage); // connect all readers to the writer
}
if (!tile->filterExpression.empty())
{
Options filter_opts;
filter_opts.add(pdal::Option("where", tile->filterExpression));
delaunay.addOptions(filter_opts);
}
pdal::Options faceRaster_opts;
faceRaster_opts.add(pdal::Option("resolution", resolution));
if (tile->box.valid()) // if box is not provided, filters.faceraster will calculate it from data
{
faceRaster_opts.add(pdal::Option("origin_x", tile->box.minx));
faceRaster_opts.add(pdal::Option("origin_y", tile->box.miny));
faceRaster_opts.add(pdal::Option("width", (tile->box.maxx-tile->box.minx)/resolution));
faceRaster_opts.add(pdal::Option("height", (tile->box.maxy-tile->box.miny)/resolution));
}
Stage &faceRaster = manager->makeFilter("filters.faceraster", delaunay, faceRaster_opts);
pdal::Options writer_opts;
writer_opts.add(pdal::Option("data_type", "float32")); // default was float64 which seems like too much
writer_opts.add(pdal::Option("gdalopts", "TILED=YES"));
writer_opts.add(pdal::Option("gdalopts", "COMPRESS=DEFLATE"));
2023-04-06 17:28:16 +10:00
(void)manager->makeWriter(tile->outputFilename, "writers.raster", faceRaster);
return manager;
}
void ToRasterTin::preparePipelines(std::vector<std::unique_ptr<PipelineManager>>& pipelines, const BOX3D &bounds, point_count_t &totalPoints)
{
if (ends_with(inputFile, ".vpc"))
{
// using spatial processing
VirtualPointCloud vpc;
if (!vpc.read(inputFile))
return;
// for /tmp/hello.tif we will use /tmp/hello dir for all results
fs::path outputParentDir = fs::path(outputFile).parent_path();
fs::path outputSubdir = outputParentDir / fs::path(outputFile).stem();
fs::create_directories(outputSubdir);
// TODO: optionally adjust origin to have nicer numbers for bounds?
if (tileAlignment.originX == -1)
tileAlignment.originX = bounds.minx;
if (tileAlignment.originY == -1)
tileAlignment.originY = bounds.miny;
// align bounding box of data to the grid
TileAlignment gridAlignment = tileAlignment;
gridAlignment.tileSize = resolution;
Tiling gridTiling = gridAlignment.coverBounds(bounds.to2d());
BOX2D gridBounds = gridTiling.fullBox();
Tiling t = tileAlignment.coverBounds(gridBounds);
if (verbose)
{
std::cout << "grid " << gridTiling.tileCountX << "x" << gridTiling.tileCountY << std::endl;
std::cout << "tiles " << t.tileCountX << " " << t.tileCountY << std::endl;
}
totalPoints = 0; // we need to recalculate as we may use some points multiple times
for (int iy = 0; iy < t.tileCountY; ++iy)
{
for (int ix = 0; ix < t.tileCountX; ++ix)
{
BOX2D tileBox = t.boxAt(ix, iy);
// for tiles that are smaller than full box - only use intersection
// to avoid empty areas in resulting rasters
tileBox.clip(gridBounds);
ParallelJobInfo tile(ParallelJobInfo::Spatial, tileBox, filterExpression);
// add collar to avoid edge effects
tile.boxWithCollar = tileBox;
tile.boxWithCollar.grow(collarSize);
for (const VirtualPointCloud::File & f: vpc.overlappingBox2D(tile.boxWithCollar))
{
tile.inputFilenames.push_back(f.filename);
totalPoints += f.count;
}
if (tile.inputFilenames.empty())
continue; // no input files for this tile
// create temp output file names
// for tile (x=2,y=3) that goes to /tmp/hello.tif,
// individual output file will be called /tmp/hello/2_3.tif
fs::path inputBasename = std::to_string(ix) + "_" + std::to_string(iy);
tile.outputFilename = (outputSubdir / inputBasename).string() + ".tif";
tileOutputFiles.push_back(tile.outputFilename);
pipelines.push_back(pipeline(&tile, resolution));
}
}
}
else if (ends_with(inputFile, ".copc.laz"))
{
// using square tiles for single COPC
// for /tmp/hello.tif we will use /tmp/hello dir for all results
fs::path outputParentDir = fs::path(outputFile).parent_path();
fs::path outputSubdir = outputParentDir / fs::path(outputFile).stem();
fs::create_directories(outputSubdir);
if (tileAlignment.originX == -1)
tileAlignment.originX = bounds.minx;
if (tileAlignment.originY == -1)
tileAlignment.originY = bounds.miny;
Tiling t = tileAlignment.coverBounds(bounds.to2d());
for (int iy = 0; iy < t.tileCountY; ++iy)
{
for (int ix = 0; ix < t.tileCountX; ++ix)
{
BOX2D tileBox = t.boxAt(ix, iy);
ParallelJobInfo tile(ParallelJobInfo::Spatial, tileBox, filterExpression);
tile.inputFilenames.push_back(inputFile);
// add collar to avoid edge effects
tile.boxWithCollar = tileBox;
tile.boxWithCollar.grow(collarSize);
// create temp output file names
// for tile (x=2,y=3) that goes to /tmp/hello.tif,
// individual output file will be called /tmp/hello/2_3.tif
fs::path inputBasename = std::to_string(ix) + "_" + std::to_string(iy);
tile.outputFilename = (outputSubdir / inputBasename).string() + ".tif";
tileOutputFiles.push_back(tile.outputFilename);
pipelines.push_back(pipeline(&tile, resolution));
}
}
}
else
{
ParallelJobInfo tile(ParallelJobInfo::Single, BOX2D(), filterExpression);
tile.inputFilenames.push_back(inputFile);
tile.outputFilename = outputFile;
pipelines.push_back(pipeline(&tile, resolution));
}
}
void ToRasterTin::finalize(std::vector<std::unique_ptr<PipelineManager>>& pipelines)
{
if (pipelines.size() > 1)
{
rasterTilesToCog(tileOutputFiles, outputFile);
}
}