Add generic C versions of the fast decoding loops to serve architectures
that don't have an assembly implementation. Also allow selecting the C
decoding loop over the assembly decoding loop through a zstd
decompression parameter `ZSTD_d_disableHuffmanAssembly`.
I benchmarked on my Intel i9-9900K and my Macbook Air with an M1 processor.
The benchmark command forces zstd to compress without any matches, using
only literals compression, and measures only Huffman decompression speed:
```
zstd -b1e1 --compress-literals --zstd=tlen=131072 silesia.tar
```
The new fast decoding loops outperform the previous implementation uniformly,
but don't beat the x86-64 assembly. Additionally, the fast C decoding loops suffer
from the same stability problems that we've seen in the past, where the assembly
version doesn't. So even though clang gets close to assembly on x86-64, it still
has stability issues.
| Arch | Function | Compiler | Default (MB/s) | Assembly (MB/s) | Fast (MB/s) |
|---------|----------------|--------------|----------------|-----------------|-------------|
| x86-64 | decompress 4X1 | gcc-12.2.0 | 1029.6 | 1308.1 | 1208.1 |
| x86-64 | decompress 4X1 | clang-14.0.6 | 1019.3 | 1305.6 | 1276.3 |
| x86-64 | decompress 4X2 | gcc-12.2.0 | 1348.5 | 1657.0 | 1374.1 |
| x86-64 | decompress 4X2 | clang-14.0.6 | 1027.6 | 1659.9 | 1468.1 |
| aarch64 | decompress 4X1 | clang-12.0.5 | 1081.0 | N/A | 1234.9 |
| aarch64 | decompress 4X2 | clang-12.0.5 | 1270.0 | N/A | 1516.6 |
* Add a function and macro ZSTD_decompressionMargin() that computes the
decompression margin for in-place decompression. The function computes
a tight margin that works in all cases, and the macro computes an upper
bound that will only work if flush isn't used.
* When doing in-place decompression, make sure that our output buffer
doesn't overlap with the input buffer. This ensures that we don't
decide to use the portion of the output buffer that overlaps the input
buffer for temporary memory, like for literals.
* Add a simple unit test.
* Add in-place decompression to the simple_round_trip and
stream_round_trip fuzzers. This should help verify that our margin stays
correct.
At Google we fuzz zstd without ZSTD_MULTITHREAD but we want inputs to be as much as reproducible. It allows us to test new fuzzing methods for our fuzz team internally and have more horsepower to find bugs
```
for f in $(find . \( -path ./.git -o -path ./tests/fuzz/corpora \) -prune -o -type f);
do
sed -i 's/Facebook, Inc\./Meta Platforms, Inc. and affiliates./' $f;
done
```
Fix an instance of `NULL + 0` in `ZSTD_decompressStream()`. Also, improve our
`stream_decompress` fuzzer to pass `NULL` in/out buffers to
`ZSTD_decompressStream()`, and fix 2 issues that were immediately surfaced.
Fixes#3351
Instead of using packed attribute hack, just use aligned attribute. It
improves code generation on armv6 and armv7, and slightly improves code
generation on aarch64. GCC generates identical code to regular aligned
access on ARMv6 for all versions between 4.5 and trunk, except GCC 5
which is buggy and generates the same (bad) code as packed access:
https://gcc.godbolt.org/z/hq37rz7sb
discovered by oss-fuzz
It's a bug in the test itself :
ZSTD_compressBound() as an upper bound of the compress size
only works for data compressed "normally".
But in situations where many flushes are forcefully introduced,
this creates many more blocks,
each of which has a potential to increase the size by 3 bytes.
In extreme cases (lots of small incompressible blocks), the expansion can go beyond ZSTD_compressBound().
This situation is similar when using the CompressSequences() API
with Explicit Block Delimiters.
In which case, each explicit block acts like a deliberate flush.
When employed by a fuzzer, it's possible to generate scenarios like the one described above,
with tons of incompressible blocks of small sizes,
thus going beyond ZSTD_compressBound().
fix : when using Explicit Block Delimiters, use a larger bound, to account for this scenario.
It's a bug in the test itself, in exceptional circumstances (no more space for additional sequence).
There should be enough room for all cases to work fine from now on,
and if not, we have an additional `assert()` to catch that situation.
* Extract out common portion of `lib/Makefile` into `lib/libzstd.mk`.
Most relevantly, the way we find library files.
* Use `lib/libzstd.mk` in the other Makefiles instead of repeating the
same code.
* Add a test `tests/test-variants.sh` that checks that the builds of
`make -C programs allVariants` are correct, and run it in Actions.
* Adds support for ASM files in the CMake build.
The Meson build is not updated because it lists every file in zstd,
and supports ASM off the bat, so the Huffman ASM commit will just add
the ASM file to the list.
The Visual Studios build is not updated because I'm not adding ASM
support to Visual Studios yet.
* Add a Huffman round trip fuzzer
* Fix two minor bugs in Huffman that aren't exposed in zstd
- Incorrect weight comparison (weights are allowed to be equal to
table log).
- HUF_compress1X_usingCTable_internal() can return compressed
size >= source size, so the assert that `cSize <= 65535` isn't
correct, and it needs to be checked instead.
Compress the input twice in the `simple_round_trip` and
`dictionary_round_trip` fuzzers with exactly the same parameters, but
reusing the context. Then ensure that the compressed output is
identical.