mirror of
				https://github.com/facebook/zstd.git
				synced 2025-10-25 00:03:26 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			1722 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1722 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ******************************************************************
 | |
|    Huff0 : Huffman coder, part of New Generation Entropy library
 | |
|    Copyright (C) 2013-2015, Yann Collet.
 | |
| 
 | |
|    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
 | |
| 
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions are
 | |
|    met:
 | |
| 
 | |
|        * Redistributions of source code must retain the above copyright
 | |
|    notice, this list of conditions and the following disclaimer.
 | |
|        * Redistributions in binary form must reproduce the above
 | |
|    copyright notice, this list of conditions and the following disclaimer
 | |
|    in the documentation and/or other materials provided with the
 | |
|    distribution.
 | |
| 
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
|     You can contact the author at :
 | |
|     - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
 | |
|     - Public forum : https://groups.google.com/forum/#!forum/lz4c
 | |
| ****************************************************************** */
 | |
| 
 | |
| /****************************************************************
 | |
| *  Compiler specifics
 | |
| ****************************************************************/
 | |
| #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
 | |
| /* inline is defined */
 | |
| #elif defined(_MSC_VER)
 | |
| #  define inline __inline
 | |
| #else
 | |
| #  define inline /* disable inline */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef _MSC_VER    /* Visual Studio */
 | |
| #  define FORCE_INLINE static __forceinline
 | |
| #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
 | |
| #else
 | |
| #  ifdef __GNUC__
 | |
| #    define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 | |
| #    define FORCE_INLINE static inline __attribute__((always_inline))
 | |
| #  else
 | |
| #    define FORCE_INLINE static inline
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /****************************************************************
 | |
| *  Includes
 | |
| ****************************************************************/
 | |
| #include <stdlib.h>     /* malloc, free, qsort */
 | |
| #include <string.h>     /* memcpy, memset */
 | |
| #include <stdio.h>      /* printf (debug) */
 | |
| #include "huff0_static.h"
 | |
| #include "bitstream.h"
 | |
| #include "fse.h"        /* header compression */
 | |
| 
 | |
| 
 | |
| /****************************************************************
 | |
| *  Constants
 | |
| ****************************************************************/
 | |
| #define HUF_ABSOLUTEMAX_TABLELOG  16   /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
 | |
| #define HUF_MAX_TABLELOG  12           /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
 | |
| #define HUF_DEFAULT_TABLELOG  HUF_MAX_TABLELOG   /* tableLog by default, when not specified */
 | |
| #define HUF_MAX_SYMBOL_VALUE 255
 | |
| #if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
 | |
| #  error "HUF_MAX_TABLELOG is too large !"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /****************************************************************
 | |
| *  Error Management
 | |
| ****************************************************************/
 | |
| #define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
 | |
| 
 | |
| 
 | |
| /******************************************
 | |
| *  Helper functions
 | |
| ******************************************/
 | |
| unsigned HUF_isError(size_t code) { return ERR_isError(code); }
 | |
| 
 | |
| const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
 | |
| 
 | |
| 
 | |
| /*********************************************************
 | |
| *  Huff0 : Huffman block compression
 | |
| *********************************************************/
 | |
| typedef struct HUF_CElt_s {
 | |
|   U16  val;
 | |
|   BYTE nbBits;
 | |
| } HUF_CElt ;
 | |
| 
 | |
| typedef struct nodeElt_s {
 | |
|     U32 count;
 | |
|     U16 parent;
 | |
|     BYTE byte;
 | |
|     BYTE nbBits;
 | |
| } nodeElt;
 | |
| 
 | |
| /*! HUF_writeCTable() :
 | |
|     @dst : destination buffer
 | |
|     @CTable : huffman tree to save, using huff0 representation
 | |
|     @return : size of saved CTable */
 | |
| size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
 | |
| {
 | |
|     BYTE bitsToWeight[HUF_MAX_TABLELOG + 1];
 | |
|     BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
 | |
|     U32 n;
 | |
|     BYTE* op = (BYTE*)dst;
 | |
|     size_t size;
 | |
| 
 | |
|      /* check conditions */
 | |
|     if (maxSymbolValue > HUF_MAX_SYMBOL_VALUE + 1)
 | |
|         return ERROR(GENERIC);
 | |
| 
 | |
|     /* convert to weight */
 | |
|     bitsToWeight[0] = 0;
 | |
|     for (n=1; n<=huffLog; n++)
 | |
|         bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
 | |
|     for (n=0; n<maxSymbolValue; n++)
 | |
|         huffWeight[n] = bitsToWeight[CTable[n].nbBits];
 | |
| 
 | |
|     size = FSE_compress(op+1, maxDstSize-1, huffWeight, maxSymbolValue);   /* don't need last symbol stat : implied */
 | |
|     if (HUF_isError(size)) return size;
 | |
|     if (size >= 128) return ERROR(GENERIC);   /* should never happen, since maxSymbolValue <= 255 */
 | |
|     if ((size <= 1) || (size >= maxSymbolValue/2))
 | |
|     {
 | |
|         if (size==1)   /* RLE */
 | |
|         {
 | |
|             /* only possible case : serie of 1 (because there are at least 2) */
 | |
|             /* can only be 2^n or (2^n-1), otherwise not an huffman tree */
 | |
|             BYTE code;
 | |
|             switch(maxSymbolValue)
 | |
|             {
 | |
|             case 1: code = 0; break;
 | |
|             case 2: code = 1; break;
 | |
|             case 3: code = 2; break;
 | |
|             case 4: code = 3; break;
 | |
|             case 7: code = 4; break;
 | |
|             case 8: code = 5; break;
 | |
|             case 15: code = 6; break;
 | |
|             case 16: code = 7; break;
 | |
|             case 31: code = 8; break;
 | |
|             case 32: code = 9; break;
 | |
|             case 63: code = 10; break;
 | |
|             case 64: code = 11; break;
 | |
|             case 127: code = 12; break;
 | |
|             case 128: code = 13; break;
 | |
|             default : return ERROR(corruption_detected);
 | |
|             }
 | |
|             op[0] = (BYTE)(255-13 + code);
 | |
|             return 1;
 | |
|         }
 | |
|          /* Not compressible */
 | |
|         if (maxSymbolValue > (241-128)) return ERROR(GENERIC);   /* not implemented (not possible with current format) */
 | |
|         if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
 | |
|         op[0] = (BYTE)(128 /*special case*/ + 0 /* Not Compressible */ + (maxSymbolValue-1));
 | |
|         huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause issue in final combination */
 | |
|         for (n=0; n<maxSymbolValue; n+=2)
 | |
|             op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
 | |
|         return ((maxSymbolValue+1)/2) + 1;
 | |
|     }
 | |
| 
 | |
|     /* normal header case */
 | |
|     op[0] = (BYTE)size;
 | |
|     return size+1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
 | |
| {
 | |
|     int totalCost = 0;
 | |
|     const U32 largestBits = huffNode[lastNonNull].nbBits;
 | |
| 
 | |
|     /* early exit : all is fine */
 | |
|     if (largestBits <= maxNbBits) return largestBits;
 | |
| 
 | |
|     /* there are several too large elements (at least >= 2) */
 | |
|     {
 | |
|         const U32 baseCost = 1 << (largestBits - maxNbBits);
 | |
|         U32 n = lastNonNull;
 | |
| 
 | |
|         while (huffNode[n].nbBits > maxNbBits)
 | |
|         {
 | |
|             totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
 | |
|             huffNode[n].nbBits = (BYTE)maxNbBits;
 | |
|             n --;
 | |
|         } /* n stops at huffNode[n].nbBits <= maxNbBits */
 | |
|         while (huffNode[n].nbBits == maxNbBits) n--;   /* n end at index of smallest symbol using (maxNbBits-1) */
 | |
| 
 | |
|         /* renorm totalCost */
 | |
|         totalCost >>= (largestBits - maxNbBits);  /* note : totalCost is necessarily a multiple of baseCost */
 | |
| 
 | |
|         /* repay normalized cost */
 | |
|         {
 | |
|             const U32 noSymbol = 0xF0F0F0F0;
 | |
|             U32 rankLast[HUF_MAX_TABLELOG+1];
 | |
|             U32 currentNbBits = maxNbBits;
 | |
|             int pos;
 | |
| 
 | |
|             /* Get pos of last (smallest) symbol per rank */
 | |
|             memset(rankLast, 0xF0, sizeof(rankLast));
 | |
|             for (pos=n ; pos >= 0; pos--)
 | |
|             {
 | |
|                 if (huffNode[pos].nbBits >= currentNbBits) continue;
 | |
|                 currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
 | |
|                 rankLast[maxNbBits-currentNbBits] = pos;
 | |
|             }
 | |
| 
 | |
|             while (totalCost > 0)
 | |
|             {
 | |
|                 U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
 | |
|                 for ( ; nBitsToDecrease > 1; nBitsToDecrease--)
 | |
|                 {
 | |
|                     U32 highPos = rankLast[nBitsToDecrease];
 | |
|                     U32 lowPos = rankLast[nBitsToDecrease-1];
 | |
|                     if (highPos == noSymbol) continue;
 | |
|                     if (lowPos == noSymbol) break;
 | |
|                     {
 | |
|                         U32 highTotal = huffNode[highPos].count;
 | |
|                         U32 lowTotal = 2 * huffNode[lowPos].count;
 | |
|                         if (highTotal <= lowTotal) break;
 | |
|                     }
 | |
|                 }
 | |
|                 /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
 | |
|                 while ((nBitsToDecrease<=HUF_MAX_TABLELOG) && (rankLast[nBitsToDecrease] == noSymbol))  /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
 | |
|                     nBitsToDecrease ++;
 | |
|                 totalCost -= 1 << (nBitsToDecrease-1);
 | |
|                 if (rankLast[nBitsToDecrease-1] == noSymbol)
 | |
|                     rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];   /* this rank is no longer empty */
 | |
|                 huffNode[rankLast[nBitsToDecrease]].nbBits ++;
 | |
|                 if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
 | |
|                     rankLast[nBitsToDecrease] = noSymbol;
 | |
|                 else
 | |
|                 {
 | |
|                     rankLast[nBitsToDecrease]--;
 | |
|                     if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
 | |
|                         rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             while (totalCost < 0)   /* Sometimes, cost correction overshoot */
 | |
|             {
 | |
|                 if (rankLast[1] == noSymbol)   /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
 | |
|                 {
 | |
|                     while (huffNode[n].nbBits == maxNbBits) n--;
 | |
|                     huffNode[n+1].nbBits--;
 | |
|                     rankLast[1] = n+1;
 | |
|                     totalCost++;
 | |
|                     continue;
 | |
|                 }
 | |
|                 huffNode[ rankLast[1] + 1 ].nbBits--;
 | |
|                 rankLast[1]++;
 | |
|                 totalCost ++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return maxNbBits;
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|     U32 base;
 | |
|     U32 current;
 | |
| } rankPos;
 | |
| 
 | |
| static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
 | |
| {
 | |
|     rankPos rank[32];
 | |
|     U32 n;
 | |
| 
 | |
|     memset(rank, 0, sizeof(rank));
 | |
|     for (n=0; n<=maxSymbolValue; n++)
 | |
|     {
 | |
|         U32 r = BIT_highbit32(count[n] + 1);
 | |
|         rank[r].base ++;
 | |
|     }
 | |
|     for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
 | |
|     for (n=0; n<32; n++) rank[n].current = rank[n].base;
 | |
|     for (n=0; n<=maxSymbolValue; n++)
 | |
|     {
 | |
|         U32 c = count[n];
 | |
|         U32 r = BIT_highbit32(c+1) + 1;
 | |
|         U32 pos = rank[r].current++;
 | |
|         while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
 | |
|         huffNode[pos].count = c;
 | |
|         huffNode[pos].byte  = (BYTE)n;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #define STARTNODE (HUF_MAX_SYMBOL_VALUE+1)
 | |
| size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
 | |
| {
 | |
|     nodeElt huffNode0[2*HUF_MAX_SYMBOL_VALUE+1 +1];
 | |
|     nodeElt* huffNode = huffNode0 + 1;
 | |
|     U32 n, nonNullRank;
 | |
|     int lowS, lowN;
 | |
|     U16 nodeNb = STARTNODE;
 | |
|     U32 nodeRoot;
 | |
| 
 | |
|     /* safety checks */
 | |
|     if (maxNbBits == 0) maxNbBits = HUF_DEFAULT_TABLELOG;
 | |
|     if (maxSymbolValue > HUF_MAX_SYMBOL_VALUE) return ERROR(GENERIC);
 | |
|     memset(huffNode0, 0, sizeof(huffNode0));
 | |
| 
 | |
|     /* sort, decreasing order */
 | |
|     HUF_sort(huffNode, count, maxSymbolValue);
 | |
| 
 | |
|     // init for parents
 | |
|     nonNullRank = maxSymbolValue;
 | |
|     while(huffNode[nonNullRank].count == 0) nonNullRank--;
 | |
|     lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
 | |
|     huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
 | |
|     huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
 | |
|     nodeNb++; lowS-=2;
 | |
|     for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
 | |
|     huffNode0[0].count = (U32)(1U<<31);
 | |
| 
 | |
|     // create parents
 | |
|     while (nodeNb <= nodeRoot)
 | |
|     {
 | |
|         U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
 | |
|         U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
 | |
|         huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
 | |
|         huffNode[n1].parent = huffNode[n2].parent = nodeNb;
 | |
|         nodeNb++;
 | |
|     }
 | |
| 
 | |
|     // distribute weights (unlimited tree height)
 | |
|     huffNode[nodeRoot].nbBits = 0;
 | |
|     for (n=nodeRoot-1; n>=STARTNODE; n--)
 | |
|         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
 | |
|     for (n=0; n<=nonNullRank; n++)
 | |
|         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
 | |
| 
 | |
|     /* enforce maxTableLog */
 | |
|     maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
 | |
| 
 | |
|     /* fill result into tree (val, nbBits) */
 | |
|     {
 | |
|         U16 nbPerRank[HUF_MAX_TABLELOG+1] = {0};
 | |
|         U16 valPerRank[HUF_MAX_TABLELOG+1] = {0};
 | |
|         if (maxNbBits > HUF_MAX_TABLELOG) return ERROR(GENERIC);   /* check fit into table */
 | |
|         for (n=0; n<=nonNullRank; n++)
 | |
|             nbPerRank[huffNode[n].nbBits]++;
 | |
|         {
 | |
|             /* determine stating value per rank */
 | |
|             U16 min = 0;
 | |
|             for (n=maxNbBits; n>0; n--)
 | |
|             {
 | |
|                 valPerRank[n] = min;      /* get starting value within each rank */
 | |
|                 min += nbPerRank[n];
 | |
|                 min >>= 1;
 | |
|             }
 | |
|         }
 | |
|         for (n=0; n<=maxSymbolValue; n++)
 | |
|             tree[huffNode[n].byte].nbBits = huffNode[n].nbBits;   // push nbBits per symbol, symbol order
 | |
|         for (n=0; n<=maxSymbolValue; n++)
 | |
|             tree[n].val = valPerRank[tree[n].nbBits]++;   // assign value within rank, symbol order
 | |
|     }
 | |
| 
 | |
|     return maxNbBits;
 | |
| }
 | |
| 
 | |
| static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
 | |
| {
 | |
|     BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
 | |
| }
 | |
| 
 | |
| size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
 | |
| 
 | |
| #define HUF_FLUSHBITS(s)  (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
 | |
| 
 | |
| #define HUF_FLUSHBITS_1(stream) \
 | |
|     if (sizeof((stream)->bitContainer)*8 < HUF_MAX_TABLELOG*2+7) HUF_FLUSHBITS(stream)
 | |
| 
 | |
| #define HUF_FLUSHBITS_2(stream) \
 | |
|     if (sizeof((stream)->bitContainer)*8 < HUF_MAX_TABLELOG*4+7) HUF_FLUSHBITS(stream)
 | |
| 
 | |
| size_t HUF_compress_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
 | |
| {
 | |
|     const BYTE* ip = (const BYTE*) src;
 | |
|     BYTE* const ostart = (BYTE*)dst;
 | |
|     BYTE* op = ostart;
 | |
|     BYTE* const oend = ostart + dstSize;
 | |
|     size_t n;
 | |
|     const unsigned fast = (dstSize >= HUF_BLOCKBOUND(srcSize));
 | |
|     size_t errorCode;
 | |
|     BIT_CStream_t bitC;
 | |
| 
 | |
|     /* init */
 | |
|     if (dstSize < 8) return 0;   /* not enough space to compress */
 | |
|     errorCode = BIT_initCStream(&bitC, op, oend-op);
 | |
|     if (HUF_isError(errorCode)) return 0;
 | |
| 
 | |
|     n = srcSize & ~3;  /* join to mod 4 */
 | |
|     switch (srcSize & 3)
 | |
|     {
 | |
|         case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
 | |
|                  HUF_FLUSHBITS_2(&bitC);
 | |
|         case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
 | |
|                  HUF_FLUSHBITS_1(&bitC);
 | |
|         case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
 | |
|                  HUF_FLUSHBITS(&bitC);
 | |
|         case 0 :
 | |
|         default: ;
 | |
|     }
 | |
| 
 | |
|     for (; n>0; n-=4)   /* note : n&3==0 at this stage */
 | |
|     {
 | |
|         HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
 | |
|         HUF_FLUSHBITS_1(&bitC);
 | |
|         HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
 | |
|         HUF_FLUSHBITS_2(&bitC);
 | |
|         HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
 | |
|         HUF_FLUSHBITS_1(&bitC);
 | |
|         HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
 | |
|         HUF_FLUSHBITS(&bitC);
 | |
|     }
 | |
| 
 | |
|     return BIT_closeCStream(&bitC);
 | |
| }
 | |
| 
 | |
| 
 | |
| static size_t HUF_compress_into4Segments(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
 | |
| {
 | |
|     size_t segmentSize = (srcSize+3)/4;   /* first 3 segments */
 | |
|     size_t errorCode;
 | |
|     const BYTE* ip = (const BYTE*) src;
 | |
|     const BYTE* const iend = ip + srcSize;
 | |
|     BYTE* const ostart = (BYTE*) dst;
 | |
|     BYTE* op = ostart;
 | |
|     BYTE* const oend = ostart + dstSize;
 | |
| 
 | |
|     if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
 | |
|     if (srcSize < 12) return 0;   /* no saving possible : too small input */
 | |
|     op += 6;   /* jumpTable */
 | |
| 
 | |
|     errorCode = HUF_compress_usingCTable(op, oend-op, ip, segmentSize, CTable);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode==0) return 0;
 | |
|     MEM_writeLE16(ostart, (U16)errorCode);
 | |
| 
 | |
|     ip += segmentSize;
 | |
|     op += errorCode;
 | |
|     errorCode = HUF_compress_usingCTable(op, oend-op, ip, segmentSize, CTable);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode==0) return 0;
 | |
|     MEM_writeLE16(ostart+2, (U16)errorCode);
 | |
| 
 | |
|     ip += segmentSize;
 | |
|     op += errorCode;
 | |
|     errorCode = HUF_compress_usingCTable(op, oend-op, ip, segmentSize, CTable);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode==0) return 0;
 | |
|     MEM_writeLE16(ostart+4, (U16)errorCode);
 | |
| 
 | |
|     ip += segmentSize;
 | |
|     op += errorCode;
 | |
|     errorCode = HUF_compress_usingCTable(op, oend-op, ip, iend-ip, CTable);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode==0) return 0;
 | |
| 
 | |
|     op += errorCode;
 | |
|     return op-ostart;
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_compress2 (void* dst, size_t dstSize,
 | |
|                 const void* src, size_t srcSize,
 | |
|                 unsigned maxSymbolValue, unsigned huffLog)
 | |
| {
 | |
|     BYTE* const ostart = (BYTE*)dst;
 | |
|     BYTE* op = ostart;
 | |
|     BYTE* const oend = ostart + dstSize;
 | |
| 
 | |
|     U32 count[HUF_MAX_SYMBOL_VALUE+1];
 | |
|     HUF_CElt CTable[HUF_MAX_SYMBOL_VALUE+1];
 | |
|     size_t errorCode;
 | |
| 
 | |
|     /* checks & inits */
 | |
|     if (srcSize < 1) return 0;  /* Uncompressed */
 | |
|     if (dstSize < 1) return 0;  /* not compressible within dst budget */
 | |
|     if (srcSize > 128 * 1024) return ERROR(srcSize_wrong);   /* current block size limit */
 | |
|     if (huffLog > HUF_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
 | |
|     if (!maxSymbolValue) maxSymbolValue = HUF_MAX_SYMBOL_VALUE;
 | |
|     if (!huffLog) huffLog = HUF_DEFAULT_TABLELOG;
 | |
| 
 | |
|     /* Scan input and build symbol stats */
 | |
|     errorCode = FSE_count (count, &maxSymbolValue, (const BYTE*)src, srcSize);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }
 | |
|     if (errorCode <= (srcSize >> 7)+1) return 0;   /* Heuristic : not compressible enough */
 | |
| 
 | |
|     /* Build Huffman Tree */
 | |
|     errorCode = HUF_buildCTable (CTable, count, maxSymbolValue, huffLog);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     huffLog = (U32)errorCode;
 | |
| 
 | |
|     /* Write table description header */
 | |
|     errorCode = HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode + 12 >= srcSize) return 0;   /* not useful to try compression */
 | |
|     op += errorCode;
 | |
| 
 | |
|     /* Compress */
 | |
|     //errorCode = HUF_compress_usingCTable(op, oend - op, src, srcSize, CTable);   /* single segment */
 | |
|     errorCode = HUF_compress_into4Segments(op, oend - op, src, srcSize, CTable);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode==0) return 0;
 | |
|     op += errorCode;
 | |
| 
 | |
|     /* check compressibility */
 | |
|     if ((size_t)(op-ostart) >= srcSize-1)
 | |
|         return 0;
 | |
| 
 | |
|     return op-ostart;
 | |
| }
 | |
| 
 | |
| size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
 | |
| {
 | |
|     return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_DEFAULT_TABLELOG);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*********************************************************
 | |
| *  Huff0 : Huffman block decompression
 | |
| *********************************************************/
 | |
| typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2;   /* single-symbol decoding */
 | |
| 
 | |
| typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4;  /* double-symbols decoding */
 | |
| 
 | |
| typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
 | |
| 
 | |
| /*! HUF_readStats
 | |
|     Read compact Huffman tree, saved by HUF_writeCTable
 | |
|     @huffWeight : destination buffer
 | |
|     @return : size read from `src`
 | |
| */
 | |
| static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
 | |
|                             U32* nbSymbolsPtr, U32* tableLogPtr,
 | |
|                             const void* src, size_t srcSize)
 | |
| {
 | |
|     U32 weightTotal;
 | |
|     U32 tableLog;
 | |
|     const BYTE* ip = (const BYTE*) src;
 | |
|     size_t iSize = ip[0];
 | |
|     size_t oSize;
 | |
|     U32 n;
 | |
| 
 | |
|     //memset(huffWeight, 0, hwSize);   /* is not necessary, even though some analyzer complain ... */
 | |
| 
 | |
|     if (iSize >= 128)  /* special header */
 | |
|     {
 | |
|         if (iSize >= (242))   /* RLE */
 | |
|         {
 | |
|             static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
 | |
|             oSize = l[iSize-242];
 | |
|             memset(huffWeight, 1, hwSize);
 | |
|             iSize = 0;
 | |
|         }
 | |
|         else   /* Incompressible */
 | |
|         {
 | |
|             oSize = iSize - 127;
 | |
|             iSize = ((oSize+1)/2);
 | |
|             if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
 | |
|             if (oSize >= hwSize) return ERROR(corruption_detected);
 | |
|             ip += 1;
 | |
|             for (n=0; n<oSize; n+=2)
 | |
|             {
 | |
|                 huffWeight[n]   = ip[n/2] >> 4;
 | |
|                 huffWeight[n+1] = ip[n/2] & 15;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else  /* header compressed with FSE (normal case) */
 | |
|     {
 | |
|         if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
 | |
|         oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize);   /* max (hwSize-1) values decoded, as last one is implied */
 | |
|         if (FSE_isError(oSize)) return oSize;
 | |
|     }
 | |
| 
 | |
|     /* collect weight stats */
 | |
|     memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
 | |
|     weightTotal = 0;
 | |
|     for (n=0; n<oSize; n++)
 | |
|     {
 | |
|         if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
 | |
|         rankStats[huffWeight[n]]++;
 | |
|         weightTotal += (1 << huffWeight[n]) >> 1;
 | |
|     }
 | |
| 
 | |
|     /* get last non-null symbol weight (implied, total must be 2^n) */
 | |
|     tableLog = BIT_highbit32(weightTotal) + 1;
 | |
|     if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
 | |
|     {
 | |
|         U32 total = 1 << tableLog;
 | |
|         U32 rest = total - weightTotal;
 | |
|         U32 verif = 1 << BIT_highbit32(rest);
 | |
|         U32 lastWeight = BIT_highbit32(rest) + 1;
 | |
|         if (verif != rest) return ERROR(corruption_detected);    /* last value must be a clean power of 2 */
 | |
|         huffWeight[oSize] = (BYTE)lastWeight;
 | |
|         rankStats[lastWeight]++;
 | |
|     }
 | |
| 
 | |
|     /* check tree construction validity */
 | |
|     if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected);   /* by construction : at least 2 elts of rank 1, must be even */
 | |
| 
 | |
|     /* results */
 | |
|     *nbSymbolsPtr = (U32)(oSize+1);
 | |
|     *tableLogPtr = tableLog;
 | |
|     return iSize+1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**************************/
 | |
| /* single-symbol decoding */
 | |
| /**************************/
 | |
| 
 | |
| size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
 | |
| {
 | |
|     BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
 | |
|     U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];   /* large enough for values from 0 to 16 */
 | |
|     U32 tableLog = 0;
 | |
|     const BYTE* ip = (const BYTE*) src;
 | |
|     size_t iSize = ip[0];
 | |
|     U32 nbSymbols = 0;
 | |
|     U32 n;
 | |
|     U32 nextRankStart;
 | |
|     HUF_DEltX2* const dt = (HUF_DEltX2*)(DTable + 1);
 | |
| 
 | |
|     HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16));   /* if compilation fails here, assertion is false */
 | |
|     //memset(huffWeight, 0, sizeof(huffWeight));   /* is not necessary, even though some analyzer complain ... */
 | |
| 
 | |
|     iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
 | |
|     if (HUF_isError(iSize)) return iSize;
 | |
| 
 | |
|     /* check result */
 | |
|     if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge);   /* DTable is too small */
 | |
|     DTable[0] = (U16)tableLog;   /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
 | |
| 
 | |
|     /* Prepare ranks */
 | |
|     nextRankStart = 0;
 | |
|     for (n=1; n<=tableLog; n++)
 | |
|     {
 | |
|         U32 current = nextRankStart;
 | |
|         nextRankStart += (rankVal[n] << (n-1));
 | |
|         rankVal[n] = current;
 | |
|     }
 | |
| 
 | |
|     /* fill DTable */
 | |
|     for (n=0; n<nbSymbols; n++)
 | |
|     {
 | |
|         const U32 w = huffWeight[n];
 | |
|         const U32 length = (1 << w) >> 1;
 | |
|         U32 i;
 | |
|         HUF_DEltX2 D;
 | |
|         D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
 | |
|         for (i = rankVal[w]; i < rankVal[w] + length; i++)
 | |
|             dt[i] = D;
 | |
|         rankVal[w] += length;
 | |
|     }
 | |
| 
 | |
|     return iSize;
 | |
| }
 | |
| 
 | |
| static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
 | |
| {
 | |
|         const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
 | |
|         const BYTE c = dt[val].byte;
 | |
|         BIT_skipBits(Dstream, dt[val].nbBits);
 | |
|         return c;
 | |
| }
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
 | |
|     *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
 | |
|         HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits()) \
 | |
|         HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
 | |
| 
 | |
| static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
 | |
| {
 | |
|     BYTE* const pStart = p;
 | |
| 
 | |
|     /* up to 4 symbols at a time */
 | |
|     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
 | |
|     {
 | |
|         HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
|     }
 | |
| 
 | |
|     /* closer to the end */
 | |
|     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
 | |
|         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
| 
 | |
|     /* no more data to retrieve from bitstream, hence no need to reload */
 | |
|     while (p < pEnd)
 | |
|         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
 | |
| 
 | |
|     return pEnd-pStart;
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X2_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const U16* DTable)
 | |
| {
 | |
|     BYTE* op = (BYTE*)dst;
 | |
|     BYTE* const oend = op + dstSize;
 | |
|     size_t errorCode;
 | |
|     const U32 dtLog = DTable[0];
 | |
|     const HUF_DEltX2* const dt = ((const HUF_DEltX2*)DTable) +1;
 | |
|     BIT_DStream_t bitD;
 | |
|     errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
| 
 | |
|     HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
 | |
| 
 | |
|     /* check */
 | |
|     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
 | |
| 
 | |
|     return dstSize;
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 | |
| {
 | |
|     HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
|     size_t errorCode;
 | |
| 
 | |
|     errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += errorCode;
 | |
|     cSrcSize -= errorCode;
 | |
| 
 | |
|     return HUF_decompress1X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_decompress4X2_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const U16* DTable)
 | |
| {
 | |
|     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
 | |
| 
 | |
|     {
 | |
|         const BYTE* const istart = (const BYTE*) cSrc;
 | |
|         BYTE* const ostart = (BYTE*) dst;
 | |
|         BYTE* const oend = ostart + dstSize;
 | |
| 
 | |
|         const HUF_DEltX2* const dt = ((const HUF_DEltX2*)DTable) +1;
 | |
|         const U32 dtLog = DTable[0];
 | |
|         size_t errorCode;
 | |
| 
 | |
|         /* Init */
 | |
|         BIT_DStream_t bitD1;
 | |
|         BIT_DStream_t bitD2;
 | |
|         BIT_DStream_t bitD3;
 | |
|         BIT_DStream_t bitD4;
 | |
|         const size_t length1 = MEM_readLE16(istart);
 | |
|         const size_t length2 = MEM_readLE16(istart+2);
 | |
|         const size_t length3 = MEM_readLE16(istart+4);
 | |
|         size_t length4;
 | |
|         const BYTE* const istart1 = istart + 6;  /* jumpTable */
 | |
|         const BYTE* const istart2 = istart1 + length1;
 | |
|         const BYTE* const istart3 = istart2 + length2;
 | |
|         const BYTE* const istart4 = istart3 + length3;
 | |
|         const size_t segmentSize = (dstSize+3) / 4;
 | |
|         BYTE* const opStart2 = ostart + segmentSize;
 | |
|         BYTE* const opStart3 = opStart2 + segmentSize;
 | |
|         BYTE* const opStart4 = opStart3 + segmentSize;
 | |
|         BYTE* op1 = ostart;
 | |
|         BYTE* op2 = opStart2;
 | |
|         BYTE* op3 = opStart3;
 | |
|         BYTE* op4 = opStart4;
 | |
|         U32 endSignal;
 | |
| 
 | |
|         length4 = cSrcSize - (length1 + length2 + length3 + 6);
 | |
|         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
 | |
|         errorCode = BIT_initDStream(&bitD1, istart1, length1);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD2, istart2, length2);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD3, istart3, length3);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD4, istart4, length4);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
| 
 | |
|         /* 16-32 symbols per loop (4-8 symbols per stream) */
 | |
|         endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
 | |
|         for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
 | |
|         {
 | |
|             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
 | |
| 
 | |
|             endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
 | |
|         }
 | |
| 
 | |
|         /* check corruption */
 | |
|         if (op1 > opStart2) return ERROR(corruption_detected);
 | |
|         if (op2 > opStart3) return ERROR(corruption_detected);
 | |
|         if (op3 > opStart4) return ERROR(corruption_detected);
 | |
|         /* note : op4 supposed already verified within main loop */
 | |
| 
 | |
|         /* finish bitStreams one by one */
 | |
|         HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
 | |
|         HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
 | |
|         HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
 | |
|         HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);
 | |
| 
 | |
|         /* check */
 | |
|         endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
 | |
|         if (!endSignal) return ERROR(corruption_detected);
 | |
| 
 | |
|         /* decoded size */
 | |
|         return dstSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 | |
| {
 | |
|     HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
|     size_t errorCode;
 | |
| 
 | |
|     errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
|     if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += errorCode;
 | |
|     cSrcSize -= errorCode;
 | |
| 
 | |
|     return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
 | |
| }
 | |
| 
 | |
| 
 | |
| /***************************/
 | |
| /* double-symbols decoding */
 | |
| /***************************/
 | |
| 
 | |
| static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
 | |
|                            const U32* rankValOrigin, const int minWeight,
 | |
|                            const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
 | |
|                            U32 nbBitsBaseline, U16 baseSeq)
 | |
| {
 | |
|     HUF_DEltX4 DElt;
 | |
|     U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
 | |
|     U32 s;
 | |
| 
 | |
|     /* get pre-calculated rankVal */
 | |
|     memcpy(rankVal, rankValOrigin, sizeof(rankVal));
 | |
| 
 | |
|     /* fill skipped values */
 | |
|     if (minWeight>1)
 | |
|     {
 | |
|         U32 i, skipSize = rankVal[minWeight];
 | |
|         MEM_writeLE16(&(DElt.sequence), baseSeq);
 | |
|         DElt.nbBits   = (BYTE)(consumed);
 | |
|         DElt.length   = 1;
 | |
|         for (i = 0; i < skipSize; i++)
 | |
|             DTable[i] = DElt;
 | |
|     }
 | |
| 
 | |
|     /* fill DTable */
 | |
|     for (s=0; s<sortedListSize; s++)   /* note : sortedSymbols already skipped */
 | |
|     {
 | |
|         const U32 symbol = sortedSymbols[s].symbol;
 | |
|         const U32 weight = sortedSymbols[s].weight;
 | |
|         const U32 nbBits = nbBitsBaseline - weight;
 | |
|         const U32 length = 1 << (sizeLog-nbBits);
 | |
|         const U32 start = rankVal[weight];
 | |
|         U32 i = start;
 | |
|         const U32 end = start + length;
 | |
| 
 | |
|         MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
 | |
|         DElt.nbBits = (BYTE)(nbBits + consumed);
 | |
|         DElt.length = 2;
 | |
|         do { DTable[i++] = DElt; } while (i<end);   /* since length >= 1 */
 | |
| 
 | |
|         rankVal[weight] += length;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
 | |
| 
 | |
| static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
 | |
|                            const sortedSymbol_t* sortedList, const U32 sortedListSize,
 | |
|                            const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
 | |
|                            const U32 nbBitsBaseline)
 | |
| {
 | |
|     U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
 | |
|     const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
 | |
|     const U32 minBits  = nbBitsBaseline - maxWeight;
 | |
|     U32 s;
 | |
| 
 | |
|     memcpy(rankVal, rankValOrigin, sizeof(rankVal));
 | |
| 
 | |
|     /* fill DTable */
 | |
|     for (s=0; s<sortedListSize; s++)
 | |
|     {
 | |
|         const U16 symbol = sortedList[s].symbol;
 | |
|         const U32 weight = sortedList[s].weight;
 | |
|         const U32 nbBits = nbBitsBaseline - weight;
 | |
|         const U32 start = rankVal[weight];
 | |
|         const U32 length = 1 << (targetLog-nbBits);
 | |
| 
 | |
|         if (targetLog-nbBits >= minBits)   /* enough room for a second symbol */
 | |
|         {
 | |
|             U32 sortedRank;
 | |
|             int minWeight = nbBits + scaleLog;
 | |
|             if (minWeight < 1) minWeight = 1;
 | |
|             sortedRank = rankStart[minWeight];
 | |
|             HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
 | |
|                            rankValOrigin[nbBits], minWeight,
 | |
|                            sortedList+sortedRank, sortedListSize-sortedRank,
 | |
|                            nbBitsBaseline, symbol);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             U32 i;
 | |
|             const U32 end = start + length;
 | |
|             HUF_DEltX4 DElt;
 | |
| 
 | |
|             MEM_writeLE16(&(DElt.sequence), symbol);
 | |
|             DElt.nbBits   = (BYTE)(nbBits);
 | |
|             DElt.length   = 1;
 | |
|             for (i = start; i < end; i++)
 | |
|                 DTable[i] = DElt;
 | |
|         }
 | |
|         rankVal[weight] += length;
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
 | |
| {
 | |
|     BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
 | |
|     sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
 | |
|     U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
 | |
|     U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
 | |
|     U32* const rankStart = rankStart0+1;
 | |
|     rankVal_t rankVal;
 | |
|     U32 tableLog, maxW, sizeOfSort, nbSymbols;
 | |
|     const U32 memLog = DTable[0];
 | |
|     const BYTE* ip = (const BYTE*) src;
 | |
|     size_t iSize = ip[0];
 | |
|     HUF_DEltX4* const dt = ((HUF_DEltX4*)DTable) + 1;
 | |
| 
 | |
|     HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32));   /* if compilation fails here, assertion is false */
 | |
|     if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
 | |
|     //memset(weightList, 0, sizeof(weightList));   /* is not necessary, even though some analyzer complain ... */
 | |
| 
 | |
|     iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
 | |
|     if (HUF_isError(iSize)) return iSize;
 | |
| 
 | |
|     /* check result */
 | |
|     if (tableLog > memLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
 | |
| 
 | |
|     /* find maxWeight */
 | |
|     for (maxW = tableLog; rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */
 | |
| 
 | |
|     /* Get start index of each weight */
 | |
|     {
 | |
|         U32 w, nextRankStart = 0;
 | |
|         for (w=1; w<=maxW; w++)
 | |
|         {
 | |
|             U32 current = nextRankStart;
 | |
|             nextRankStart += rankStats[w];
 | |
|             rankStart[w] = current;
 | |
|         }
 | |
|         rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
 | |
|         sizeOfSort = nextRankStart;
 | |
|     }
 | |
| 
 | |
|     /* sort symbols by weight */
 | |
|     {
 | |
|         U32 s;
 | |
|         for (s=0; s<nbSymbols; s++)
 | |
|         {
 | |
|             U32 w = weightList[s];
 | |
|             U32 r = rankStart[w]++;
 | |
|             sortedSymbol[r].symbol = (BYTE)s;
 | |
|             sortedSymbol[r].weight = (BYTE)w;
 | |
|         }
 | |
|         rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
 | |
|     }
 | |
| 
 | |
|     /* Build rankVal */
 | |
|     {
 | |
|         const U32 minBits = tableLog+1 - maxW;
 | |
|         U32 nextRankVal = 0;
 | |
|         U32 w, consumed;
 | |
|         const int rescale = (memLog-tableLog) - 1;   /* tableLog <= memLog */
 | |
|         U32* rankVal0 = rankVal[0];
 | |
|         for (w=1; w<=maxW; w++)
 | |
|         {
 | |
|             U32 current = nextRankVal;
 | |
|             nextRankVal += rankStats[w] << (w+rescale);
 | |
|             rankVal0[w] = current;
 | |
|         }
 | |
|         for (consumed = minBits; consumed <= memLog - minBits; consumed++)
 | |
|         {
 | |
|             U32* rankValPtr = rankVal[consumed];
 | |
|             for (w = 1; w <= maxW; w++)
 | |
|             {
 | |
|                 rankValPtr[w] = rankVal0[w] >> consumed;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     HUF_fillDTableX4(dt, memLog,
 | |
|                    sortedSymbol, sizeOfSort,
 | |
|                    rankStart0, rankVal, maxW,
 | |
|                    tableLog+1);
 | |
| 
 | |
|     return iSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
 | |
| {
 | |
|     const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 | |
|     memcpy(op, dt+val, 2);
 | |
|     BIT_skipBits(DStream, dt[val].nbBits);
 | |
|     return dt[val].length;
 | |
| }
 | |
| 
 | |
| static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
 | |
| {
 | |
|     const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 | |
|     memcpy(op, dt+val, 1);
 | |
|     if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
 | |
|     else
 | |
|     {
 | |
|         if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
 | |
|         {
 | |
|             BIT_skipBits(DStream, dt[val].nbBits);
 | |
|             if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
 | |
|                 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);   /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
 | |
|     ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
 | |
|         ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits()) \
 | |
|         ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
 | |
| 
 | |
| static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
 | |
| {
 | |
|     BYTE* const pStart = p;
 | |
| 
 | |
|     /* up to 8 symbols at a time */
 | |
|     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
 | |
|     {
 | |
|         HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
 | |
|     }
 | |
| 
 | |
|     /* closer to the end */
 | |
|     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
 | |
|         HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
 | |
| 
 | |
|     while (p <= pEnd-2)
 | |
|         HUF_DECODE_SYMBOLX4_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
 | |
| 
 | |
|     if (p < pEnd)
 | |
|         p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
 | |
| 
 | |
|     return p-pStart;
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_decompress1X4_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const U32* DTable)
 | |
| {
 | |
|     const BYTE* const istart = (const BYTE*) cSrc;
 | |
|     BYTE* const ostart = (BYTE*) dst;
 | |
|     BYTE* const oend = ostart + dstSize;
 | |
| 
 | |
|     const U32 dtLog = DTable[0];
 | |
|     const HUF_DEltX4* const dt = ((const HUF_DEltX4*)DTable) +1;
 | |
|     size_t errorCode;
 | |
| 
 | |
|     /* Init */
 | |
|     BIT_DStream_t bitD;
 | |
|     errorCode = BIT_initDStream(&bitD, istart, cSrcSize);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
| 
 | |
|     /* finish bitStreams one by one */
 | |
|     HUF_decodeStreamX4(ostart, &bitD, oend,     dt, dtLog);
 | |
| 
 | |
|     /* check */
 | |
|     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
 | |
| 
 | |
|     /* decoded size */
 | |
|     return dstSize;
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 | |
| {
 | |
|     HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize;
 | |
|     cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress1X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress4X4_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const U32* DTable)
 | |
| {
 | |
|     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
 | |
| 
 | |
|     {
 | |
|         const BYTE* const istart = (const BYTE*) cSrc;
 | |
|         BYTE* const ostart = (BYTE*) dst;
 | |
|         BYTE* const oend = ostart + dstSize;
 | |
| 
 | |
|         const HUF_DEltX4* const dt = ((const HUF_DEltX4*)DTable) +1;
 | |
|         const U32 dtLog = DTable[0];
 | |
|         size_t errorCode;
 | |
| 
 | |
|         /* Init */
 | |
|         BIT_DStream_t bitD1;
 | |
|         BIT_DStream_t bitD2;
 | |
|         BIT_DStream_t bitD3;
 | |
|         BIT_DStream_t bitD4;
 | |
|         const size_t length1 = MEM_readLE16(istart);
 | |
|         const size_t length2 = MEM_readLE16(istart+2);
 | |
|         const size_t length3 = MEM_readLE16(istart+4);
 | |
|         size_t length4;
 | |
|         const BYTE* const istart1 = istart + 6;  /* jumpTable */
 | |
|         const BYTE* const istart2 = istart1 + length1;
 | |
|         const BYTE* const istart3 = istart2 + length2;
 | |
|         const BYTE* const istart4 = istart3 + length3;
 | |
|         const size_t segmentSize = (dstSize+3) / 4;
 | |
|         BYTE* const opStart2 = ostart + segmentSize;
 | |
|         BYTE* const opStart3 = opStart2 + segmentSize;
 | |
|         BYTE* const opStart4 = opStart3 + segmentSize;
 | |
|         BYTE* op1 = ostart;
 | |
|         BYTE* op2 = opStart2;
 | |
|         BYTE* op3 = opStart3;
 | |
|         BYTE* op4 = opStart4;
 | |
|         U32 endSignal;
 | |
| 
 | |
|         length4 = cSrcSize - (length1 + length2 + length3 + 6);
 | |
|         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
 | |
|         errorCode = BIT_initDStream(&bitD1, istart1, length1);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD2, istart2, length2);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD3, istart3, length3);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD4, istart4, length4);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
| 
 | |
|         /* 16-32 symbols per loop (4-8 symbols per stream) */
 | |
|         endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
 | |
|         for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
 | |
|         {
 | |
|             HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
 | |
| 
 | |
|             endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
 | |
|         }
 | |
| 
 | |
|         /* check corruption */
 | |
|         if (op1 > opStart2) return ERROR(corruption_detected);
 | |
|         if (op2 > opStart3) return ERROR(corruption_detected);
 | |
|         if (op3 > opStart4) return ERROR(corruption_detected);
 | |
|         /* note : op4 supposed already verified within main loop */
 | |
| 
 | |
|         /* finish bitStreams one by one */
 | |
|         HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
 | |
|         HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
 | |
|         HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
 | |
|         HUF_decodeStreamX4(op4, &bitD4, oend,     dt, dtLog);
 | |
| 
 | |
|         /* check */
 | |
|         endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
 | |
|         if (!endSignal) return ERROR(corruption_detected);
 | |
| 
 | |
|         /* decoded size */
 | |
|         return dstSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 | |
| {
 | |
|     HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize;
 | |
|     cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**********************************/
 | |
| /* quad-symbol decoding           */
 | |
| /**********************************/
 | |
| typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6;
 | |
| typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6;
 | |
| 
 | |
| /* recursive, up to level 3; may benefit from <template>-like strategy to nest each level inline */
 | |
| static void HUF_fillDTableX6LevelN(HUF_DDescX6* DDescription, HUF_DSeqX6* DSequence, int sizeLog,
 | |
|                            const rankVal_t rankValOrigin, const U32 consumed, const int minWeight, const U32 maxWeight,
 | |
|                            const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, const U32* rankStart,
 | |
|                            const U32 nbBitsBaseline, HUF_DSeqX6 baseSeq, HUF_DDescX6 DDesc)
 | |
| {
 | |
|     const int scaleLog = nbBitsBaseline - sizeLog;   /* note : targetLog >= (nbBitsBaseline-1), hence scaleLog <= 1 */
 | |
|     const int minBits  = nbBitsBaseline - maxWeight;
 | |
|     const U32 level = DDesc.nbBytes;
 | |
|     U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
 | |
|     U32 symbolStartPos, s;
 | |
| 
 | |
|     /* local rankVal, will be modified */
 | |
|     memcpy(rankVal, rankValOrigin[consumed], sizeof(rankVal));
 | |
| 
 | |
|     /* fill skipped values */
 | |
|     if (minWeight>1)
 | |
|     {
 | |
|         U32 i;
 | |
|         const U32 skipSize = rankVal[minWeight];
 | |
|         for (i = 0; i < skipSize; i++)
 | |
|         {
 | |
|             DSequence[i] = baseSeq;
 | |
|             DDescription[i] = DDesc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* fill DTable */
 | |
|     DDesc.nbBytes++;
 | |
|     symbolStartPos = rankStart[minWeight];
 | |
|     for (s=symbolStartPos; s<sortedListSize; s++)
 | |
|     {
 | |
|         const BYTE symbol = sortedSymbols[s].symbol;
 | |
|         const U32  weight = sortedSymbols[s].weight;   /* >= 1 (sorted) */
 | |
|         const int  nbBits = nbBitsBaseline - weight;   /* >= 1 (by construction) */
 | |
|         const int  totalBits = consumed+nbBits;
 | |
|         const U32  start  = rankVal[weight];
 | |
|         const U32  length = 1 << (sizeLog-nbBits);
 | |
|         baseSeq.byte[level] = symbol;
 | |
|         DDesc.nbBits = (BYTE)totalBits;
 | |
| 
 | |
|         if ((level<3) && (sizeLog-totalBits >= minBits))   /* enough room for another symbol */
 | |
|         {
 | |
|             int nextMinWeight = totalBits + scaleLog;
 | |
|             if (nextMinWeight < 1) nextMinWeight = 1;
 | |
|             HUF_fillDTableX6LevelN(DDescription+start, DSequence+start, sizeLog-nbBits,
 | |
|                            rankValOrigin, totalBits, nextMinWeight, maxWeight,
 | |
|                            sortedSymbols, sortedListSize, rankStart,
 | |
|                            nbBitsBaseline, baseSeq, DDesc);   /* recursive (max : level 3) */
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             U32 i;
 | |
|             const U32 end = start + length;
 | |
|             for (i = start; i < end; i++)
 | |
|             {
 | |
|                 DDescription[i] = DDesc;
 | |
|                 DSequence[i] = baseSeq;
 | |
|             }
 | |
|         }
 | |
|         rankVal[weight] += length;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* note : same preparation as X4 */
 | |
| size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize)
 | |
| {
 | |
|     BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
 | |
|     sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
 | |
|     U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
 | |
|     U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
 | |
|     U32* const rankStart = rankStart0+1;
 | |
|     U32 tableLog, maxW, sizeOfSort, nbSymbols;
 | |
|     rankVal_t rankVal;
 | |
|     const U32 memLog = DTable[0];
 | |
|     const BYTE* ip = (const BYTE*) src;
 | |
|     size_t iSize = ip[0];
 | |
| 
 | |
|     if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
 | |
|     //memset(weightList, 0, sizeof(weightList));   /* is not necessary, even though some analyzer complain ... */
 | |
| 
 | |
|     iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
 | |
|     if (HUF_isError(iSize)) return iSize;
 | |
| 
 | |
|     /* check result */
 | |
|     if (tableLog > memLog) return ERROR(tableLog_tooLarge);   /* DTable is too small */
 | |
| 
 | |
|     /* find maxWeight */
 | |
|     for (maxW = tableLog; rankStats[maxW]==0; maxW--) {}  /* necessarily finds a solution before 0 */
 | |
| 
 | |
|     /* Get start index of each weight */
 | |
|     {
 | |
|         U32 w, nextRankStart = 0;
 | |
|         for (w=1; w<=maxW; w++)
 | |
|         {
 | |
|             U32 current = nextRankStart;
 | |
|             nextRankStart += rankStats[w];
 | |
|             rankStart[w] = current;
 | |
|         }
 | |
|         rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
 | |
|         sizeOfSort = nextRankStart;
 | |
|     }
 | |
| 
 | |
|     /* sort symbols by weight */
 | |
|     {
 | |
|         U32 s;
 | |
|         for (s=0; s<nbSymbols; s++)
 | |
|         {
 | |
|             U32 w = weightList[s];
 | |
|             U32 r = rankStart[w]++;
 | |
|             sortedSymbol[r].symbol = (BYTE)s;
 | |
|             sortedSymbol[r].weight = (BYTE)w;
 | |
|         }
 | |
|         rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
 | |
|     }
 | |
| 
 | |
|     /* Build rankVal */
 | |
|     {
 | |
|         const U32 minBits = tableLog+1 - maxW;
 | |
|         U32 nextRankVal = 0;
 | |
|         U32 w, consumed;
 | |
|         const int rescale = (memLog-tableLog) - 1;   /* tableLog <= memLog */
 | |
|         U32* rankVal0 = rankVal[0];
 | |
|         for (w=1; w<=maxW; w++)
 | |
|         {
 | |
|             U32 current = nextRankVal;
 | |
|             nextRankVal += rankStats[w] << (w+rescale);
 | |
|             rankVal0[w] = current;
 | |
|         }
 | |
|         for (consumed = minBits; consumed <= memLog - minBits; consumed++)
 | |
|         {
 | |
|             U32* rankValPtr = rankVal[consumed];
 | |
|             for (w = 1; w <= maxW; w++)
 | |
|             {
 | |
|                 rankValPtr[w] = rankVal0[w] >> consumed;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* fill tables */
 | |
|     {
 | |
|         HUF_DDescX6* DDescription = (HUF_DDescX6*)(DTable+1);
 | |
|         HUF_DSeqX6* DSequence = (HUF_DSeqX6*)(DTable + 1 + ((size_t)1<<(memLog-1)));
 | |
|         HUF_DSeqX6 DSeq;
 | |
|         HUF_DDescX6 DDesc;
 | |
|         DSeq.sequence = 0;
 | |
|         DDesc.nbBits = 0;
 | |
|         DDesc.nbBytes = 0;
 | |
|         HUF_fillDTableX6LevelN(DDescription, DSequence, memLog,
 | |
|                        (const U32 (*)[HUF_ABSOLUTEMAX_TABLELOG + 1])rankVal, 0, 1, maxW,
 | |
|                        sortedSymbol, sizeOfSort, rankStart0,
 | |
|                        tableLog+1, DSeq, DDesc);
 | |
|     }
 | |
| 
 | |
|     return iSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| static U32 HUF_decodeSymbolX6(void* op, BIT_DStream_t* DStream, const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
 | |
| {
 | |
|     const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 | |
|     memcpy(op, ds+val, sizeof(HUF_DSeqX6));
 | |
|     BIT_skipBits(DStream, dd[val].nbBits);
 | |
|     return dd[val].nbBytes;
 | |
| }
 | |
| 
 | |
| static U32 HUF_decodeLastSymbolsX6(void* op, const U32 maxL, BIT_DStream_t* DStream,
 | |
|                                   const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
 | |
| {
 | |
|     const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
 | |
|     U32 length = dd[val].nbBytes;
 | |
|     if (length <= maxL)
 | |
|     {
 | |
|         memcpy(op, ds+val, length);
 | |
|         BIT_skipBits(DStream, dd[val].nbBits);
 | |
|         return length;
 | |
|     }
 | |
|     memcpy(op, ds+val, maxL);
 | |
|     if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
 | |
|     {
 | |
|         BIT_skipBits(DStream, dd[val].nbBits);
 | |
|         if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
 | |
|             DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);   /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
 | |
|     }
 | |
|     return maxL;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) \
 | |
|     ptr += HUF_decodeSymbolX6(ptr, DStreamPtr, dd, ds, dtLog)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX6_1(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
 | |
|         HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
 | |
| 
 | |
| #define HUF_DECODE_SYMBOLX6_2(ptr, DStreamPtr) \
 | |
|     if (MEM_64bits()) \
 | |
|         HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
 | |
| 
 | |
| static inline size_t HUF_decodeStreamX6(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const U32* DTable, const U32 dtLog)
 | |
| {
 | |
|     const HUF_DDescX6* dd = (const HUF_DDescX6*)(DTable+1);
 | |
|     const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(DTable + 1 + ((size_t)1<<(dtLog-1)));
 | |
|     BYTE* const pStart = p;
 | |
| 
 | |
|     /* up to 16 symbols at a time */
 | |
|     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-16))
 | |
|     {
 | |
|         HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX6_1(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
 | |
|         HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
 | |
|     }
 | |
| 
 | |
|     /* closer to the end, up to 4 symbols at a time */
 | |
|     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
 | |
|         HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
 | |
| 
 | |
|     while (p <= pEnd-4)
 | |
|         HUF_DECODE_SYMBOLX6_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
 | |
| 
 | |
|     while (p < pEnd)
 | |
|         p += HUF_decodeLastSymbolsX6(p, (U32)(pEnd-p), bitDPtr, dd, ds, dtLog);
 | |
| 
 | |
|     return p-pStart;
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_decompress1X6_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const U32* DTable)
 | |
| {
 | |
|     const BYTE* const istart = (const BYTE*) cSrc;
 | |
|     BYTE* const ostart = (BYTE*) dst;
 | |
|     BYTE* const oend = ostart + dstSize;
 | |
| 
 | |
|     const U32 dtLog = DTable[0];
 | |
|     size_t errorCode;
 | |
| 
 | |
|     /* Init */
 | |
|     BIT_DStream_t bitD;
 | |
|     errorCode = BIT_initDStream(&bitD, istart, cSrcSize);
 | |
|     if (HUF_isError(errorCode)) return errorCode;
 | |
| 
 | |
|     /* finish bitStreams one by one */
 | |
|     HUF_decodeStreamX6(ostart, &bitD, oend, DTable, dtLog);
 | |
| 
 | |
|     /* check */
 | |
|     if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
 | |
| 
 | |
|     /* decoded size */
 | |
|     return dstSize;
 | |
| }
 | |
| 
 | |
| size_t HUF_decompress1X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 | |
| {
 | |
|     HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize;
 | |
|     cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress1X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_decompress4X6_usingDTable(
 | |
|           void* dst,  size_t dstSize,
 | |
|     const void* cSrc, size_t cSrcSize,
 | |
|     const U32* DTable)
 | |
| {
 | |
|     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
 | |
| 
 | |
|     {
 | |
|         const BYTE* const istart = (const BYTE*) cSrc;
 | |
|         BYTE* const ostart = (BYTE*) dst;
 | |
|         BYTE* const oend = ostart + dstSize;
 | |
| 
 | |
|         const U32 dtLog = DTable[0];
 | |
|         const HUF_DDescX6* dd = (const HUF_DDescX6*)(DTable+1);
 | |
|         const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(DTable + 1 + ((size_t)1<<(dtLog-1)));
 | |
|         size_t errorCode;
 | |
| 
 | |
|         /* Init */
 | |
|         BIT_DStream_t bitD1;
 | |
|         BIT_DStream_t bitD2;
 | |
|         BIT_DStream_t bitD3;
 | |
|         BIT_DStream_t bitD4;
 | |
|         const size_t length1 = MEM_readLE16(istart);
 | |
|         const size_t length2 = MEM_readLE16(istart+2);
 | |
|         const size_t length3 = MEM_readLE16(istart+4);
 | |
|         size_t length4;
 | |
|         const BYTE* const istart1 = istart + 6;  /* jumpTable */
 | |
|         const BYTE* const istart2 = istart1 + length1;
 | |
|         const BYTE* const istart3 = istart2 + length2;
 | |
|         const BYTE* const istart4 = istart3 + length3;
 | |
|         const size_t segmentSize = (dstSize+3) / 4;
 | |
|         BYTE* const opStart2 = ostart + segmentSize;
 | |
|         BYTE* const opStart3 = opStart2 + segmentSize;
 | |
|         BYTE* const opStart4 = opStart3 + segmentSize;
 | |
|         BYTE* op1 = ostart;
 | |
|         BYTE* op2 = opStart2;
 | |
|         BYTE* op3 = opStart3;
 | |
|         BYTE* op4 = opStart4;
 | |
|         U32 endSignal;
 | |
| 
 | |
|         length4 = cSrcSize - (length1 + length2 + length3 + 6);
 | |
|         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
 | |
|         errorCode = BIT_initDStream(&bitD1, istart1, length1);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD2, istart2, length2);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD3, istart3, length3);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
|         errorCode = BIT_initDStream(&bitD4, istart4, length4);
 | |
|         if (HUF_isError(errorCode)) return errorCode;
 | |
| 
 | |
|         /* 16-64 symbols per loop (4-16 symbols per stream) */
 | |
|         endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
 | |
|         for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; )
 | |
|         {
 | |
|             HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX6_1(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX6_1(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX6_1(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX6_1(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
 | |
|             HUF_DECODE_SYMBOLX6_0(op1, &bitD1);
 | |
|             HUF_DECODE_SYMBOLX6_0(op2, &bitD2);
 | |
|             HUF_DECODE_SYMBOLX6_0(op3, &bitD3);
 | |
|             HUF_DECODE_SYMBOLX6_0(op4, &bitD4);
 | |
| 
 | |
|             endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
 | |
|         }
 | |
| 
 | |
|         /* check corruption */
 | |
|         if (op1 > opStart2) return ERROR(corruption_detected);
 | |
|         if (op2 > opStart3) return ERROR(corruption_detected);
 | |
|         if (op3 > opStart4) return ERROR(corruption_detected);
 | |
|         /* note : op4 supposed already verified within main loop */
 | |
| 
 | |
|         /* finish bitStreams one by one */
 | |
|         HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog);
 | |
|         HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog);
 | |
|         HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog);
 | |
|         HUF_decodeStreamX6(op4, &bitD4, oend,     DTable, dtLog);
 | |
| 
 | |
|         /* check */
 | |
|         endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
 | |
|         if (!endSignal) return ERROR(corruption_detected);
 | |
| 
 | |
|         /* decoded size */
 | |
|         return dstSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 | |
| {
 | |
|     HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
 | |
|     const BYTE* ip = (const BYTE*) cSrc;
 | |
| 
 | |
|     size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
 | |
|     if (HUF_isError(hSize)) return hSize;
 | |
|     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
 | |
|     ip += hSize;
 | |
|     cSrcSize -= hSize;
 | |
| 
 | |
|     return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**********************************/
 | |
| /* Generic decompression selector */
 | |
| /**********************************/
 | |
| 
 | |
| typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
 | |
| static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
 | |
| {
 | |
|     /* single, double, quad */
 | |
|     {{0,0}, {1,1}, {2,2}},  /* Q==0 : impossible */
 | |
|     {{0,0}, {1,1}, {2,2}},  /* Q==1 : impossible */
 | |
|     {{  38,130}, {1313, 74}, {2151, 38}},   /* Q == 2 : 12-18% */
 | |
|     {{ 448,128}, {1353, 74}, {2238, 41}},   /* Q == 3 : 18-25% */
 | |
|     {{ 556,128}, {1353, 74}, {2238, 47}},   /* Q == 4 : 25-32% */
 | |
|     {{ 714,128}, {1418, 74}, {2436, 53}},   /* Q == 5 : 32-38% */
 | |
|     {{ 883,128}, {1437, 74}, {2464, 61}},   /* Q == 6 : 38-44% */
 | |
|     {{ 897,128}, {1515, 75}, {2622, 68}},   /* Q == 7 : 44-50% */
 | |
|     {{ 926,128}, {1613, 75}, {2730, 75}},   /* Q == 8 : 50-56% */
 | |
|     {{ 947,128}, {1729, 77}, {3359, 77}},   /* Q == 9 : 56-62% */
 | |
|     {{1107,128}, {2083, 81}, {4006, 84}},   /* Q ==10 : 62-69% */
 | |
|     {{1177,128}, {2379, 87}, {4785, 88}},   /* Q ==11 : 69-75% */
 | |
|     {{1242,128}, {2415, 93}, {5155, 84}},   /* Q ==12 : 75-81% */
 | |
|     {{1349,128}, {2644,106}, {5260,106}},   /* Q ==13 : 81-87% */
 | |
|     {{1455,128}, {2422,124}, {4174,124}},   /* Q ==14 : 87-93% */
 | |
|     {{ 722,128}, {1891,145}, {1936,146}},   /* Q ==15 : 93-99% */
 | |
| };
 | |
| 
 | |
| typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
 | |
| 
 | |
| size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
 | |
| {
 | |
|     static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, HUF_decompress4X6 };
 | |
|     /* estimate decompression time */
 | |
|     U32 Q;
 | |
|     const U32 D256 = (U32)(dstSize >> 8);
 | |
|     U32 Dtime[3];
 | |
|     U32 algoNb = 0;
 | |
|     int n;
 | |
| 
 | |
|     /* validation checks */
 | |
|     if (dstSize == 0) return ERROR(dstSize_tooSmall);
 | |
|     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
 | |
|     if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
 | |
|     if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
 | |
| 
 | |
|     /* decoder timing evaluation */
 | |
|     Q = (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 since dstSize > cSrcSize */
 | |
|     for (n=0; n<3; n++)
 | |
|         Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
 | |
| 
 | |
|     Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
 | |
| 
 | |
|     if (Dtime[1] < Dtime[0]) algoNb = 1;
 | |
|     if (Dtime[2] < Dtime[algoNb]) algoNb = 2;
 | |
| 
 | |
|     return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
 | |
| 
 | |
|     //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);   /* multi-streams single-symbol decoding */
 | |
|     //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize);   /* multi-streams double-symbols decoding */
 | |
|     //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize);   /* multi-streams quad-symbols decoding */
 | |
| }
 |