/***************************************************************************** * Copyright (c) 2023, Lutra Consulting Ltd. and Hobu, Inc. * * * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * ****************************************************************************/ #include #include #include #include #include #include #include "utils.hpp" #include "alg.hpp" #include "vpc.hpp" using namespace pdal; namespace fs = std::filesystem; /* memory requirements to keep in mind: - delaunator-cpp: 136 bytes per point -> 10M pts ~ 1.36 GB - mesh in pdal: 48 bytes per point -> 10M pts ~ 0.5 GB */ void ToRasterTin::addArgs() { argOutput = &programArgs.add("output,o", "Output raster file", outputFile); argRes = &programArgs.add("resolution,r", "Resolution of the output grid", resolution); argTileSize = &programArgs.add("tile-size", "Size of a tile for parallel runs", tileAlignment.tileSize); argTileOriginX = &programArgs.add("tile-origin-x", "X origin of a tile for parallel runs", tileAlignment.originX); argTileOriginY = &programArgs.add("tile-origin-y", "Y origin of a tile for parallel runs", tileAlignment.originY); } bool ToRasterTin::checkArgs() { if (!argOutput->set()) { std::cerr << "missing output" << std::endl; return false; } if (!argRes->set()) { std::cerr << "missing resolution" << std::endl; return false; } if (!argTileSize->set()) { tileAlignment.tileSize = 1000; } if (!argTileOriginX->set()) tileAlignment.originX = -1; if (!argTileOriginY->set()) tileAlignment.originY = -1; collarSize = resolution*10; // what's the right collar size? return true; } std::unique_ptr pipeline(ParallelJobInfo *tile, double resolution) { std::unique_ptr manager( new PipelineManager ); std::vector readers; for (const std::string &f : tile->inputFilenames) { readers.push_back(&manager->makeReader(f, "")); } if (tile->mode == ParallelJobInfo::Spatial) { for (Stage* reader : readers) { // with COPC files, we can also specify bounds at the reader // that will only read the required parts of the file if (reader->getName() == "readers.copc") { pdal::Options copc_opts; copc_opts.add(pdal::Option("threads", 1)); copc_opts.add(pdal::Option("bounds", box_to_pdal_bounds(tile->boxWithCollar))); reader->addOptions(copc_opts); } } } Stage &delaunay = manager->makeFilter("filters.delaunay"); for (Stage *stage : readers) { delaunay.setInput(*stage); // connect all readers to the writer } if (!tile->filterExpression.empty()) { Options filter_opts; filter_opts.add(pdal::Option("where", tile->filterExpression)); delaunay.addOptions(filter_opts); } pdal::Options faceRaster_opts; faceRaster_opts.add(pdal::Option("resolution", resolution)); if (tile->box.valid()) // if box is not provided, filters.faceraster will calculate it from data { faceRaster_opts.add(pdal::Option("origin_x", tile->box.minx)); faceRaster_opts.add(pdal::Option("origin_y", tile->box.miny)); faceRaster_opts.add(pdal::Option("width", (tile->box.maxx-tile->box.minx)/resolution)); faceRaster_opts.add(pdal::Option("height", (tile->box.maxy-tile->box.miny)/resolution)); } Stage &faceRaster = manager->makeFilter("filters.faceraster", delaunay, faceRaster_opts); pdal::Options writer_opts; writer_opts.add(pdal::Option("data_type", "float32")); // default was float64 which seems like too much writer_opts.add(pdal::Option("gdalopts", "TILED=YES")); writer_opts.add(pdal::Option("gdalopts", "COMPRESS=DEFLATE")); (void)manager->makeWriter(tile->outputFilename, "writers.raster", faceRaster); return manager; } void ToRasterTin::preparePipelines(std::vector>& pipelines, const BOX3D &bounds, point_count_t &totalPoints) { if (ends_with(inputFile, ".vpc")) { // using spatial processing VirtualPointCloud vpc; if (!vpc.read(inputFile)) return; // for /tmp/hello.tif we will use /tmp/hello dir for all results fs::path outputParentDir = fs::path(outputFile).parent_path(); fs::path outputSubdir = outputParentDir / fs::path(outputFile).stem(); fs::create_directories(outputSubdir); // TODO: optionally adjust origin to have nicer numbers for bounds? if (tileAlignment.originX == -1) tileAlignment.originX = bounds.minx; if (tileAlignment.originY == -1) tileAlignment.originY = bounds.miny; // align bounding box of data to the grid TileAlignment gridAlignment = tileAlignment; gridAlignment.tileSize = resolution; Tiling gridTiling = gridAlignment.coverBounds(bounds.to2d()); BOX2D gridBounds = gridTiling.fullBox(); Tiling t = tileAlignment.coverBounds(gridBounds); if (verbose) { std::cout << "grid " << gridTiling.tileCountX << "x" << gridTiling.tileCountY << std::endl; std::cout << "tiles " << t.tileCountX << " " << t.tileCountY << std::endl; } totalPoints = 0; // we need to recalculate as we may use some points multiple times for (int iy = 0; iy < t.tileCountY; ++iy) { for (int ix = 0; ix < t.tileCountX; ++ix) { BOX2D tileBox = t.boxAt(ix, iy); // for tiles that are smaller than full box - only use intersection // to avoid empty areas in resulting rasters tileBox.clip(gridBounds); ParallelJobInfo tile(ParallelJobInfo::Spatial, tileBox, filterExpression); // add collar to avoid edge effects tile.boxWithCollar = tileBox; tile.boxWithCollar.grow(collarSize); for (const VirtualPointCloud::File & f: vpc.overlappingBox2D(tile.boxWithCollar)) { tile.inputFilenames.push_back(f.filename); totalPoints += f.count; } if (tile.inputFilenames.empty()) continue; // no input files for this tile // create temp output file names // for tile (x=2,y=3) that goes to /tmp/hello.tif, // individual output file will be called /tmp/hello/2_3.tif fs::path inputBasename = std::to_string(ix) + "_" + std::to_string(iy); tile.outputFilename = (outputSubdir / inputBasename).string() + ".tif"; tileOutputFiles.push_back(tile.outputFilename); pipelines.push_back(pipeline(&tile, resolution)); } } } else if (ends_with(inputFile, ".copc.laz")) { // using square tiles for single COPC // for /tmp/hello.tif we will use /tmp/hello dir for all results fs::path outputParentDir = fs::path(outputFile).parent_path(); fs::path outputSubdir = outputParentDir / fs::path(outputFile).stem(); fs::create_directories(outputSubdir); if (tileAlignment.originX == -1) tileAlignment.originX = bounds.minx; if (tileAlignment.originY == -1) tileAlignment.originY = bounds.miny; Tiling t = tileAlignment.coverBounds(bounds.to2d()); for (int iy = 0; iy < t.tileCountY; ++iy) { for (int ix = 0; ix < t.tileCountX; ++ix) { BOX2D tileBox = t.boxAt(ix, iy); ParallelJobInfo tile(ParallelJobInfo::Spatial, tileBox, filterExpression); tile.inputFilenames.push_back(inputFile); // add collar to avoid edge effects tile.boxWithCollar = tileBox; tile.boxWithCollar.grow(collarSize); // create temp output file names // for tile (x=2,y=3) that goes to /tmp/hello.tif, // individual output file will be called /tmp/hello/2_3.tif fs::path inputBasename = std::to_string(ix) + "_" + std::to_string(iy); tile.outputFilename = (outputSubdir / inputBasename).string() + ".tif"; tileOutputFiles.push_back(tile.outputFilename); pipelines.push_back(pipeline(&tile, resolution)); } } } else { ParallelJobInfo tile(ParallelJobInfo::Single, BOX2D(), filterExpression); tile.inputFilenames.push_back(inputFile); tile.outputFilename = outputFile; pipelines.push_back(pipeline(&tile, resolution)); } } void ToRasterTin::finalize(std::vector>& pipelines) { if (pipelines.size() > 1) { rasterTilesToCog(tileOutputFiles, outputFile); } }