zstd/lib/decompress/huf_decompress_amd64.S
2021-09-20 14:46:43 -07:00

562 lines
12 KiB
ArmAsm

# Calling convention:
#
# %rdi contains the first argument: HUF_DecompressAsmArgs*.
# %rbp is'nt maintained (no frame pointer).
# %rsp contains the stack pointer that grows down.
# No red-zone is assumed, only addresses >= %rsp are used.
# All register contents are preserved.
#
# TODO: Support Windows calling convention.
#if !defined(HUF_DISABLE_ASM) && defined(__x86_64__)
.global HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
.global HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
.global _HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop
.global _HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop
.text
# Sets up register mappings for clarity.
# op[], bits[], dtable & ip[0] each get their own register.
# ip[1,2,3] & olimit alias var[].
# %rax is a scratch register.
#define op0 rsi
#define op1 rbx
#define op2 rcx
#define op3 rdi
#define ip0 r8
#define ip1 r9
#define ip2 r10
#define ip3 r11
#define bits0 rbp
#define bits1 rdx
#define bits2 r12
#define bits3 r13
#define dtable r14
#define olimit r15
# var[] aliases ip[1,2,3] & olimit
# ip[1,2,3] are saved every iteration.
# olimit is only used in compute_olimit.
#define var0 r15
#define var1 r9
#define var2 r10
#define var3 r11
# 32-bit var registers
#define vard0 r15d
#define vard1 r9d
#define vard2 r10d
#define vard3 r11d
# Helper macro: args if idx != 4.
#define IF_NOT_4_0(...) __VA_ARGS__
#define IF_NOT_4_1(...) __VA_ARGS__
#define IF_NOT_4_2(...) __VA_ARGS__
#define IF_NOT_4_3(...) __VA_ARGS__
#define IF_NOT_4_4(...)
#define IF_NOT_4_(idx, ...) IF_NOT_4_##idx(__VA_ARGS__)
#define IF_NOT_4(idx, ...) IF_NOT_4_(idx, __VA_ARGS__)
# Calls X(N) for each stream 0, 1, 2, 3.
#define FOR_EACH_STREAM(X) \
X(0); \
X(1); \
X(2); \
X(3)
# Calls X(N, idx) for each stream 0, 1, 2, 3.
#define FOR_EACH_STREAM_WITH_INDEX(X, idx) \
X(0, idx); \
X(1, idx); \
X(2, idx); \
X(3, idx)
# Define both _HUF_* & HUF_* symbols because MacOS
# C symbols are prefixed with '_' & Linux symbols aren't.
_HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop:
# Save all registers - even if they are callee saved for simplicity.
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
# Read HUF_DecompressAsmArgs* args from %rax
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax # argument
push 104(%rax) # ilimit
push 112(%rax) # oend
push %olimit # olimit space
subq $24, %rsp
.L_4X1_compute_olimit:
# Computes how many iterations we can do savely
# %r15, %rax may be clobbered
# rbx, rdx must be saved
# op3 & ip0 mustn't be clobbered
movq %rbx, 0(%rsp)
movq %rdx, 8(%rsp)
movq 32(%rsp), %rax # rax = oend
subq %op3, %rax # rax = oend - op3
# r15 = (oend - op3) / 5
movabsq $-3689348814741910323, %rdx
mulq %rdx
movq %rdx, %r15
shrq $2, %r15
movq %ip0, %rax # rax = ip0
movq 40(%rsp), %rdx # rdx = ilimit
subq %rdx, %rax # rax = ip0 - ilimit
movq %rax, %rbx # rbx = ip0 - ilimit
# rdx = (ip0 - ilimit) / 7
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %rbx
shrq %rbx
addq %rbx, %rdx
shrq $2, %rdx
# r15 = min(%rdx, %r15)
cmpq %rdx, %r15
cmova %rdx, %r15
# r15 = r15 * 5
leaq (%r15, %r15, 4), %r15
# olimit = op3 + r15
addq %op3, %olimit
movq 8(%rsp), %rdx
movq 0(%rsp), %rbx
# If (op3 + 20 > olimit)
movq %op3, %rax # rax = op3
addq $20, %rax # rax = op3 + 20
cmpq %rax, %olimit # op3 + 20 > olimit
jb .L_4X1_exit
# If (ip1 < ip0) go to exit
cmpq %ip0, %ip1
jb .L_4X1_exit
# If (ip2 < ip1) go to exit
cmpq %ip1, %ip2
jb .L_4X1_exit
# If (ip3 < ip2) go to exit
cmpq %ip2, %ip3
jb .L_4X1_exit
# Reads top 11 bits from bits[n]
# Loads dt[bits[n]] into var[n]
#define GET_NEXT_DELT(n) \
movq $53, %var##n; \
shrxq %var##n, %bits##n, %var##n; \
movzwl (%dtable,%var##n,2),%vard##n
# var[n] must contain the DTable entry computed with GET_NEXT_DELT
# Moves var[n] to %rax
# bits[n] <<= var[n] & 63
# op[n][idx] = %rax >> 8
# %ah is a way to access bits [8, 16) of %rax
#define DECODE_FROM_DELT(n, idx) \
movq %var##n, %rax; \
shlxq %var##n, %bits##n, %bits##n; \
movb %ah, idx(%op##n)
# Assumes GET_NEXT_DELT has been called.
# Calls DECODE_FROM_DELT then GET_NEXT_DELT if n < 4
#define DECODE(n, idx) \
DECODE_FROM_DELT(n, idx); \
IF_NOT_4(idx, GET_NEXT_DELT(n))
# // ctz & nbBytes is stored in bits[n]
# // nbBits is stored in %rax
# ctz = CTZ[bits[n]]
# nbBits = ctz & 7
# nbBytes = ctz >> 3
# op[n] += 5
# ip[n] -= nbBytes
# // Note: x86-64 is little-endian ==> no bswap
# bits[n] = MEM_readST(ip[n]) | 1
# bits[n] <<= nbBits
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
andq $7, %rax; \
shrq $3, %bits##n; \
leaq 5(%op##n), %op##n; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlx %rax, %bits##n, %bits##n;
# Store clobbered variables on the stack
movq %olimit, 24(%rsp)
movq %ip1, 0(%rsp)
movq %ip2, 8(%rsp)
movq %ip3, 16(%rsp)
# Call GET_NEXT_DELT for each stream
FOR_EACH_STREAM(GET_NEXT_DELT)
.p2align 6
.L_4X1_loop_body:
# LLVM-MCA-BEGIN decode-4X1
# Decode 5 symbols in each of the 4 streams (20 total)
# Must have called GET_NEXT_DELT for each stream
FOR_EACH_STREAM_WITH_INDEX(DECODE, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 4)
# Load ip[1,2,3] from stack (var[] aliases them)
# ip[] is needed for RELOAD_BITS
# Each will be stored back to the stack after RELOAD
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
# Reload each stream & fetch the next table entry
# to prepare for the next iteration
RELOAD_BITS(0)
GET_NEXT_DELT(0)
RELOAD_BITS(1)
movq %ip1, 0(%rsp)
GET_NEXT_DELT(1)
RELOAD_BITS(2)
movq %ip2, 8(%rsp)
GET_NEXT_DELT(2)
RELOAD_BITS(3)
movq %ip3, 16(%rsp)
GET_NEXT_DELT(3)
# If op3 < olimit: continue the loop
cmp %op3, 24(%rsp)
ja .L_4X1_loop_body
# Reload ip[1,2,3] from stack
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
# Re-compute olimit
jmp .L_4X1_compute_olimit
#undef GET_NEXT_DELT
#undef DECODE_FROM_DELT
#undef DECODE
#undef RELOAD_BITS
# LLVM-MCA-END
.L_4X1_exit:
addq $24, %rsp
# Restore stack (oend & olimit)
pop %rax # olimit
pop %rax # oend
pop %rax # ilimit
pop %rax # arg
# Save ip / op / bits
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
# Restore registers
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
_HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop:
# Save all registers - even if they are callee saved for simplicity.
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax # argument
push %rax # olimit
push 104(%rax) # ilimit
movq 112(%rax), %rax
push %rax # oend3
movq %op3, %rax
push %rax # oend2
movq %op2, %rax
push %rax # oend1
movq %op1, %rax
push %rax # oend0
# Scratch space
subq $8, %rsp
.L_4X2_compute_olimit:
# Computes how many iterations we can do savely
# %r15, %rax may be clobbered
# rdx must be saved
# op[1,2,3,4] & ip0 mustn't be clobbered
movq %rdx, 0(%rsp)
# We can consume up to 7 input bytes each iteration.
movq %ip0, %rax # rax = ip0
movq 40(%rsp), %rdx # rdx = ilimit
subq %rdx, %rax # rax = ip0 - ilimit
movq %rax, %r15 # r15 = ip0 - ilimit
# rdx = rax / 7
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %r15
shrq %r15
addq %r15, %rdx
shrq $2, %rdx
# r15 = (ip0 - ilimit) / 7
movq %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 8(%rsp), %rax # rax = oend0
subq %op0, %rax # rax = oend0 - op0
mulq %rdx
shrq $3, %rdx # rdx = rax / 10
# r15 = min(%rdx, %r15)
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 16(%rsp), %rax # rax = oend1
subq %op1, %rax # rax = oend1 - op1
mulq %rdx
shrq $3, %rdx # rdx = rax / 10
# r15 = min(%rdx, %r15)
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 24(%rsp), %rax # rax = oend2
subq %op2, %rax # rax = oend2 - op2
mulq %rdx
shrq $3, %rdx # rdx = rax / 10
# r15 = min(%rdx, %r15)
cmpq %rdx, %r15
cmova %rdx, %r15
movabsq $-3689348814741910323, %rdx
movq 32(%rsp), %rax # rax = oend3
subq %op3, %rax # rax = oend3 - op3
mulq %rdx
shrq $3, %rdx # rdx = rax / 10
# r15 = min(%rdx, %r15)
cmpq %rdx, %r15
cmova %rdx, %r15
# olimit = op3 + 5 * r15
movq %r15, %rax
leaq (%op3, %rax, 4), %olimit
addq %rax, %olimit
movq 0(%rsp), %rdx
# If (op3 + 10 > olimit)
movq %op3, %rax # rax = op3
addq $10, %rax # rax = op3 + 10
cmpq %rax, %olimit # op3 + 10 > olimit
jb .L_4X2_exit
# If (ip1 < ip0) go to exit
cmpq %ip0, %ip1
jb .L_4X2_exit
# If (ip2 < ip1) go to exit
cmpq %ip1, %ip2
jb .L_4X2_exit
# If (ip3 < ip2) go to exit
cmpq %ip2, %ip3
jb .L_4X2_exit
#define DECODE(n, idx) \
movq %bits##n, %rax; \
shrq $53, %rax; \
movzwl 0(%dtable,%rax,4),%r8d; \
movzbl 2(%dtable,%rax,4),%r15d; \
movzbl 3(%dtable,%rax,4),%eax; \
movw %r8w, (%op##n); \
shlxq %r15, %bits##n, %bits##n; \
addq %rax, %op##n
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
shrq $3, %bits##n; \
andq $7, %rax; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlxq %rax, %bits##n, %bits##n;
movq %olimit, 48(%rsp)
.p2align 6
.L_4X2_loop_body:
# LLVM-MCA-BEGIN decode-4X2
# We clobber r8, so store it on the stack
movq %r8, 0(%rsp)
# Decode 5 symbols from each of the 4 streams (20 symbols total).
FOR_EACH_STREAM_WITH_INDEX(DECODE, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 4)
# Reload r8
movq 0(%rsp), %r8
FOR_EACH_STREAM(RELOAD_BITS)
cmp %op3, 48(%rsp)
ja .L_4X2_loop_body
jmp .L_4X2_compute_olimit
#undef DECODE
#undef RELOAD_BITS
# LLVM-MCA-END
.L_4X2_exit:
addq $8, %rsp
# Restore stack (oend & olimit)
pop %rax # oend0
pop %rax # oend1
pop %rax # oend2
pop %rax # oend3
pop %rax # ilimit
pop %rax # olimit
pop %rax # arg
# Save ip / op / bits
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
# Restore registers
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
#endif