mirror of
https://github.com/qgis/QGIS.git
synced 2025-03-08 00:02:35 -05:00
187 lines
6.4 KiB
Python
187 lines
6.4 KiB
Python
|
import os.path
|
||
|
import math
|
||
|
|
||
|
from PyQt4 import QtGui
|
||
|
from PyQt4.QtCore import *
|
||
|
|
||
|
from qgis.core import *
|
||
|
|
||
|
from sextante.core.GeoAlgorithm import GeoAlgorithm
|
||
|
from sextante.core.QGisLayers import QGisLayers
|
||
|
|
||
|
from sextante.parameters.ParameterVector import ParameterVector
|
||
|
from sextante.parameters.ParameterTableField import ParameterTableField
|
||
|
from sextante.parameters.ParameterBoolean import ParameterBoolean
|
||
|
|
||
|
from sextante.outputs.OutputHTML import OutputHTML
|
||
|
from sextante.outputs.OutputNumber import OutputNumber
|
||
|
|
||
|
from sextante.ftools import FToolsUtils as utils
|
||
|
|
||
|
class BasicStatisticsNumbers(GeoAlgorithm):
|
||
|
|
||
|
INPUT_LAYER = "INPUT_LAYER"
|
||
|
FIELD_NAME = "FIELD_NAME"
|
||
|
USE_SELECTION = "USE_SELECTION"
|
||
|
OUTPUT_HTML_FILE = "OUTPUT_HTML_FILE"
|
||
|
|
||
|
CV = "CV"
|
||
|
MIN = "MIN"
|
||
|
MAX = "MAX"
|
||
|
SUM = "SUM"
|
||
|
MEAN = "MEAN"
|
||
|
COUNT = "COUNT"
|
||
|
RANGE = "RANGE"
|
||
|
MEDIAN = "MEDIAN"
|
||
|
UNIQUE = "UNIQUE"
|
||
|
STD_DEV = "STD_DEV"
|
||
|
|
||
|
def getIcon(self):
|
||
|
return QtGui.QIcon(os.path.dirname(__file__) + "/icons/basic_statistics.png")
|
||
|
|
||
|
def defineCharacteristics(self):
|
||
|
self.name = "Basic statistics for numeric fields"
|
||
|
self.group = "Analysis tools"
|
||
|
|
||
|
self.addParameter(ParameterVector(self.INPUT_LAYER, "Input vector layer", ParameterVector.VECTOR_TYPE_ANY, False))
|
||
|
self.addParameter(ParameterTableField(self.FIELD_NAME, "Field to calculate statistics on", self.INPUT_LAYER, ParameterTableField.DATA_TYPE_NUMBER))
|
||
|
self.addParameter(ParameterBoolean(self.USE_SELECTION, "Use selection", False))
|
||
|
|
||
|
self.addOutput(OutputHTML(self.OUTPUT_HTML_FILE, "Statistics for numeric field"))
|
||
|
|
||
|
self.addOutput(OutputNumber(self.CV, "Coefficient of Variation"))
|
||
|
self.addOutput(OutputNumber(self.MIN, "Minimum value"))
|
||
|
self.addOutput(OutputNumber(self.MAX, "Maximum value"))
|
||
|
self.addOutput(OutputNumber(self.SUM, "Sum"))
|
||
|
self.addOutput(OutputNumber(self.MEAN, "Mean value"))
|
||
|
self.addOutput(OutputNumber(self.COUNT, "Count"))
|
||
|
self.addOutput(OutputNumber(self.RANGE, "Range"))
|
||
|
self.addOutput(OutputNumber(self.MEDIAN, "Median"))
|
||
|
self.addOutput(OutputNumber(self.UNIQUE, "Number of unique values"))
|
||
|
self.addOutput(OutputNumber(self.STD_DEV, "Standard deviation"))
|
||
|
|
||
|
def processAlgorithm(self, progress):
|
||
|
layer = QGisLayers.getObjectFromUri(self.getParameterValue(self.INPUT_LAYER))
|
||
|
fieldName = self.getParameterValue(self.FIELD_NAME)
|
||
|
useSelection = self.getParameterValue(self.USE_SELECTION)
|
||
|
|
||
|
outputFile = self.getOutputValue(self.OUTPUT_HTML_FILE)
|
||
|
|
||
|
index = layer.fieldNameIndex(fieldName)
|
||
|
layer.select([index], QgsRectangle(), False)
|
||
|
|
||
|
count = 0
|
||
|
rValue = 0
|
||
|
cvValue = 0
|
||
|
minValue = 0
|
||
|
maxValue = 0
|
||
|
sumValue = 0
|
||
|
meanValue = 0
|
||
|
medianValue = 0
|
||
|
stdDevValue = 0
|
||
|
uniqueValue = 0
|
||
|
|
||
|
isFirst = True
|
||
|
values = []
|
||
|
|
||
|
if useSelection:
|
||
|
selection = layer.selectedFeatures()
|
||
|
count = layer.selectedFeatureCount()
|
||
|
total = 100.0 / float(count)
|
||
|
current = 0
|
||
|
|
||
|
for f in selection:
|
||
|
value = float(f.attributeMap()[index].toDouble()[0])
|
||
|
|
||
|
if isFirst:
|
||
|
minValue = value
|
||
|
maxValue = value
|
||
|
isFirst = False
|
||
|
else:
|
||
|
if value < minValue:
|
||
|
minValue = value
|
||
|
if value > maxValue:
|
||
|
maxValue = value
|
||
|
|
||
|
values.append(value)
|
||
|
sumValue += value
|
||
|
|
||
|
current += 1
|
||
|
progress.setPercentage(int(current * total))
|
||
|
else:
|
||
|
count = layer.featureCount()
|
||
|
total = 100.0 / float(count)
|
||
|
current = 0
|
||
|
|
||
|
ft = QgsFeature()
|
||
|
while layer.nextFeature(ft):
|
||
|
value = float(ft.attributeMap()[index].toDouble()[0])
|
||
|
|
||
|
if isFirst:
|
||
|
minValue = value
|
||
|
maxValue = value
|
||
|
isFirst = False
|
||
|
else:
|
||
|
if value < minValue:
|
||
|
minValue = value
|
||
|
if value > maxValue:
|
||
|
maxValue = value
|
||
|
|
||
|
values.append( value )
|
||
|
sumValue += value
|
||
|
|
||
|
current += 1
|
||
|
progress.setPercentage(int(current * total))
|
||
|
|
||
|
# calculate additional values
|
||
|
rValue = maxValue - minValue
|
||
|
uniqueValue = utils.getUniqueValuesCount(layer, index, useSelection)
|
||
|
|
||
|
if count > 0:
|
||
|
meanValue = sumValue / count
|
||
|
if meanValue != 0.00:
|
||
|
for v in values:
|
||
|
stdDevValue += ((v - meanValue) * (v - meanValue))
|
||
|
stdDevValue = math.sqrt(stdDevValue / count)
|
||
|
cvValue = stdDevValue / meanValue
|
||
|
|
||
|
if count > 1:
|
||
|
tmp = values
|
||
|
tmp.sort()
|
||
|
# calculate median
|
||
|
if (count % 2) == 0:
|
||
|
medianValue = 0.5 * (tmp[(count - 1) / 2] + tmp[count / 2])
|
||
|
else:
|
||
|
medianValue = tmp[(count + 1) / 2 - 1]
|
||
|
|
||
|
data = []
|
||
|
data.append("Count: " + unicode(count))
|
||
|
data.append("Unique values: " + unicode(uniqueValue))
|
||
|
data.append("Minimum value: " + unicode(minValue))
|
||
|
data.append("Maximum value: " + unicode(maxValue))
|
||
|
data.append("Range: " + unicode(rValue))
|
||
|
data.append("Sum: " + unicode(sumValue))
|
||
|
data.append("Mean value: " + unicode(meanValue))
|
||
|
data.append("Median value: " + unicode(medianValue))
|
||
|
data.append("Standard deviation: " + unicode(stdDevValue))
|
||
|
data.append("Coefficient of Variation: " + unicode(cvValue))
|
||
|
|
||
|
self.createHTML(outputFile, data)
|
||
|
|
||
|
self.setOutputValue(self.COUNT, count)
|
||
|
self.setOutputValue(self.UNIQUE, uniqueValue)
|
||
|
self.setOutputValue(self.MIN, minValue)
|
||
|
self.setOutputValue(self.MAX, maxValue)
|
||
|
self.setOutputValue(self.RANGE, rValue)
|
||
|
self.setOutputValue(self.SUM, sumValue)
|
||
|
self.setOutputValue(self.MEAN, meanValue)
|
||
|
self.setOutputValue(self.MEDIAN, medianValue)
|
||
|
self.setOutputValue(self.STD_DEV, stdDevValue)
|
||
|
self.setOutputValue(self.CV, cvValue)
|
||
|
|
||
|
def createHTML(self, outputFile, algData):
|
||
|
f = open(outputFile, "w")
|
||
|
for s in algData:
|
||
|
f.write("<p>" + str(s) + "</p>")
|
||
|
f.close()
|