mirror of
				https://github.com/nomic-ai/gpt4all.git
				synced 2025-10-31 00:04:39 -04:00 
			
		
		
		
	Major change to the backend that allows for pluggable versions of llama.cpp/ggml. This was squashed merged from dlopen_backend_5 where the history is preserved.
		
			
				
	
	
		
			1031 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1031 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define MPT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
 | |
| #include "mpt_impl.h"
 | |
| 
 | |
| #include "utils.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <map>
 | |
| #include <random>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <iostream>
 | |
| #if defined(_WIN32) && defined(_MSC_VER)
 | |
|     #define WIN32_LEAN_AND_MEAN
 | |
|     #ifndef NOMINMAX
 | |
|         #define NOMINMAX
 | |
|     #endif
 | |
|     #include <windows.h>
 | |
|     #include <io.h>
 | |
|     #include <stdio.h>
 | |
| #else
 | |
|     #include <unistd.h>
 | |
| #endif
 | |
| #include <sstream>
 | |
| #include <thread>
 | |
| #include <unordered_set>
 | |
| #include <regex>
 | |
| #include <ggml.h>
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| const char *modelType_ = "MPT";
 | |
| 
 | |
| static const size_t MB = 1024*1024;
 | |
| }
 | |
| 
 | |
| // default hparams (MPT 7B)
 | |
| struct mpt_hparams {
 | |
|     int32_t n_vocab      = 50432;
 | |
|     int32_t n_ctx        = 2048;
 | |
|     int32_t n_embd       = 4096;
 | |
|     int32_t n_head       = 32;
 | |
|     int32_t n_layer      = 32;
 | |
|     float alibi_bias_max = 8;
 | |
|     float clip_qkv       = 0;
 | |
|     int32_t expand       = 4;
 | |
|     int32_t f16          = 1;
 | |
| };
 | |
| 
 | |
| struct mpt_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * norm_1_w;
 | |
|     struct ggml_tensor * norm_2_w;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * attn_Wqkv_w;
 | |
|     struct ggml_tensor * attn_out_proj_w;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * ffn_up_proj_w;
 | |
|     struct ggml_tensor * ffn_down_proj_w;
 | |
| };
 | |
| 
 | |
| struct mpt_buffer {
 | |
|     uint8_t * addr = NULL;
 | |
|     size_t size = 0;
 | |
| 
 | |
|     void resize(size_t size) {
 | |
|         delete[] addr;
 | |
|         addr = new uint8_t[size];
 | |
|         this->size = size;
 | |
|     }
 | |
| 
 | |
|     ~mpt_buffer() {
 | |
|         fflush(stdout);
 | |
|         delete[] addr;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct mpt_kv_cache {
 | |
|     struct ggml_tensor * k;
 | |
|     struct ggml_tensor * v;
 | |
| 
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     mpt_buffer buf;
 | |
| 
 | |
|     int n; // number of tokens currently in the cache
 | |
| 
 | |
|     ~mpt_kv_cache() {
 | |
|         if (ctx) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct mpt_model {
 | |
|     mpt_hparams hparams;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * norm_f_w;
 | |
| 
 | |
|     struct ggml_tensor * wte; // position embedding
 | |
| 
 | |
|     // mpt does weight tying
 | |
| 
 | |
|     std::vector<mpt_layer> layers;
 | |
| 
 | |
|     struct mpt_kv_cache kv_self;
 | |
|     struct ggml_context * ctx;
 | |
|     std::map<std::string, struct ggml_tensor *> tensors;
 | |
| 
 | |
| 
 | |
|     mpt_buffer buf;
 | |
| 
 | |
|     ~mpt_model() {
 | |
|         if (ctx) {
 | |
|             ggml_free(ctx);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool kv_cache_init(
 | |
|         const struct mpt_hparams & hparams,
 | |
|              struct mpt_kv_cache & cache,
 | |
|                          ggml_type   wtype,
 | |
|                                int   n_ctx) {
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
| 
 | |
|     const int64_t n_mem      = (int64_t)n_layer*n_ctx;
 | |
|     const int64_t n_elements = n_embd*n_mem;
 | |
| 
 | |
|     cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
 | |
| 
 | |
|     struct ggml_init_params params;
 | |
|     params.mem_size   = cache.buf.size;
 | |
|     params.mem_buffer = cache.buf.addr;
 | |
|     params.no_alloc   = false;
 | |
| 
 | |
|     cache.ctx = ggml_init(params);
 | |
| 
 | |
|     if (!cache.ctx) {
 | |
|         fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
 | |
|     cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // load the model's weights from a stream
 | |
| bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & model, gpt_vocab & vocab) {
 | |
|     printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
 | |
| 
 | |
|     // verify magic
 | |
|     {
 | |
|         uint32_t magic;
 | |
|         fin.read((char *) &magic, sizeof(magic));
 | |
|         if (magic != 0x67676d6d) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // load hparams
 | |
|     {
 | |
|         auto & hparams = model.hparams;
 | |
| 
 | |
|         fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
 | |
|         fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
 | |
|         fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
 | |
|         fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
 | |
|         fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
 | |
|         fin.read((char *) &hparams.alibi_bias_max,  sizeof(hparams.alibi_bias_max));
 | |
|         fin.read((char *) &hparams.clip_qkv,  sizeof(hparams.clip_qkv));
 | |
|         fin.read((char *) &hparams.f16,   sizeof(hparams.f16));
 | |
| 
 | |
|         printf("%s: n_vocab        = %d\n", __func__, hparams.n_vocab);
 | |
|         printf("%s: n_ctx          = %d\n", __func__, hparams.n_ctx);
 | |
|         printf("%s: n_embd         = %d\n", __func__, hparams.n_embd);
 | |
|         printf("%s: n_head         = %d\n", __func__, hparams.n_head);
 | |
|         printf("%s: n_layer        = %d\n", __func__, hparams.n_layer);
 | |
|         printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max);
 | |
|         printf("%s: clip_qkv       = %f\n", __func__, hparams.clip_qkv);
 | |
|         printf("%s: ftype          = %d\n", __func__, hparams.f16);
 | |
|     }
 | |
| 
 | |
|     // load vocab
 | |
|     {
 | |
|         int32_t n_vocab = model.hparams.n_vocab;
 | |
|         fin.read((char *) &n_vocab, sizeof(n_vocab));
 | |
| 
 | |
|         if (n_vocab != model.hparams.n_vocab) {
 | |
|             fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
 | |
|                     __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         std::string word;
 | |
|         for (int i = 0; i < n_vocab; i++) {
 | |
|             uint32_t len;
 | |
|             fin.read((char *) &len, sizeof(len));
 | |
|             bool special = false;
 | |
|             if (len & (1<<31)) {
 | |
|                 len = len &~ (1<<31);
 | |
|                 special = true;
 | |
|             }
 | |
| 
 | |
|             if (len > 0) {
 | |
|                 word.resize(len);
 | |
|                 fin.read((char *) word.data(), len);
 | |
|                 vocab.token_to_id[word] = i;
 | |
|                 vocab.id_to_token[i] = word;
 | |
|             }
 | |
| 
 | |
|             if(special) {
 | |
|                 vocab.add_special_token(word);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // for the big tensors, we have the option to store the data in 16-bit floats or quantized
 | |
|     // in order to save memory and also to speed up the computation
 | |
|     ggml_type wtype = GGML_TYPE_COUNT;
 | |
|     switch (model.hparams.f16) {
 | |
|         case 0: wtype = GGML_TYPE_F32;  break;
 | |
|         case 1: wtype = GGML_TYPE_F16;  break;
 | |
|         case 2: wtype = GGML_TYPE_Q4_0; break;
 | |
|         case 3: wtype = GGML_TYPE_Q4_1; break;
 | |
|         case 5: wtype = GGML_TYPE_Q4_2; break;
 | |
|         default:
 | |
|                 {
 | |
|                     fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
 | |
|                             __func__, fname.c_str(), model.hparams.f16);
 | |
|                     return false;
 | |
|                 }
 | |
|     }
 | |
| 
 | |
|     auto & ctx = model.ctx;
 | |
| 
 | |
|     size_t ctx_size = 0;
 | |
| 
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_ctx   = hparams.n_ctx;
 | |
|         const int n_vocab = hparams.n_vocab;
 | |
|         const int expand  = hparams.expand;
 | |
| 
 | |
| 
 | |
|         ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_w
 | |
| 
 | |
|         ctx_size += n_embd*n_vocab*ggml_type_sizef(GGML_TYPE_F32); // wte
 | |
| 
 | |
|         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // norm_1_w
 | |
|         ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // norm_2_w
 | |
| 
 | |
|         ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // attn_Wqkv_w
 | |
|         ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // attn_out_proj_w
 | |
| 
 | |
|         ctx_size += n_layer*(expand*n_embd*n_embd*ggml_type_sizef(wtype));  // ffn_up_proj_w
 | |
|         ctx_size += n_layer*(expand*n_embd*n_embd*ggml_type_sizef(wtype)); // ffn_down_proj_w
 | |
| 
 | |
|         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k
 | |
|         ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v
 | |
| 
 | |
|         // TODO probably less now?
 | |
|         ctx_size += (5 + 10*n_layer)*256; // object overhead
 | |
| 
 | |
|         printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
 | |
|     }
 | |
| 
 | |
|     // create the ggml context
 | |
|     {
 | |
|         struct ggml_init_params params = {
 | |
|             .mem_size   = ctx_size,
 | |
|             .mem_buffer = NULL,
 | |
|             .no_alloc   = false,
 | |
|         };
 | |
| 
 | |
|         model.ctx = ggml_init(params);
 | |
|         if (!model.ctx) {
 | |
|             fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // prepare memory for the weights
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
| 
 | |
|         const int n_embd  = hparams.n_embd;
 | |
|         const int n_layer = hparams.n_layer;
 | |
|         const int n_vocab = hparams.n_vocab;
 | |
|         const int expand  = hparams.expand;
 | |
| 
 | |
|         model.layers.resize(n_layer);
 | |
| 
 | |
|         model.wte    = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | |
|         model.norm_f_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|         // map by name
 | |
|         model.tensors["transformer.wte.weight"] = model.wte;
 | |
|         model.tensors["transformer.norm_f.weight"] = model.norm_f_w;
 | |
| 
 | |
|         for (int i = 0; i < n_layer; ++i) {
 | |
|             auto & layer = model.layers[i];
 | |
| 
 | |
|             layer.norm_1_w        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
|             layer.norm_2_w        = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|             layer.attn_Wqkv_w     = ggml_new_tensor_2d(ctx, wtype,        n_embd, n_embd * 3);
 | |
|             layer.attn_out_proj_w = ggml_new_tensor_2d(ctx, wtype,        n_embd, n_embd);
 | |
|             layer.ffn_up_proj_w   = ggml_new_tensor_2d(ctx, wtype,        n_embd, expand*n_embd);
 | |
|             layer.ffn_down_proj_w = ggml_new_tensor_2d(ctx, wtype, expand*n_embd, n_embd);
 | |
| 
 | |
|             // map by name
 | |
|             model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"]        = layer.norm_1_w;
 | |
|             model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"]        = layer.norm_2_w;
 | |
|             model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"]     = layer.attn_Wqkv_w;
 | |
|             model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.attn_out_proj_w;
 | |
| 
 | |
|             model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"]   = layer.ffn_up_proj_w;
 | |
|             model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj_w;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // key + value memory
 | |
|     {
 | |
|         const auto & hparams = model.hparams;
 | |
|         if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) {
 | |
|             fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
 | |
|             ggml_free(ctx);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v);
 | |
|         printf("%s: kv self size  = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
 | |
|     }
 | |
| 
 | |
|     // load weights
 | |
|     {
 | |
|         int n_tensors = 0;
 | |
|         size_t total_size = 0;
 | |
| 
 | |
|         printf("%s: ", __func__);
 | |
| 
 | |
|         while (true) {
 | |
|             int32_t n_dims;
 | |
|             int32_t length;
 | |
|             int32_t ttype;
 | |
| 
 | |
|             fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | |
|             fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 | |
|             fin.read(reinterpret_cast<char *>(&ttype),  sizeof(ttype));
 | |
| 
 | |
|             if (fin.eof()) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             int32_t nelements = 1;
 | |
|             int32_t ne[2] = { 1, 1 };
 | |
|             for (int i = 0; i < n_dims; ++i) {
 | |
|                 fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | |
|                 nelements *= ne[i];
 | |
|             }
 | |
| 
 | |
|             std::string name(length, 0);
 | |
|             fin.read(&name[0], length);
 | |
| 
 | |
|             if (model.tensors.find(name.data()) == model.tensors.end()) {
 | |
|                 fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             auto tensor = model.tensors[name.data()];
 | |
|             if (ggml_nelements(tensor) != nelements) {
 | |
|                 fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
 | |
|                 fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | |
|                         __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             // for debugging
 | |
|             if (0) {
 | |
|                 printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
 | |
|             }
 | |
| 
 | |
|             const size_t bpe = ggml_type_size(ggml_type(ttype));
 | |
| 
 | |
|             if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
 | |
|                 fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 | |
|                         __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
 | |
| 
 | |
|             //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ttype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
 | |
|             total_size += ggml_nbytes(tensor);
 | |
|             if (++n_tensors % 8 == 0) {
 | |
|                 printf(".");
 | |
|                 fflush(stdout);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         printf(" done\n");
 | |
| 
 | |
|         printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // load the model's weights from a file path
 | |
| bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab) {
 | |
| 
 | |
|     auto fin = std::ifstream(fname, std::ios::binary);
 | |
|     if (!fin) {
 | |
|         fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     bool loaded = mpt_model_load(fname, fin, model, vocab);
 | |
|     fin.close();
 | |
|     return loaded;
 | |
| }
 | |
| 
 | |
| bool mpt_eval(
 | |
|         mpt_model & model,
 | |
|         const int n_threads,
 | |
|         const int n_past,
 | |
|         const std::vector<int>           & embd_inp,
 | |
|               std::vector<float>         & embd_w,
 | |
|               size_t                     & mem_per_token) {
 | |
|     const int N = embd_inp.size();
 | |
| 
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     const int n_embd  = hparams.n_embd;
 | |
|     const int n_layer = hparams.n_layer;
 | |
|     const int n_ctx   = hparams.n_ctx;
 | |
|     const int n_head  = hparams.n_head;
 | |
|     const int n_vocab = hparams.n_vocab;
 | |
| 
 | |
|     const size_t init_buf_size = 1024u*MB;
 | |
|     if (!model.buf.addr || model.buf.size < init_buf_size)
 | |
|         model.buf.resize(init_buf_size);
 | |
| 
 | |
|     if (mem_per_token > 0 && mem_per_token*N > model.buf.size) {
 | |
|         const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
 | |
|         // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.buf.size, buf_size_new);
 | |
| 
 | |
|         // reallocate
 | |
|         model.buf.resize(buf_size_new);
 | |
|         if (model.buf.addr == nullptr) {
 | |
|             fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.buf.size);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         .mem_size   = model.buf.size,
 | |
|         .mem_buffer = model.buf.addr,
 | |
|         .no_alloc = false
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx0 = ggml_init(params);
 | |
|     struct ggml_cgraph gf = {};
 | |
|     gf.n_threads = n_threads;
 | |
| 
 | |
|     struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | |
|     memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
 | |
| 
 | |
|     // wte
 | |
|     struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
| 
 | |
|         struct ggml_tensor * inpSA = inpL;
 | |
|         struct ggml_tensor * cur = inpSA;
 | |
|         // self-attention
 | |
|         {
 | |
| 
 | |
|             // norm1
 | |
|             cur = ggml_norm(ctx0, cur);
 | |
|             cur = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model.layers[il].norm_1_w, cur),
 | |
|                     cur);
 | |
|             // compute QKV
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].attn_Wqkv_w,
 | |
|                     cur);
 | |
| 
 | |
|             // TODO: clip_qkv
 | |
|             struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*ggml_element_size(cur)*n_embd));
 | |
|             struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*ggml_element_size(cur)*n_embd));
 | |
|             struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*ggml_element_size(cur)*n_embd));
 | |
| 
 | |
|             // TODO: qk_ln? (seems to be False in MPT-7B configs)
 | |
|             {
 | |
|                 Vcur = ggml_transpose(ctx0, Vcur);
 | |
| 
 | |
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past));
 | |
|                 struct ggml_tensor * v = ggml_view_2d(ctx0, model.kv_self.v, N, n_embd,
 | |
|                                         (   n_ctx)*ggml_element_size(model.kv_self.v),
 | |
|                                         (il*n_ctx)*ggml_element_size(model.kv_self.v)*n_embd + n_past*ggml_element_size(model.kv_self.v));
 | |
| 
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 | |
|                 ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 | |
|             }
 | |
|             // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, N),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_permute(ctx0,
 | |
|                         ggml_reshape_3d(ctx0,
 | |
|                             ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd),
 | |
|                             n_embd/n_head, n_head, n_past + N),
 | |
|                         0, 2, 1, 3);
 | |
| 
 | |
|             // K * Q
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
| 
 | |
|             // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | |
|             struct ggml_tensor * KQ_scaled =
 | |
|                 ggml_scale(ctx0,
 | |
|                         KQ,
 | |
|                         ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
 | |
|                         );
 | |
| 
 | |
| 
 | |
|             // Alibi
 | |
|             struct ggml_tensor * KQ_scaled_biased = ggml_alibi(ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head);
 | |
| 
 | |
|             // KQ_masked = mask_past(KQ_scaled)
 | |
|             struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_biased, n_past);
 | |
| 
 | |
|             // KQ = soft_max(KQ_masked)
 | |
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | |
| 
 | |
|             // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_view_3d(ctx0, model.kv_self.v,
 | |
|                         n_past + N, n_embd/n_head, n_head,
 | |
|                         n_ctx*ggml_element_size(model.kv_self.v),
 | |
|                         n_ctx*ggml_element_size(model.kv_self.v)*n_embd/n_head,
 | |
|                         il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd);
 | |
| 
 | |
|             // KQV = transpose(V) * KQ_soft_max
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
 | |
| 
 | |
|             // KQV_merged = KQV.permute(0, 2, 1, 3)
 | |
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             // cur = KQV_merged.contiguous().view(n_embd, N)
 | |
|             cur = ggml_cpy(ctx0,
 | |
|                     KQV_merged,
 | |
|                     ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | |
| 
 | |
|             // projection (no bias)
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].attn_out_proj_w,
 | |
|                     cur);
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // residual
 | |
|         struct ggml_tensor * resSA = ggml_add(ctx0, cur, inpSA);
 | |
|         // feed-forward network
 | |
|         {
 | |
|             cur = resSA;
 | |
|             // norm2
 | |
|             cur = ggml_norm(ctx0, cur);
 | |
|             cur = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model.layers[il].norm_2_w, cur),
 | |
|                     cur);
 | |
|             // ffn
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].ffn_up_proj_w,
 | |
|                     cur);
 | |
|             cur = ggml_gelu(ctx0, cur);
 | |
|             cur = ggml_mul_mat(ctx0,
 | |
|                     model.layers[il].ffn_down_proj_w,
 | |
|                     cur);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         // self-attention + FF
 | |
|         inpL = ggml_add(ctx0, cur, resSA);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * out = inpL;
 | |
|     // -> logits
 | |
|     {
 | |
|         out = ggml_norm(ctx0, out);
 | |
|         out = ggml_mul(ctx0,
 | |
|                     ggml_repeat(ctx0, model.norm_f_w, out),
 | |
|                     out);
 | |
|         out = ggml_mul_mat(ctx0, model.wte, out);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // run the computation
 | |
|     ggml_build_forward_expand(&gf, out);
 | |
|     ggml_graph_compute       (ctx0, &gf);
 | |
| 
 | |
| 
 | |
|     // return result for just the last token
 | |
|     embd_w.resize(n_vocab);
 | |
|     memcpy(embd_w.data(), (float *) ggml_get_data(out) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
 | |
| 
 | |
|     if (mem_per_token == 0) {
 | |
|         mem_per_token = ggml_used_mem(ctx0)/N;
 | |
|     }
 | |
|     //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
 | |
| 
 | |
|     ggml_free(ctx0);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define MPT_MAX_RNG_STATE 64*1024
 | |
| 
 | |
| size_t mpt_get_state_size(const mpt_model &model)
 | |
| {
 | |
|     // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
 | |
|     // for reference, std::mt19937(1337) serializes to 6701 bytes.
 | |
|     const size_t s_rng_size        = sizeof(size_t);
 | |
|     const size_t s_rng             = MPT_MAX_RNG_STATE;
 | |
|     const size_t s_kv_size         = sizeof(size_t);
 | |
|     const size_t s_kv_ntok         = sizeof(int);
 | |
|     const size_t s_kv              = model.kv_self.buf.size;
 | |
|     const size_t s_total = (
 | |
|         + s_rng_size
 | |
|         + s_rng
 | |
|         + s_kv_size
 | |
|         + s_kv_ntok
 | |
|         + s_kv
 | |
|     );
 | |
|     fflush(stdout);
 | |
|     return s_total;
 | |
| }
 | |
| 
 | |
| size_t mpt_copy_state_data(const mpt_model &model, const std::mt19937 &rng, uint8_t *dest)
 | |
| {
 | |
|     uint8_t * out = dest;
 | |
|     fflush(stdout);
 | |
|     // copy rng
 | |
|     {
 | |
|         std::stringstream rng_ss;
 | |
|         rng_ss << rng;
 | |
| 
 | |
|         const size_t rng_size = rng_ss.str().size();
 | |
|         char rng_buf[MPT_MAX_RNG_STATE];
 | |
| 
 | |
|         memset(&rng_buf[0], 0, MPT_MAX_RNG_STATE);
 | |
|         memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
 | |
| 
 | |
|         memcpy(out, &rng_size,   sizeof(rng_size));   out += sizeof(rng_size);
 | |
|         memcpy(out, &rng_buf[0], MPT_MAX_RNG_STATE); out += MPT_MAX_RNG_STATE;
 | |
|     }
 | |
| 
 | |
|     // copy kv cache
 | |
|     {
 | |
|         const size_t kv_size = model.kv_self.buf.size;
 | |
|         const int    kv_ntok = model.kv_self.n;
 | |
| 
 | |
|         memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
 | |
|         memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
 | |
| 
 | |
|         if (kv_size) {
 | |
|             memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const size_t written  = out - dest;
 | |
|     assert(written == mpt_get_state_size(model));
 | |
|     fflush(stdout);
 | |
|     return written;
 | |
| }
 | |
| 
 | |
| size_t mpt_set_state_data(mpt_model *model, std::mt19937 *rng, const uint8_t *src)
 | |
| {
 | |
|     const uint8_t * in = src;
 | |
| 
 | |
|     // set rng
 | |
|     {
 | |
|         size_t rng_size;
 | |
|         char   rng_buf[MPT_MAX_RNG_STATE];
 | |
| 
 | |
|         memcpy(&rng_size,   in, sizeof(rng_size));    in += sizeof(rng_size);
 | |
|         memcpy(&rng_buf[0], in, MPT_MAX_RNG_STATE); in += MPT_MAX_RNG_STATE;
 | |
| 
 | |
|         std::stringstream rng_ss;
 | |
|         rng_ss.str(std::string(&rng_buf[0], rng_size));
 | |
|         rng_ss >> *rng;
 | |
| 
 | |
|         assert(rng_ss.fail() == false);
 | |
|     }
 | |
| 
 | |
|     // set kv cache
 | |
|     {
 | |
|         size_t kv_size;
 | |
|         int kv_ntok;
 | |
| 
 | |
|         memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
 | |
|         memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
 | |
| 
 | |
|         if (kv_size) {
 | |
|             assert(model->kv_self.buf.size == kv_size);
 | |
| 
 | |
|             void * k_data = model->kv_self.k->data; // remember data pointers
 | |
|             void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
 | |
| 
 | |
|             memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size;
 | |
| 
 | |
|             model->kv_self.k->data = k_data; // restore correct data pointers
 | |
|             model->kv_self.v->data = v_data;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         model->kv_self.n = kv_ntok;
 | |
|     }
 | |
| 
 | |
|     const size_t nread    = in - src;
 | |
|     assert(nread == mpt_get_state_size(*model));
 | |
|     fflush(stdout);
 | |
|     return nread;
 | |
| }
 | |
| 
 | |
| struct MPTPrivate {
 | |
|     const std::string modelPath;
 | |
|     bool modelLoaded;
 | |
|     gpt_vocab vocab;
 | |
|     mpt_model *model = nullptr;
 | |
|     int64_t n_threads = 0;
 | |
|     size_t mem_per_token = 0;
 | |
|     std::mt19937 rng;
 | |
|     bool has_im_end = false;
 | |
| };
 | |
| 
 | |
| MPT::MPT()
 | |
|     : d_ptr(new MPTPrivate) {
 | |
|     modelType = modelType_;
 | |
| 
 | |
|     d_ptr->model = new mpt_model;
 | |
|     d_ptr->modelLoaded = false;
 | |
| }
 | |
| 
 | |
| bool MPT::loadModel(const std::string &modelPath) {
 | |
|     std::mt19937 rng(time(NULL));
 | |
|     d_ptr->rng = rng;
 | |
| 
 | |
|     auto fin = std::ifstream(modelPath, std::ios::binary);
 | |
| 
 | |
|     // load the model
 | |
|     if (!mpt_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab)) {
 | |
|         std::cerr << "GPT-J ERROR: failed to load model from " <<  modelPath;
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
 | |
|     d_ptr->modelLoaded = true;
 | |
|     d_ptr->has_im_end = d_ptr->vocab.token_to_id.find("<|im_end|>") != d_ptr->vocab.token_to_id.end();
 | |
|     fflush(stdout);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void MPT::setThreadCount(int32_t n_threads) {
 | |
|     d_ptr->n_threads = n_threads;
 | |
| }
 | |
| 
 | |
| int32_t MPT::threadCount() const
 | |
| {
 | |
|     return d_ptr->n_threads;
 | |
| }
 | |
| 
 | |
| MPT::~MPT()
 | |
| {
 | |
|     delete d_ptr->model;
 | |
| }
 | |
| 
 | |
| bool MPT::isModelLoaded() const
 | |
| {
 | |
|     return d_ptr->modelLoaded;
 | |
| }
 | |
| 
 | |
| size_t MPT::stateSize() const
 | |
| {
 | |
|     return mpt_get_state_size(*d_ptr->model);
 | |
| }
 | |
| 
 | |
| size_t MPT::saveState(uint8_t *dest) const
 | |
| {
 | |
|     return mpt_copy_state_data(*d_ptr->model, d_ptr->rng, dest);
 | |
| }
 | |
| 
 | |
| size_t MPT::restoreState(const uint8_t *src)
 | |
| {
 | |
|     return mpt_set_state_data(d_ptr->model, &d_ptr->rng, src);
 | |
| }
 | |
| 
 | |
| void MPT::prompt(const std::string &prompt,
 | |
|         std::function<bool(int32_t)> promptCallback,
 | |
|         std::function<bool(int32_t, const std::string&)> responseCallback,
 | |
|         std::function<bool(bool)> recalculateCallback,
 | |
|         PromptContext &promptCtx) {
 | |
| 
 | |
|     if (!isModelLoaded()) {
 | |
|         std::cerr << "GPT-J ERROR: prompt won't work with an unloaded model!\n";
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<int> embd_inp = gpt_tokenize(d_ptr->vocab, prompt);
 | |
| 
 | |
|     // save the context size
 | |
|     promptCtx.n_ctx = d_ptr->model->hparams.n_ctx;
 | |
| 
 | |
|     if ((int) embd_inp.size() > promptCtx.n_ctx - 4) {
 | |
|         responseCallback(-1, "ERROR: The prompt size exceeds the context window size and cannot be processed.");
 | |
|         std::cerr << "GPT-J ERROR: The prompt is" << embd_inp.size() <<
 | |
|             "tokens and the context window is" << promptCtx.n_ctx << "!\n";
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     promptCtx.n_predict = std::min(promptCtx.n_predict, promptCtx.n_ctx - (int) embd_inp.size());
 | |
|     promptCtx.n_past = std::min(promptCtx.n_past, promptCtx.n_ctx);
 | |
| 
 | |
|     // determine the required inference memory per token:
 | |
|     static bool initialized = false;
 | |
|     static std::vector<int> p_instruct;
 | |
|     static std::vector<int> r_instruct;
 | |
|     if (!initialized) {
 | |
|          mpt_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, promptCtx.logits,
 | |
|             d_ptr->mem_per_token);
 | |
|         initialized = true;
 | |
|     }
 | |
| 
 | |
|     // process the prompt in batches
 | |
|     size_t i = 0;
 | |
|     while (i < embd_inp.size()) {
 | |
|         size_t batch_end = std::min(i + promptCtx.n_batch, embd_inp.size());
 | |
|         std::vector<int> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
 | |
| 
 | |
|         // Check if the context has run out...
 | |
|         if (promptCtx.n_past + int32_t(batch.size()) > promptCtx.n_ctx) {
 | |
|             const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
 | |
|             // Erase the first percentage of context from the tokens...
 | |
|             std::cerr << "MPT: reached the end of the context window so resizing\n";
 | |
|             promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
 | |
|             promptCtx.n_past = promptCtx.tokens.size();
 | |
|             recalculateContext(promptCtx, recalculateCallback);
 | |
|             assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
 | |
|         }
 | |
| 
 | |
|         if (!mpt_eval(*d_ptr->model, d_ptr->n_threads, promptCtx.n_past, batch, promptCtx.logits,
 | |
|             d_ptr->mem_per_token)) {
 | |
|             std::cerr << "GPT-J ERROR: Failed to process prompt\n";
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         size_t tokens = batch_end - i;
 | |
|         for (size_t t = 0; t < tokens; ++t) {
 | |
|             if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
 | |
|                 promptCtx.tokens.erase(promptCtx.tokens.begin());
 | |
|             promptCtx.tokens.push_back(batch.at(t));
 | |
|             if (!promptCallback(batch.at(t)))
 | |
|                 return;
 | |
|         }
 | |
|         promptCtx.n_past += batch.size();
 | |
|         i = batch_end;
 | |
|     }
 | |
| 
 | |
|     std::string cachedResponse;
 | |
|     std::vector<int> cachedTokens;
 | |
|     std::unordered_set<std::string> reversePrompts
 | |
|         = { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant", "### Context" };
 | |
| 
 | |
|     // predict next tokens
 | |
|     for (int i = 0; i < promptCtx.n_predict; i++) {
 | |
| 
 | |
|         // sample next token
 | |
|         const int n_vocab = d_ptr->model->hparams.n_vocab;
 | |
|         int id = 0;
 | |
|         {
 | |
|             const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
 | |
|             id = gpt_sample_top_k_top_p(n_vocab,
 | |
|                 promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
 | |
|                 n_prev_toks,
 | |
|                 promptCtx.logits,
 | |
|                 promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
 | |
|                 promptCtx.repeat_penalty,
 | |
|                 d_ptr->rng);
 | |
|         }
 | |
| 
 | |
|         // Check if the context has run out...
 | |
|         if (promptCtx.n_past + 1 > promptCtx.n_ctx) {
 | |
|             const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
 | |
|             // Erase the first percentage of context from the tokens...
 | |
|             std::cerr << "MPT: reached the end of the context window so resizing\n";
 | |
|             promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
 | |
|             promptCtx.n_past = promptCtx.tokens.size();
 | |
|             recalculateContext(promptCtx, recalculateCallback);
 | |
|             assert(promptCtx.n_past + 1 <= promptCtx.n_ctx);
 | |
|         }
 | |
| 
 | |
|         if (!mpt_eval(*d_ptr->model, d_ptr->n_threads, promptCtx.n_past, { id }, promptCtx.logits,
 | |
|             d_ptr->mem_per_token)) {
 | |
|             std::cerr << "GPT-J ERROR: Failed to predict next token\n";
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         promptCtx.n_past += 1;
 | |
|         // display tex
 | |
|         // mpt-7b-chat has special token for end
 | |
|         if (d_ptr->has_im_end && id == d_ptr->vocab.token_to_id["<|im_end|>"])
 | |
|             return;
 | |
| 
 | |
|         if (id == 0 /*end of text*/)
 | |
|             return;
 | |
| 
 | |
|         const std::string str = d_ptr->vocab.id_to_token[id];
 | |
| 
 | |
|         // Check if the provided str is part of our reverse prompts
 | |
|         bool foundPartialReversePrompt = false;
 | |
|         const std::string completed = cachedResponse + str;
 | |
|         if (reversePrompts.find(completed) != reversePrompts.end())
 | |
|             return;
 | |
| 
 | |
|         // Check if it partially matches our reverse prompts and if so, cache
 | |
|         for (auto s : reversePrompts) {
 | |
|             if (s.compare(0, completed.size(), completed) == 0) {
 | |
|                 foundPartialReversePrompt = true;
 | |
|                 cachedResponse = completed;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Regardless the token gets added to our cache
 | |
|         cachedTokens.push_back(id);
 | |
| 
 | |
|         // Continue if we have found a partial match
 | |
|         if (foundPartialReversePrompt)
 | |
|             continue;
 | |
| 
 | |
|         // Empty the cache
 | |
|         for (auto t : cachedTokens) {
 | |
|             if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
 | |
|                 promptCtx.tokens.erase(promptCtx.tokens.begin());
 | |
|             promptCtx.tokens.push_back(t);
 | |
|             if (!responseCallback(t, d_ptr->vocab.id_to_token[t]))
 | |
|                 return;
 | |
|         }
 | |
|         cachedTokens.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void MPT::recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate)
 | |
| {
 | |
|     size_t i = 0;
 | |
|     promptCtx.n_past = 0;
 | |
|     while (i < promptCtx.tokens.size()) {
 | |
|         size_t batch_end = std::min(i + promptCtx.n_batch, promptCtx.tokens.size());
 | |
|         std::vector<int> batch(promptCtx.tokens.begin() + i, promptCtx.tokens.begin() + batch_end);
 | |
| 
 | |
|         assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
 | |
| 
 | |
|         if (!mpt_eval(*d_ptr->model, d_ptr->n_threads, promptCtx.n_past, batch, promptCtx.logits,
 | |
|             d_ptr->mem_per_token)) {
 | |
|             std::cerr << "MPT ERROR: Failed to process prompt\n";
 | |
|             goto stop_generating;
 | |
|         }
 | |
|         promptCtx.n_past += batch.size();
 | |
|         if (!recalculate(true))
 | |
|             goto stop_generating;
 | |
|         i = batch_end;
 | |
|     }
 | |
|     assert(promptCtx.n_past == int32_t(promptCtx.tokens.size()));
 | |
| 
 | |
| stop_generating:
 | |
|     recalculate(false);
 | |
| }
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| #define DLL_EXPORT __declspec(dllexport)
 | |
| #else
 | |
| #define DLL_EXPORT __attribute__ ((visibility ("default")))
 | |
| #endif
 | |
| 
 | |
| extern "C" {
 | |
| DLL_EXPORT bool is_g4a_backend_model_implementation() {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| DLL_EXPORT const char *get_model_type() {
 | |
|     return modelType_;
 | |
| }
 | |
| 
 | |
| DLL_EXPORT const char *get_build_variant() {
 | |
|     return GGML_BUILD_VARIANT;
 | |
| }
 | |
| 
 | |
| DLL_EXPORT bool magic_match(std::istream& f) {
 | |
|     uint32_t magic = 0;
 | |
|     f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
 | |
|     return magic == 0x67676d6d;
 | |
| }
 | |
| 
 | |
| DLL_EXPORT LLModel *construct() {
 | |
|     return new MPT;
 | |
| }
 | |
| }
 |