AArch64: Add SVE2 path for convertSequences_noRepcodes

Add an 8-way vector length agnostic (VLA) SVE2 code path for
convertSequences_noRepcodes. It works with any SVE vector length.

Relative performance to GCC-13 using: `./fullbench -b18 -l5 enwik5`

               Neon      SVE2
Neoverse-V2   before     after    uplift
GCC-13:      100.000%  103.209%   1.032x
GCC-14:      100.309%  134.872%   1.344x
GCC-15:      100.355%  134.827%   1.343x
Clang-18:    123.614%  128.565%   1.040x
Clang-19:    123.587%  132.984%   1.076x
Clang-20:    123.629%  133.023%   1.075x

               Neon      SVE2
Cortex-A720   before     after    uplift
GCC-13:      100.000%  116.032%   1.160x
GCC-14:       99.700%  116.648%   1.169x
GCC-15:      100.354%  117.047%   1.166x
Clang-18:    100.447%  116.762%   1.162x
Clang-19:    100.454%  116.627%   1.160x
Clang-20:    100.452%  116.649%   1.161x
This commit is contained in:
Arpad Panyik 2025-07-17 07:46:01 +00:00
parent afa96bbf25
commit 2849f3a5d1

View File

@ -7383,6 +7383,155 @@ size_t convertSequences_noRepcodes(SeqDef* dstSeqs, const ZSTD_Sequence* inSeqs,
* but since this implementation is targeting modern systems (>= Sapphire Rapid),
* it's not useful to develop and maintain code for older pre-AVX2 platforms */
#elif defined(ZSTD_ARCH_ARM_SVE2)
/*
* Checks if any active element in a signed 8-bit integer vector is greater
* than zero.
*
* @param g Governing predicate selecting active lanes.
* @param a Input vector of signed 8-bit integers.
*
* @return True if any active element in `a` is > 0, false otherwise.
*/
FORCE_INLINE_TEMPLATE int cmpgtz_any_s8(svbool_t g, svint8_t a)
{
svbool_t ptest = svcmpgt_n_s8(g, a, 0);
return svptest_any(ptest, ptest);
}
size_t convertSequences_noRepcodes(
SeqDef* dstSeqs,
const ZSTD_Sequence* inSeqs,
size_t nbSequences)
{
/* Process the input with `8 * VL / element` lanes. */
const size_t lanes = 8 * svcntb() / sizeof(ZSTD_Sequence);
size_t longLen = 0;
size_t n = 0;
/* SVE permutation depends on the specific definition of target structures. */
ZSTD_STATIC_ASSERT(sizeof(ZSTD_Sequence) == 16);
ZSTD_STATIC_ASSERT(offsetof(ZSTD_Sequence, offset) == 0);
ZSTD_STATIC_ASSERT(offsetof(ZSTD_Sequence, litLength) == 4);
ZSTD_STATIC_ASSERT(offsetof(ZSTD_Sequence, matchLength) == 8);
ZSTD_STATIC_ASSERT(sizeof(SeqDef) == 8);
ZSTD_STATIC_ASSERT(offsetof(SeqDef, offBase) == 0);
ZSTD_STATIC_ASSERT(offsetof(SeqDef, litLength) == 4);
ZSTD_STATIC_ASSERT(offsetof(SeqDef, mlBase) == 6);
if (nbSequences >= lanes) {
const svbool_t ptrue = svptrue_b8();
/* 16-bit of {ZSTD_REP_NUM, 0, -MINMATCH, 0} extended to 32-bit lanes. */
const svuint32_t vaddition = svreinterpret_u32(
svunpklo_s32(svreinterpret_s16(svdup_n_u64(ZSTD_REP_NUM | (((U64)(U16)-MINMATCH) << 32)))));
/* For permutation of 16-bit units: 0, 1, 2, 4, 8, 9, 10, 12, ... */
const svuint16_t vmask = svreinterpret_u16(
svindex_u64(0x0004000200010000, 0x0008000800080008));
/* Upper bytes of `litLength` and `matchLength` will be packed into the
* middle of overflow check vector. */
const svbool_t pmid = svcmpne_n_u8(
ptrue, svreinterpret_u8(svdup_n_u64(0x0000FFFFFFFF0000)), 0);
do {
/* Load `lanes` number of `ZSTD_Sequence` into 8 vectors. */
const svuint32_t vin0 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 0);
const svuint32_t vin1 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 1);
const svuint32_t vin2 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 2);
const svuint32_t vin3 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 3);
const svuint32_t vin4 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 4);
const svuint32_t vin5 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 5);
const svuint32_t vin6 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 6);
const svuint32_t vin7 = svld1_vnum_u32(ptrue, &inSeqs[n].offset, 7);
/* Add {ZSTD_REP_NUM, 0, -MINMATCH, 0} to each structures. */
const svuint16x2_t vadd01 = svcreate2_u16(
svreinterpret_u16(svadd_u32_x(ptrue, vin0, vaddition)),
svreinterpret_u16(svadd_u32_x(ptrue, vin1, vaddition)));
const svuint16x2_t vadd23 = svcreate2_u16(
svreinterpret_u16(svadd_u32_x(ptrue, vin2, vaddition)),
svreinterpret_u16(svadd_u32_x(ptrue, vin3, vaddition)));
const svuint16x2_t vadd45 = svcreate2_u16(
svreinterpret_u16(svadd_u32_x(ptrue, vin4, vaddition)),
svreinterpret_u16(svadd_u32_x(ptrue, vin5, vaddition)));
const svuint16x2_t vadd67 = svcreate2_u16(
svreinterpret_u16(svadd_u32_x(ptrue, vin6, vaddition)),
svreinterpret_u16(svadd_u32_x(ptrue, vin7, vaddition)));
/* Shuffle and pack bytes so each vector contains SeqDef structures. */
const svuint16_t vout01 = svtbl2_u16(vadd01, vmask);
const svuint16_t vout23 = svtbl2_u16(vadd23, vmask);
const svuint16_t vout45 = svtbl2_u16(vadd45, vmask);
const svuint16_t vout67 = svtbl2_u16(vadd67, vmask);
/* Pack the upper 16-bits of 32-bit lanes for overflow check. */
const svuint16_t voverflow01 = svuzp2_u16(svget2_u16(vadd01, 0),
svget2_u16(vadd01, 1));
const svuint16_t voverflow23 = svuzp2_u16(svget2_u16(vadd23, 0),
svget2_u16(vadd23, 1));
const svuint16_t voverflow45 = svuzp2_u16(svget2_u16(vadd45, 0),
svget2_u16(vadd45, 1));
const svuint16_t voverflow67 = svuzp2_u16(svget2_u16(vadd67, 0),
svget2_u16(vadd67, 1));
/* We don't need the whole 16 bits of the overflow part. Only 1 bit
* is needed, so we pack tightly and merge multiple vectors to be
* able to use a single comparison to handle the overflow case.
* However, we also need to handle the possible negative values of
* matchLength parts, so we use signed comparison later. */
const svint8_t voverflow =
svmax_s8_x(pmid,
svtrn1_s8(svreinterpret_s8(voverflow01),
svreinterpret_s8(voverflow23)),
svtrn1_s8(svreinterpret_s8(voverflow45),
svreinterpret_s8(voverflow67)));
/* Store `lanes` number of `SeqDef` structures from 4 vectors. */
svst1_vnum_u32(ptrue, &dstSeqs[n].offBase, 0, svreinterpret_u32(vout01));
svst1_vnum_u32(ptrue, &dstSeqs[n].offBase, 1, svreinterpret_u32(vout23));
svst1_vnum_u32(ptrue, &dstSeqs[n].offBase, 2, svreinterpret_u32(vout45));
svst1_vnum_u32(ptrue, &dstSeqs[n].offBase, 3, svreinterpret_u32(vout67));
/* Check if any enabled lanes of the overflow vector is larger than
* zero, only one such may happen. */
if (UNLIKELY(cmpgtz_any_s8(pmid, voverflow))) {
/* Scalar search for long match is needed because we merged
* multiple overflow bytes with `max`. */
size_t i;
for (i = n; i < n + lanes; i++) {
if (inSeqs[i].matchLength > 65535 + MINMATCH) {
assert(longLen == 0);
longLen = i + 1;
}
if (inSeqs[i].litLength > 65535) {
assert(longLen == 0);
longLen = i + nbSequences + 1;
}
}
}
n += lanes;
} while(n <= nbSequences - lanes);
}
/* Handle remaining elements. */
for (; n < nbSequences; n++) {
dstSeqs[n].offBase = OFFSET_TO_OFFBASE(inSeqs[n].offset);
dstSeqs[n].litLength = (U16)inSeqs[n].litLength;
dstSeqs[n].mlBase = (U16)(inSeqs[n].matchLength - MINMATCH);
/* Check for long length > 65535. */
if (UNLIKELY(inSeqs[n].matchLength > 65535 + MINMATCH)) {
assert(longLen == 0);
longLen = n + 1;
}
if (UNLIKELY(inSeqs[n].litLength > 65535)) {
assert(longLen == 0);
longLen = n + nbSequences + 1;
}
}
return longLen;
}
#elif defined(ZSTD_ARCH_ARM_NEON) && (defined(__aarch64__) || defined(_M_ARM64))
size_t convertSequences_noRepcodes(