Compare commits

..

No commits in common. "main" and "v2.8.0" have entirely different histories.
main ... v2.8.0

450 changed files with 23530 additions and 54781 deletions

View File

@ -1,17 +1,13 @@
version: 2.1
setup: true
orbs:
path-filtering: circleci/path-filtering@1.3.0
path-filtering: circleci/path-filtering@0.0.1
workflows:
version: 2.1
generate-config:
jobs:
- path-filtering/filter:
filters:
tags:
only:
- /.*/
base-revision: main
config-path: .circleci/continue_config.yml
mapping: |
@ -19,4 +15,6 @@ workflows:
gpt4all-backend/.* run-all-workflows true
gpt4all-bindings/python/.* run-python-workflow true
gpt4all-bindings/typescript/.* run-ts-workflow true
gpt4all-bindings/csharp/.* run-csharp-workflow true
gpt4all-chat/.* run-chat-workflow true
.* run-default-workflow true

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
import re
import sys
ID_REG = r"id: (.*)"
def main() -> None:
notary_log = sys.argv[1]
with open(notary_log, "r") as f:
notary_output = f.read()
id_m = re.search(ID_REG, notary_output)
if id_m:
print(id_m.group(1))
else:
raise RuntimeError("Unable to parse ID from notarization logs")
if __name__ == "__main__":
main()

View File

@ -1,3 +1,3 @@
[codespell]
ignore-words-list = blong, afterall, assistent, crasher, requestor
skip = ./.git,./gpt4all-chat/translations,*.pdf,*.svg,*.lock
ignore-words-list = blong, afterall, som, assistent, crasher
skip = .git,*.pdf,*.svg,*.lock

View File

@ -14,6 +14,6 @@ jobs:
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Codespell
uses: codespell-project/actions-codespell@v2

2
.gitignore vendored
View File

@ -181,8 +181,6 @@ CMakeLists.txt.user
gpt4all-chat/models/*
build_*
build-*
cmake-build-*
/gpt4all-chat/tests/python/config.py
# IntelliJ
.idea/

23
.gitmodules vendored
View File

@ -1,25 +1,4 @@
[submodule "llama.cpp-mainline"]
path = gpt4all-backend/deps/llama.cpp-mainline
path = gpt4all-backend/llama.cpp-mainline
url = https://github.com/nomic-ai/llama.cpp.git
branch = master
[submodule "gpt4all-chat/usearch"]
path = gpt4all-chat/deps/usearch
url = https://github.com/nomic-ai/usearch.git
[submodule "gpt4all-chat/deps/SingleApplication"]
path = gpt4all-chat/deps/SingleApplication
url = https://github.com/nomic-ai/SingleApplication.git
[submodule "gpt4all-chat/deps/fmt"]
path = gpt4all-chat/deps/fmt
url = https://github.com/fmtlib/fmt.git
[submodule "gpt4all-chat/deps/DuckX"]
path = gpt4all-chat/deps/DuckX
url = https://github.com/nomic-ai/DuckX.git
[submodule "gpt4all-chat/deps/QXlsx"]
path = gpt4all-chat/deps/QXlsx
url = https://github.com/nomic-ai/QXlsx.git
[submodule "gpt4all-chat/deps/minja"]
path = gpt4all-chat/deps/minja
url = https://github.com/nomic-ai/minja.git
[submodule "gpt4all-chat/deps/json"]
path = gpt4all-chat/deps/json
url = https://github.com/nlohmann/json.git

View File

@ -1,77 +0,0 @@
# MAINTAINERS
## Rules
* All content inside GPT4All shall have a documented maintainer
* If a maintainer decides to retire or resign a call for volunteers will go
out
* If no further maintainer can be found in a reasonable time frame, then the
content will be marked deprecated and removed in time
## Job
Maintainers will be...
1. Responsible for overseeing content under their stewardship
2. Responsible for triaging new issues, reviewing PRs, assigning priority
to tasks
3. Responsible for keeping content in sufficient quality in a timely fashion
## List
Adam Treat ([@manyoso](https://github.com/manyoso))<br/>
E-mail: adam@nomic.ai<br/>
Discord: `@gonzochess75`
- Overall project maintainer
- Chat UI
Jared Van Bortel ([@cebtenzzre](https://github.com/cebtenzzre))<br/>
E-mail: jared@nomic.ai<br/>
Discord: `@cebtenzzre`
- gpt4all-backend
- Python binding
- Python CLI app
Jacob Nguyen ([@jacoobes](https://github.com/jacoobes))<br/>
Discord: `@jacoobes`<br/>
E-mail: `jacoobes@sern.dev`
- TypeScript binding
Dominik ([@cosmic-snow](https://github.com/cosmic-snow))<br/>
E-mail: cosmic-snow@mailfence.com<br/>
Discord: `@cosmic__snow`
- Community documentation (GitHub Wiki)
Max Cembalest ([@mcembalest](https://github.com/mcembalest))<br/>
E-mail: max@nomic.ai<br/>
Discord: `@maxcembalest.`
- Official documentation (gpt4all-bindings/python/docs -> https://docs.gpt4all.io/)
Thiago Ramos ([@thiagojramos](https://github.com/thiagojramos))<br/>
E-mail: thiagojramos@outlook.com<br/>
- pt\_BR translation
不知火 Shiranui ([@supersonictw](https://github.com/supersonictw))<br/>
E-mail: supersonic@livemail.tw<br/>
Discord: `@supersonictw`
- zh\_TW translation
Jeremy Tayco ([@jstayco](https://github.com/jstayco))<br/>
E-mail: jstayco@protonmail.ch<br/>
Discord: `@vertana`
- es\_MX translation
Riccardo Giovanetti ([@Harvester62](https://github.com/Harvester62))<br/>
E-mail: riccardo.giovanetti@gmail.com<br/>
Discord: `@harvester62`
- it\_IT translation
Tim ([@Tim453](https://github.com/Tim453))<br/>
E-mail: tim453@mailbox.org<br/>
Discord: `@Tim453`
- Flatpak
Jack ([@wuodoo](https://github.com/wuodoo))<br/>
E-mail: 2296103047@qq.com<br/>
Discord: `@mikage`
- zh\_CN translation

192
README.md
View File

@ -1,110 +1,48 @@
<h1 align="center">GPT4All</h1>
<p align="center">Privacy-oriented software for chatting with large language models that run on your own computer.</p>
<p align="center">
Now with support for DeepSeek R1 Distillations
</p>
<p align="center">
<a href="https://www.nomic.ai/gpt4all">Website</a> &bull; <a href="https://docs.gpt4all.io">Documentation</a> &bull; <a href="https://discord.gg/mGZE39AS3e">Discord</a> &bull; <a href="https://www.youtube.com/watch?v=gQcZDXRVJok">YouTube Tutorial</a>
</p>
<p align="center">
GPT4All runs large language models (LLMs) privately on everyday desktops & laptops.
<a href="https://gpt4all.io">Official Website</a> &bull; <a href="https://docs.gpt4all.io">Documentation</a> &bull; <a href="https://discord.gg/mGZE39AS3e">Discord</a>
</p>
<p align="center">
No API calls or GPUs required - you can just download the application and <a href="https://docs.gpt4all.io/gpt4all_desktop/quickstart.html#quickstart">get started</a>.
</p>
<p align="center">
Read about what's new in <a href="https://www.nomic.ai/blog/tag/gpt4all">our blog</a>.
Official Download Links: <a href="https://gpt4all.io/installers/gpt4all-installer-win64.exe">Windows</a> &mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-darwin.dmg">macOS</a> &mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-linux.run">Ubuntu</a>
</p>
<p align="center">
<a href="https://nomic.ai/gpt4all/#newsletter-form">Subscribe to the newsletter</a>
<b>NEW:</b> <a href="https://forms.nomic.ai/gpt4all-release-notes-signup">Subscribe to our mailing list</a> for updates and news!
</p>
https://github.com/nomic-ai/gpt4all/assets/70534565/513a0f15-4964-4109-89e4-4f9a9011f311
<p align="center">
GPT4All is made possible by our compute partner <a href="https://www.paperspace.com/">Paperspace</a>.
</p>
## Download Links
<p>
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-win64.exe">
<img src="gpt4all-bindings/python/docs/assets/windows.png" style="height: 1em; width: auto" /> Windows Installer
</a> &mdash;
</p>
<p>
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-win64-arm.exe">
<img src="gpt4all-bindings/python/docs/assets/windows.png" style="height: 1em; width: auto" /> Windows ARM Installer
</a> &mdash;
</p>
<p>
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-darwin.dmg">
<img src="gpt4all-bindings/python/docs/assets/mac.png" style="height: 1em; width: auto" /> macOS Installer
</a> &mdash;
</p>
<p>
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-linux.run">
<img src="gpt4all-bindings/python/docs/assets/ubuntu.svg" style="height: 1em; width: auto" /> Ubuntu Installer
</a> &mdash;
</p>
<p>
The Windows and Linux builds require Intel Core i3 2nd Gen / AMD Bulldozer, or better.
</p>
<p>
The Windows ARM build supports Qualcomm Snapdragon and Microsoft SQ1/SQ2 processors.
</p>
<p>
The Linux build is x86-64 only (no ARM).
</p>
<p>
The macOS build requires Monterey 12.6 or newer. Best results with Apple Silicon M-series processors.
<p align="center">
<a href="https://www.phorm.ai/query?projectId=755eecd3-24ad-49cc-abf4-0ab84caacf63"><img src="https://img.shields.io/badge/Phorm-Ask_AI-%23F2777A.svg" alt="phorm.ai"></a>
</p>
See the full [System Requirements](gpt4all-chat/system_requirements.md) for more details.
<br/>
<br/>
<p>
<a href='https://flathub.org/apps/io.gpt4all.gpt4all'>
<img style="height: 2em; width: auto" alt='Get it on Flathub' src='https://flathub.org/api/badge'><br/>
Flathub (community maintained)
</a>
<p align="center">
<img width="auto" height="400" src="https://github.com/nomic-ai/gpt4all/assets/14168726/495fce3e-769b-4e5a-a394-99f072ac4d29">
</p>
<p align="center">
Run on an M2 MacBook Pro (not sped up!)
</p>
## Install GPT4All Python
`gpt4all` gives you access to LLMs with our Python client around [`llama.cpp`](https://github.com/ggerganov/llama.cpp) implementations.
## About GPT4All
Nomic contributes to open source software like [`llama.cpp`](https://github.com/ggerganov/llama.cpp) to make LLMs accessible and efficient **for all**.
GPT4All is an ecosystem to run **powerful** and **customized** large language models that work locally on consumer grade CPUs and NVIDIA and AMD GPUs. Note that your CPU needs to support [AVX instructions](https://en.wikipedia.org/wiki/Advanced_Vector_Extensions).
```bash
pip install gpt4all
```
Learn more in the [documentation](https://docs.gpt4all.io).
```python
from gpt4all import GPT4All
model = GPT4All("Meta-Llama-3-8B-Instruct.Q4_0.gguf") # downloads / loads a 4.66GB LLM
with model.chat_session():
print(model.generate("How can I run LLMs efficiently on my laptop?", max_tokens=1024))
```
A GPT4All model is a 3GB - 8GB file that you can download and plug into the GPT4All software. **Nomic AI** supports and maintains this software ecosystem to enforce quality and security alongside spearheading the effort to allow any person or enterprise to easily deploy their own on-edge large language models.
## Integrations
### Installation
:parrot::link: [Langchain](https://python.langchain.com/v0.2/docs/integrations/providers/gpt4all/)
:card_file_box: [Weaviate Vector Database](https://github.com/weaviate/weaviate) - [module docs](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-gpt4all)
:telescope: [OpenLIT (OTel-native Monitoring)](https://github.com/openlit/openlit) - [Docs](https://docs.openlit.io/latest/integrations/gpt4all)
The recommended way to install GPT4All is to use one of the online installers linked above in this README, which are also available at the [GPT4All website](https://gpt4all.io/). These require an internet connection at install time, are slightly easier to use on macOS due to code signing, and provide a version of GPT4All that can check for updates.
## Release History
- **July 2nd, 2024**: V3.0.0 Release
- Fresh redesign of the chat application UI
- Improved user workflow for LocalDocs
- Expanded access to more model architectures
An alternative way to install GPT4All is to use one of the offline installers available on the [Releases page](https://github.com/nomic-ai/gpt4all/releases). These do not require an internet connection at install time, and can be used to install an older version of GPT4All if so desired. But using these requires acknowledging a security warning on macOS, and they provide a version of GPT4All that is unable to notify you of updates, so you should enable notifications for Releases on this repository (Watch > Custom > Releases) or sign up for announcements in our [Discord server](https://discord.gg/mGZE39AS3e).
### What's New
- **October 19th, 2023**: GGUF Support Launches with Support for:
- Mistral 7b base model, an updated model gallery on our website, several new local code models including Rift Coder v1.5
- Mistral 7b base model, an updated model gallery on [gpt4all.io](https://gpt4all.io), several new local code models including Rift Coder v1.5
- [Nomic Vulkan](https://blog.nomic.ai/posts/gpt4all-gpu-inference-with-vulkan) support for Q4\_0 and Q4\_1 quantizations in GGUF.
- Offline build support for running old versions of the GPT4All Local LLM Chat Client.
- **September 18th, 2023**: [Nomic Vulkan](https://blog.nomic.ai/posts/gpt4all-gpu-inference-with-vulkan) launches supporting local LLM inference on NVIDIA and AMD GPUs.
@ -113,6 +51,24 @@ with model.chat_session():
[Docker-based API server]: https://github.com/nomic-ai/gpt4all/tree/cef74c2be20f5b697055d5b8b506861c7b997fab/gpt4all-api
### Building From Source
* Follow the instructions [here](gpt4all-chat/build_and_run.md) to build the GPT4All Chat UI from source.
### Bindings
* :snake: <a href="https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/python">Official Python Bindings</a> [![Downloads](https://static.pepy.tech/badge/gpt4all/week)](https://pepy.tech/project/gpt4all)
* :computer: <a href="https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/typescript">Typescript Bindings</a>
### Integrations
* :parrot::link: [Langchain](https://python.langchain.com/en/latest/modules/models/llms/integrations/gpt4all.html)
* :card_file_box: [Weaviate Vector Database](https://github.com/weaviate/weaviate) - [module docs](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-gpt4all)
## Contributing
GPT4All welcomes contributions, involvement, and discussion from the open source community!
Please see CONTRIBUTING.md and follow the issues, bug reports, and PR markdown templates.
@ -121,6 +77,74 @@ Check project discord, with project owners, or through existing issues/PRs to av
Please make sure to tag all of the above with relevant project identifiers or your contribution could potentially get lost.
Example tags: `backend`, `bindings`, `python-bindings`, `documentation`, etc.
## GPT4All 2024 Roadmap
To contribute to the development of any of the below roadmap items, make or find the corresponding issue and cross-reference the [in-progress task](https://github.com/orgs/nomic-ai/projects/2/views/1).
Each item should have an issue link below.
- Chat UI Language Localization (localize UI into the native languages of users)
- [ ] Chinese
- [ ] German
- [ ] French
- [ ] Portuguese
- [ ] Your native language here.
- UI Redesign: an internal effort at Nomic to improve the UI/UX of gpt4all for all users.
- [ ] Design new user interface and gather community feedback
- [ ] Implement the new user interface and experience.
- Installer and Update Improvements
- [ ] Seamless native installation and update process on OSX
- [ ] Seamless native installation and update process on Windows
- [ ] Seamless native installation and update process on Linux
- Model discoverability improvements:
- [x] Support huggingface model discoverability
- [ ] Support Nomic hosted model discoverability
- LocalDocs (towards a local perplexity)
- Multilingual LocalDocs Support
- [ ] Create a multilingual experience
- [ ] Incorporate a multilingual embedding model
- [ ] Specify a preferred multilingual LLM for localdocs
- Improved RAG techniques
- [ ] Query augmentation and re-writing
- [ ] Improved chunking and text extraction from arbitrary modalities
- [ ] Custom PDF extractor past the QT default (charts, tables, text)
- [ ] Faster indexing and local exact search with v1.5 hamming embeddings and reranking (skip ANN index construction!)
- Support queries like 'summarize X document'
- Multimodal LocalDocs support with Nomic Embed
- Nomic Dataset Integration with real-time LocalDocs
- [ ] Include an option to allow the export of private LocalDocs collections to Nomic Atlas for debugging data/chat quality
- [ ] Allow optional sharing of LocalDocs collections between users.
- [ ] Allow the import of a LocalDocs collection from an Atlas Datasets
- Chat with live version of Wikipedia, Chat with Pubmed, chat with the latest snapshot of world news.
- First class Multilingual LLM Support
- [ ] Recommend and set a default LLM for German
- [ ] Recommend and set a default LLM for English
- [ ] Recommend and set a default LLM for Chinese
- [ ] Recommend and set a default LLM for Spanish
- Server Mode improvements
- Improved UI and new requested features:
- [ ] Fix outstanding bugs and feature requests around networking configurations.
- [ ] Support Nomic Embed inferencing
- [ ] First class documentation
- [ ] Improving developer use and quality of server mode (e.g. support larger batches)
## Technical Reports
<p align="center">
<a href="https://gpt4all.io/reports/GPT4All_Technical_Report_3.pdf">:green_book: Technical Report 3: GPT4All Snoozy and Groovy </a>
</p>
<p align="center">
<a href="https://static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf">:green_book: Technical Report 2: GPT4All-J </a>
</p>
<p align="center">
<a href="https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All_Technical_Report.pdf">:green_book: Technical Report 1: GPT4All</a>
</p>
## Citation
If you utilize this repository, models or data in a downstream project, please consider citing it with:

View File

@ -1,41 +0,0 @@
function(gpt4all_add_warning_options target)
if (MSVC)
return()
endif()
target_compile_options("${target}" PRIVATE
# base options
-Wall
-Wextra
# extra options
-Wcast-align
-Wextra-semi
-Wformat=2
-Wmissing-include-dirs
-Wsuggest-override
-Wvla
# errors
-Werror=format-security
-Werror=init-self
-Werror=pointer-arith
-Werror=undef
# disabled warnings
-Wno-sign-compare
-Wno-unused-parameter
)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
target_compile_options("${target}" PRIVATE
-Wduplicated-branches
-Wduplicated-cond
-Wlogical-op
-Wno-reorder
-Wno-null-dereference
)
elseif (CMAKE_CXX_COMPILER_ID MATCHES "^(Apple)?Clang$")
target_compile_options("${target}" PRIVATE
-Wunreachable-code-break
-Wunreachable-code-return
-Werror=pointer-integer-compare
-Wno-reorder-ctor
)
endif()
endfunction()

View File

@ -1,7 +1,4 @@
cmake_minimum_required(VERSION 3.23) # for FILE_SET
include(../common/common.cmake)
cmake_minimum_required(VERSION 3.16)
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@ -36,7 +33,7 @@ set(LLMODEL_VERSION_PATCH 0)
set(LLMODEL_VERSION "${LLMODEL_VERSION_MAJOR}.${LLMODEL_VERSION_MINOR}.${LLMODEL_VERSION_PATCH}")
project(llmodel VERSION ${LLMODEL_VERSION} LANGUAGES CXX C)
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
set(BUILD_SHARED_LIBS ON)
@ -50,15 +47,17 @@ else()
message(STATUS "Interprocedural optimization support detected")
endif()
set(DIRECTORY deps/llama.cpp-mainline)
set(DIRECTORY llama.cpp-mainline)
include(llama.cpp.cmake)
set(BUILD_VARIANTS)
set(GPTJ_BUILD_VARIANT cpu)
if (APPLE)
list(APPEND BUILD_VARIANTS metal)
endif()
if (LLMODEL_KOMPUTE)
list(APPEND BUILD_VARIANTS kompute kompute-avxonly)
set(GPTJ_BUILD_VARIANT kompute)
else()
list(PREPEND BUILD_VARIANTS cpu cpu-avxonly)
endif()
@ -66,24 +65,6 @@ if (LLMODEL_VULKAN)
list(APPEND BUILD_VARIANTS vulkan vulkan-avxonly)
endif()
if (LLMODEL_CUDA)
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
# Defaults must be set before enable_language(CUDA).
# Keep this in sync with the arch list in ggml/src/CMakeLists.txt (plus 5.0 for non-F16 branch).
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# 52 == lowest CUDA 12 standard
# 60 == f16 CUDA intrinsics
# 61 == integer CUDA intrinsics
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75") # needed for f16 CUDA intrinsics
else()
set(CMAKE_CUDA_ARCHITECTURES "50;52;61;70;75") # lowest CUDA 12 standard + lowest for integer intrinsics
#set(CMAKE_CUDA_ARCHITECTURES "OFF") # use this to compile much faster, but only F16 models work
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
include(CheckLanguage)
check_language(CUDA)
if (NOT CMAKE_CUDA_COMPILER)
@ -97,6 +78,8 @@ if (LLMODEL_ROCM)
list(APPEND BUILD_VARIANTS rocm rocm-avxonly)
endif()
set(CMAKE_VERBOSE_MAKEFILE ON)
# Go through each build variant
foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
# Determine flags
@ -105,34 +88,30 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
else()
set(GPT4ALL_ALLOW_NON_AVX ON)
endif()
set(GGML_AVX2 ${GPT4ALL_ALLOW_NON_AVX})
set(GGML_F16C ${GPT4ALL_ALLOW_NON_AVX})
set(GGML_FMA ${GPT4ALL_ALLOW_NON_AVX})
set(LLAMA_AVX2 ${GPT4ALL_ALLOW_NON_AVX})
set(LLAMA_F16C ${GPT4ALL_ALLOW_NON_AVX})
set(LLAMA_FMA ${GPT4ALL_ALLOW_NON_AVX})
set(GGML_METAL OFF)
set(GGML_KOMPUTE OFF)
set(GGML_VULKAN OFF)
set(GGML_CUDA OFF)
set(GGML_ROCM OFF)
set(LLAMA_METAL OFF)
set(LLAMA_KOMPUTE OFF)
set(LLAMA_VULKAN OFF)
set(LLAMA_CUDA OFF)
set(LLAMA_ROCM OFF)
if (BUILD_VARIANT MATCHES metal)
set(GGML_METAL ON)
set(LLAMA_METAL ON)
elseif (BUILD_VARIANT MATCHES kompute)
set(GGML_KOMPUTE ON)
set(LLAMA_KOMPUTE ON)
elseif (BUILD_VARIANT MATCHES vulkan)
set(GGML_VULKAN ON)
set(LLAMA_VULKAN ON)
elseif (BUILD_VARIANT MATCHES cuda)
set(GGML_CUDA ON)
set(LLAMA_CUDA ON)
elseif (BUILD_VARIANT MATCHES rocm)
set(GGML_HIPBLAS ON)
set(LLAMA_HIPBLAS ON)
endif()
# Include GGML
include_ggml(-mainline-${BUILD_VARIANT})
if (BUILD_VARIANT MATCHES metal)
set(GGML_METALLIB "${GGML_METALLIB}" PARENT_SCOPE)
endif()
# Function for preparing individual implementations
function(prepare_target TARGET_NAME BASE_LIB)
set(TARGET_NAME ${TARGET_NAME}-${BUILD_VARIANT})
@ -151,35 +130,28 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
# Add each individual implementations
add_library(llamamodel-mainline-${BUILD_VARIANT} SHARED
src/llamamodel.cpp src/llmodel_shared.cpp)
gpt4all_add_warning_options(llamamodel-mainline-${BUILD_VARIANT})
llamamodel.cpp llmodel_shared.cpp)
target_compile_definitions(llamamodel-mainline-${BUILD_VARIANT} PRIVATE
LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
target_include_directories(llamamodel-mainline-${BUILD_VARIANT} PRIVATE
src include/gpt4all-backend
)
prepare_target(llamamodel-mainline llama-mainline)
if (NOT PROJECT_IS_TOP_LEVEL AND BUILD_VARIANT STREQUAL cuda)
if (BUILD_VARIANT MATCHES ${GPTJ_BUILD_VARIANT})
add_library(gptj-${BUILD_VARIANT} SHARED
gptj.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
prepare_target(gptj llama-mainline)
endif()
if (BUILD_VARIANT STREQUAL cuda)
set(CUDAToolkit_BIN_DIR ${CUDAToolkit_BIN_DIR} PARENT_SCOPE)
endif()
endforeach()
add_library(llmodel
src/dlhandle.cpp
src/llmodel.cpp
src/llmodel_c.cpp
src/llmodel_shared.cpp
)
gpt4all_add_warning_options(llmodel)
target_sources(llmodel PUBLIC
FILE_SET public_headers TYPE HEADERS BASE_DIRS include
FILES include/gpt4all-backend/llmodel.h
include/gpt4all-backend/llmodel_c.h
include/gpt4all-backend/sysinfo.h
llmodel.h llmodel.cpp llmodel_shared.cpp
llmodel_c.h llmodel_c.cpp
dlhandle.h
)
target_compile_definitions(llmodel PRIVATE LIB_FILE_EXT="${CMAKE_SHARED_LIBRARY_SUFFIX}")
target_include_directories(llmodel PRIVATE src include/gpt4all-backend)
set_target_properties(llmodel PROPERTIES
VERSION ${PROJECT_VERSION}

View File

@ -27,7 +27,7 @@ Unfortunately, no for three reasons:
# What is being done to make them more compatible?
A few things. Number one, we are maintaining compatibility with our current model zoo by way of the submodule pinning. However, we are also exploring how we can update to newer versions of llama.cpp without breaking our current models. This might involve an additional magic header check or it could possibly involve keeping the currently pinned submodule and also adding a new submodule with later changes and differentiating them with namespaces or some other manner. Investigations continue.
A few things. Number one, we are maintaining compatibility with our current model zoo by way of the submodule pinning. However, we are also exploring how we can update to newer versions of llama.cpp without breaking our current models. This might involve an additional magic header check or it could possibly involve keeping the currently pinned submodule and also adding a new submodule with later changes and differienting them with namespaces or some other manner. Investigations continue.
# What about GPU inference?

@ -1 +0,0 @@
Subproject commit 11f734c3b0334dbae4823b4a7467764e447fc6d6

109
gpt4all-backend/dlhandle.h Normal file
View File

@ -0,0 +1,109 @@
#ifndef DLHANDLE_H
#define DLHANDLE_H
#ifndef _WIN32
#include <string>
#include <stdexcept>
#include <utility>
#include <dlfcn.h>
class Dlhandle {
void *chandle;
public:
class Exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
Dlhandle() : chandle(nullptr) {}
Dlhandle(const std::string& fpath, int flags = RTLD_LAZY | RTLD_LOCAL) {
chandle = dlopen(fpath.c_str(), flags);
if (!chandle) {
throw Exception("dlopen(\""+fpath+"\"): "+dlerror());
}
}
Dlhandle(const Dlhandle& o) = delete;
Dlhandle(Dlhandle&& o) : chandle(o.chandle) {
o.chandle = nullptr;
}
~Dlhandle() {
if (chandle) dlclose(chandle);
}
auto operator =(Dlhandle&& o) {
chandle = std::exchange(o.chandle, nullptr);
}
bool is_valid() const {
return chandle != nullptr;
}
operator bool() const {
return is_valid();
}
template<typename T>
T* get(const std::string& fname) const {
auto fres = reinterpret_cast<T*>(dlsym(chandle, fname.c_str()));
return (dlerror()==NULL)?fres:nullptr;
}
auto get_fnc(const std::string& fname) const {
return get<void*(...)>(fname);
}
};
#else
#include <algorithm>
#include <filesystem>
#include <string>
#include <exception>
#include <stdexcept>
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#include <libloaderapi.h>
class Dlhandle {
HMODULE chandle;
public:
class Exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
Dlhandle() : chandle(nullptr) {}
Dlhandle(const std::string& fpath) {
std::string afpath = std::filesystem::absolute(fpath).string();
std::replace(afpath.begin(), afpath.end(), '/', '\\');
chandle = LoadLibraryExA(afpath.c_str(), NULL, LOAD_LIBRARY_SEARCH_DEFAULT_DIRS | LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR);
if (!chandle) {
throw Exception("dlopen(\""+fpath+"\"): Error");
}
}
Dlhandle(const Dlhandle& o) = delete;
Dlhandle(Dlhandle&& o) : chandle(o.chandle) {
o.chandle = nullptr;
}
~Dlhandle() {
if (chandle) FreeLibrary(chandle);
}
bool is_valid() const {
return chandle != nullptr;
}
template<typename T>
T* get(const std::string& fname) const {
return reinterpret_cast<T*>(GetProcAddress(chandle, fname.c_str()));
}
auto get_fnc(const std::string& fname) const {
return get<void*(...)>(fname);
}
};
#endif
#endif // DLHANDLE_H

847
gpt4all-backend/gptj.cpp Normal file
View File

@ -0,0 +1,847 @@
#define GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "gptj_impl.h"
#include "utils.h"
#include "llmodel_shared.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <sstream>
#include <unordered_set>
#include <ggml.h>
namespace {
const char *modelType_ = "GPT-J";
}
// default hparams (GPT-J 6B)
struct gptj_hparams {
int32_t n_vocab = 50400;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 16;
int32_t n_layer = 28;
int32_t n_rot = 64;
float norm_eps = 1e-5;
};
struct gptj_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
// attention
struct ggml_tensor * c_attn_q_proj_w;
struct ggml_tensor * c_attn_k_proj_w;
struct ggml_tensor * c_attn_v_proj_w;
struct ggml_tensor * c_attn_proj_w;
// ff
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct gptj_model {
gptj_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * lmh_g; // language model head
struct ggml_tensor * lmh_b; // language model bias
std::vector<gptj_layer> layers;
// key + value memory
struct llm_kv_cache kv_self;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
llm_buffer eval_buf;
llm_buffer scr0_buf;
llm_buffer scr1_buf;
~gptj_model() {
if (ctx) {
ggml_free(ctx);
}
}
};
static bool kv_cache_init(
const struct gptj_hparams & hparams,
struct llm_kv_cache & cache,
ggml_type wtype,
int n_ctx) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB);
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
return true;
}
// load the model's weights from a file path
bool gptj_model_load(const std::string &fname, gptj_model & model, gpt_vocab & vocab, size_t * mem_req = nullptr) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
if(mem_req != nullptr) {
*mem_req = 0;
}
// create the ggml context
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &model.ctx,
};
gguf_context *ggufctx = gguf_init_from_file(fname.c_str(), params);
if (!ggufctx) {
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
return false;
}
// load hparams
{
auto & hparams = model.hparams;
bool ok = false;
int keyidx;
do {
keyidx = gguf_find_key(ggufctx, "gptj.context_length");
if (keyidx == -1) { break; }
hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "gptj.embedding_length");
if (keyidx == -1) { break; }
hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "gptj.attention.head_count");
if (keyidx == -1) { break; }
hparams.n_head = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "gptj.block_count");
if (keyidx == -1) { break; }
hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "gptj.rope.dimension_count");
if (keyidx == -1) { break; }
hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx);
keyidx = gguf_find_key(ggufctx, "gptj.attention.layer_norm_epsilon");
if (keyidx == -1) { break; }
hparams.norm_eps = gguf_get_val_f32(ggufctx, keyidx);
ok = true;
} while (false);
if (!ok) {
fprintf(stderr, "%s: required hparam missing!\n", __func__);
return false;
}
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
}
// load vocab
{
auto & hparams = model.hparams;
int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
if (keyidx == -1) {
fprintf(stderr, "%s: tokenizer model not found!\n", __func__);
return false;
}
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) {
fprintf(stderr, "%s: tokenizer model not supported!\n", __func__);
return false;
}
int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
if (tokens_keyidx == -1) {
fprintf(stderr, "%s: gpt2 tokenizer vocab not found!\n", __func__);
return false;
}
hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx);
printf("%s: gpt2 tokenizer vocab = %d\n", __func__, int(hparams.n_vocab));
for (int i = 0; i < hparams.n_vocab; i++) {
std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
auto & ctx = model.ctx;
size_t ctx_size = ggml_get_mem_size(ctx);
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
if (mem_req != nullptr) {
*mem_req = ctx_size;
gguf_free(ggufctx);
return false;
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
model.layers.resize(hparams.n_layer);
model.wte = ggml_get_tensor(ctx, "token_embd.weight");
model.ln_f_g = ggml_get_tensor(ctx, "output_norm.weight");
model.ln_f_b = ggml_get_tensor(ctx, "output_norm.bias");
model.lmh_g = ggml_get_tensor(ctx, "output.weight");
model.lmh_b = ggml_get_tensor(ctx, "output.bias");
auto name = [](int i, std::string n) {
static std::string key;
key = "blk." + std::to_string(i) + "." + n;
return key.c_str();
};
for (int i = 0; i < hparams.n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_get_tensor(ctx, name(i, "attn_norm.weight"));
layer.ln_1_b = ggml_get_tensor(ctx, name(i, "attn_norm.bias"));
layer.c_attn_q_proj_w = ggml_get_tensor(ctx, name(i, "attn_q.weight"));
layer.c_attn_k_proj_w = ggml_get_tensor(ctx, name(i, "attn_k.weight"));
layer.c_attn_v_proj_w = ggml_get_tensor(ctx, name(i, "attn_v.weight"));
layer.c_attn_proj_w = ggml_get_tensor(ctx, name(i, "attn_output.weight"));
layer.c_mlp_fc_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight"));
layer.c_mlp_fc_b = ggml_get_tensor(ctx, name(i, "ffn_up.bias"));
layer.c_mlp_proj_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight"));
layer.c_mlp_proj_b = ggml_get_tensor(ctx, name(i, "ffn_down.bias"));
}
}
// key + value memory
{
const auto & hparams = model.hparams;
if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
ggml_free(ctx);
return false;
}
const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v);
printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
model.scr0_buf.resize(256u * 1024 * 1024);
model.scr1_buf.resize(256u * 1024 * 1024);
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
// The GPT-J model requires about 16MB of memory per input token.
//
bool gptj_eval(
gptj_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
const size_t init_buf_size = 1024_MiB;
if (!model.eval_buf.addr || model.eval_buf.size < init_buf_size)
model.eval_buf.resize(init_buf_size);
if (mem_per_token > 0 && mem_per_token*N > model.eval_buf.size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.eval_buf.size, buf_size_new);
// reallocate
model.eval_buf.resize(buf_size_new);
if (model.eval_buf.addr == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.eval_buf.size);
return false;
}
}
struct ggml_init_params params = {
.mem_size = model.eval_buf.size,
.mem_buffer = model.eval_buf.addr,
.no_alloc = false
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
// wte
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
// norm
{
cur = ggml_norm(ctx0, inpL, model.hparams.norm_eps);
// cur = ln_1_g*cur + ln_1_b
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
struct ggml_tensor * inpSA = cur;
// self-attention
{
struct ggml_tensor * Qcur = ggml_rope(
ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0, 0
);
struct ggml_tensor * Kcur = ggml_rope(
ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0, 0
);
// store key and value to memory
{
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur));
struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, model.kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(model.kv_self.v),
(il*n_ctx)*ggml_element_size(model.kv_self.v)*n_embd + n_past*ggml_element_size(model.kv_self.v));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrt(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V =
ggml_view_3d(ctx0, model.kv_self.v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(model.kv_self.v),
n_ctx*ggml_element_size(model.kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd);
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
}
struct ggml_tensor * inpFF = cur;
ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, });
// feed-forward network
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
{
// note here we pass inpSA instead of cur
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
inpSA);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
cur);
}
// self-attention + FF
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpL);
}
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
// norm
{
inpL = ggml_norm(ctx0, inpL, model.hparams.norm_eps);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.ln_f_g, inpL),
inpL),
ggml_repeat(ctx0, model.ln_f_b, inpL));
}
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
// lm_head
{
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
inpL = ggml_add(ctx0,
ggml_repeat(ctx0, model.lmh_b, inpL),
inpL);
}
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
ggml_build_forward_expand(gf, inpL);
// run the computation
{
std::unique_ptr<uint8_t []> data;
auto plan = ggml_graph_plan(gf, n_threads);
if (plan.work_size > 0) {
data.reset(new uint8_t[plan.work_size]);
plan.work_data = data.get();
}
ggml_graph_compute(gf, &plan);
}
//if (n_past%100 == 0) {
// ggml_graph_print (gf);
// ggml_graph_dump_dot(gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
#define GPTJ_MAX_RNG_STATE 64*1024
size_t gptj_get_state_size(const gptj_model &model)
{
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = GPTJ_MAX_RNG_STATE;
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = model.kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
fflush(stdout);
return s_total;
}
size_t gptj_copy_state_data(const gptj_model &model, const std::mt19937 &rng, uint8_t *dest)
{
uint8_t * out = dest;
fflush(stdout);
// copy rng
{
std::stringstream rng_ss;
rng_ss << rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[GPTJ_MAX_RNG_STATE];
memset(&rng_buf[0], 0, GPTJ_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
memcpy(out, &rng_buf[0], GPTJ_MAX_RNG_STATE); out += GPTJ_MAX_RNG_STATE;
}
// copy kv cache
{
const size_t kv_size = model.kv_self.buf.size;
const int kv_ntok = model.kv_self.n;
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
if (kv_size) {
memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size;
}
}
const size_t written = out - dest;
assert(written == gptj_get_state_size(model));
fflush(stdout);
return written;
}
size_t gptj_set_state_data(gptj_model *model, std::mt19937 *rng, const uint8_t *src)
{
const uint8_t * in = src;
// set rng
{
size_t rng_size;
char rng_buf[GPTJ_MAX_RNG_STATE];
memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
memcpy(&rng_buf[0], in, GPTJ_MAX_RNG_STATE); in += GPTJ_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> *rng;
assert(rng_ss.fail() == false);
}
// set kv cache
{
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
if (kv_size) {
assert(model->kv_self.buf.size == kv_size);
void * k_data = model->kv_self.k->data; // remember data pointers
void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size;
model->kv_self.k->data = k_data; // restore correct data pointers
model->kv_self.v->data = v_data;
}
model->kv_self.n = kv_ntok;
}
const size_t nread = in - src;
assert(nread == gptj_get_state_size(*model));
fflush(stdout);
return nread;
}
struct GPTJPrivate {
const std::string modelPath;
bool modelLoaded;
gpt_vocab vocab;
gptj_model *model = nullptr;
int64_t n_threads = 0;
size_t mem_per_token = 0;
std::mt19937 rng;
};
GPTJ::GPTJ()
: d_ptr(new GPTJPrivate) {
d_ptr->model = new gptj_model;
d_ptr->model->ctx = nullptr;
d_ptr->modelLoaded = false;
}
size_t GPTJ::requiredMem(const std::string &modelPath, int n_ctx, int ngl) {
(void)n_ctx;
(void)ngl;
gptj_model dummy_model;
gpt_vocab dummy_vocab;
size_t mem_req;
gptj_model_load(modelPath, dummy_model, dummy_vocab, &mem_req);
return mem_req;
}
bool GPTJ::loadModel(const std::string &modelPath, int n_ctx, int ngl) {
(void)n_ctx;
(void)ngl;
d_ptr->modelLoaded = false;
std::mt19937 rng(time(NULL));
d_ptr->rng = rng;
// load the model
bool ok = gptj_model_load(modelPath, *d_ptr->model, d_ptr->vocab);
fflush(stdout);
if (!ok) {
std::cerr << "GPT-J ERROR: failed to load model from " << modelPath;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
return true;
}
void GPTJ::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t GPTJ::threadCount() const
{
return d_ptr->n_threads;
}
GPTJ::~GPTJ()
{
delete d_ptr->model;
}
bool GPTJ::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t GPTJ::stateSize() const
{
return gptj_get_state_size(*d_ptr->model);
}
size_t GPTJ::saveState(uint8_t *dest) const
{
return gptj_copy_state_data(*d_ptr->model, d_ptr->rng, dest);
}
size_t GPTJ::restoreState(const uint8_t *src)
{
return gptj_set_state_data(d_ptr->model, &d_ptr->rng, src);
}
std::vector<LLModel::Token> GPTJ::tokenize(PromptContext &ctx, const std::string &str, bool special) const
{
(void)ctx;
(void)special;
return ::gpt_tokenize(d_ptr->vocab, str);
}
LLModel::Token GPTJ::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks,
promptCtx.logits,
promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty,
d_ptr->rng);
}
std::string GPTJ::tokenToString(Token id) const
{
return d_ptr->vocab.id_to_token[id];
}
bool GPTJ::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
// determine the required inference memory per token:
static bool initialized = false;
if (!initialized) {
gptj_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits,
d_ptr->mem_per_token);
initialized = true;
}
return gptj_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token);
}
int32_t GPTJ::contextLength() const
{
return d_ptr->model->hparams.n_ctx;
}
const std::vector<LLModel::Token> &GPTJ::endTokens() const
{
static const std::vector<LLModel::Token> fres = {50256};
return fres;
}
const char *get_arch_name(gguf_context *ctx_gguf) {
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
if (kid == -1)
throw std::runtime_error("key not found in model: general.architecture");
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
if (ktype != GGUF_TYPE_STRING)
throw std::runtime_error("key general.architecture has wrong type");
return gguf_get_val_str(ctx_gguf, kid);
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT char *get_file_arch(const char *fname) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
gguf_context *ctx_gguf = gguf_init_from_file(fname, params);
char *arch = nullptr;
if (ctx_gguf && gguf_get_version(ctx_gguf) <= 3) {
try {
arch = strdup(get_arch_name(ctx_gguf));
} catch (const std::runtime_error &) {
// cannot read key -> return null
}
}
gguf_free(ctx_gguf);
return arch;
}
DLL_EXPORT bool is_arch_supported(const char *arch) {
return !strcmp(arch, "gptj");
}
DLL_EXPORT LLModel *construct() {
return new GPTJ;
}
}

View File

@ -0,0 +1,42 @@
#ifndef GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of gptj.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef GPTJ_H
#define GPTJ_H
#include <string>
#include <functional>
#include <vector>
#include "llmodel.h"
struct GPTJPrivate;
class GPTJ : public LLModel {
public:
GPTJ();
~GPTJ();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath, int n_ctx, int ngl) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
private:
GPTJPrivate *d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special) const override;
Token sampleToken(PromptContext &ctx) const override;
std::string tokenToString(Token id) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token> &endTokens() const override;
bool shouldAddBOS() const override { return false; }
};
#endif // GPTJ_H

@ -0,0 +1 @@
Subproject commit fadf1135a54e80188d644df42ad6a53bf986e8b0

View File

@ -7,7 +7,7 @@ set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
#
# some of the options here are commented out so they can be set "dynamically" before calling include_ggml()
set(GGML_LLAMAFILE_DEFAULT ON)
set(LLAMA_LLAMAFILE_DEFAULT ON)
# general
option(LLAMA_STATIC "llama: static link libraries" OFF)
@ -22,15 +22,15 @@ option(LLAMA_GPROF "llama: enable gprof"
option(LLAMA_FATAL_WARNINGS "llama: enable -Werror flag" OFF)
# instruction set specific
#option(GGML_AVX "ggml: enable AVX" ON)
#option(GGML_AVX2 "ggml: enable AVX2" ON)
#option(GGML_AVX512 "ggml: enable AVX512" OFF)
#option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
#option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
#option(GGML_FMA "ggml: enable FMA" ON)
#option(LLAMA_AVX "llama: enable AVX" ON)
#option(LLAMA_AVX2 "llama: enable AVX2" ON)
#option(LLAMA_AVX512 "llama: enable AVX512" OFF)
#option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
#option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
#option(LLAMA_FMA "llama: enable FMA" ON)
# in MSVC F16C is implied with AVX2/AVX512
#if (NOT MSVC)
# option(GGML_F16C "ggml: enable F16C" ON)
# option(LLAMA_F16C "llama: enable F16C" ON)
#endif()
if (WIN32)
@ -38,46 +38,40 @@ if (WIN32)
endif()
# 3rd party libs
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
option(GGML_BLAS "ggml: use BLAS" OFF)
option(GGML_LLAMAFILE "ggml: use llamafile SGEMM" ${GGML_LLAMAFILE_DEFAULT})
set(GGML_BLAS_VENDOR "Generic" CACHE STRING "ggml: BLAS library vendor")
#option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_CUDA_FORCE_DMMV "ggml: use dmmv instead of mmvq CUDA kernels" OFF)
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
set (GGML_CUDA_DMMV_X "32" CACHE STRING "ggml: x stride for dmmv CUDA kernels")
set (GGML_CUDA_MMV_Y "1" CACHE STRING "ggml: y block size for mmv CUDA kernels")
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
set (GGML_CUDA_KQUANTS_ITER "2" CACHE STRING
"ggml: iters./thread per block for Q2_K/Q6_K")
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_USE_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" OFF)
#option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
#option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
#option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
set(GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
"ggml: metal minimum macOS version")
set(GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
#option(GGML_KOMPUTE "ggml: use Kompute" OFF)
option(GGML_QKK_64 "ggml: use super-block size of 64 for k-quants" OFF)
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
option(LLAMA_BLAS "llama: use BLAS" OFF)
option(LLAMA_LLAMAFILE "llama: use llamafile SGEMM" ${LLAMA_LLAMAFILE_DEFAULT})
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
#option(LLAMA_CUDA "llama: use CUDA" OFF)
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
option(LLAMA_CUDA_FORCE_MMQ "llama: use mmq kernels instead of cuBLAS" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access")
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
#option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
#option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
#option(LLAMA_VULKAN "llama: use Vulkan" OFF)
option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF)
option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF)
option(LLAMA_VULKAN_VALIDATE "llama: enable Vulkan validation" OFF)
option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests" OFF)
#option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
"llama: metal minimum macOS version")
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
#option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
set(LLAMA_SCHED_MAX_COPIES "4" CACHE STRING "llama: max input copies for pipeline parallelism")
# add perf arguments
option(LLAMA_PERF "llama: enable perf" OFF)
option(LLAMA_PERF "llama: enable perf" OFF)
#
# Compile flags
@ -86,14 +80,14 @@ option(LLAMA_PERF "llama: enable perf"
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
list(APPEND GGML_COMPILE_DEFS GGML_SCHED_MAX_COPIES=${GGML_SCHED_MAX_COPIES})
list(APPEND GGML_COMPILE_DEFS GGML_SCHED_MAX_COPIES=${LLAMA_SCHED_MAX_COPIES})
# enable libstdc++ assertions for debug builds
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
list(APPEND GGML_COMPILE_DEFS $<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
endif()
if (APPLE AND GGML_ACCELERATE)
if (APPLE AND LLAMA_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
@ -107,7 +101,7 @@ if (APPLE AND GGML_ACCELERATE)
endif()
endif()
if (GGML_BLAS)
if (LLAMA_BLAS)
if (LLAMA_STATIC)
set(BLA_STATIC ON)
endif()
@ -115,7 +109,7 @@ if (GGML_BLAS)
set(BLA_SIZEOF_INTEGER 8)
endif()
set(BLA_VENDOR ${GGML_BLAS_VENDOR})
set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
find_package(BLAS)
if (BLAS_FOUND)
@ -125,24 +119,24 @@ if (GGML_BLAS)
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
find_package(PkgConfig REQUIRED)
if (${GGML_BLAS_VENDOR} MATCHES "Generic")
if (${LLAMA_BLAS_VENDOR} MATCHES "Generic")
pkg_check_modules(DepBLAS REQUIRED blas)
elseif (${GGML_BLAS_VENDOR} MATCHES "OpenBLAS")
elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS")
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
pkg_check_modules(DepBLAS openblas64)
if (NOT DepBLAS_FOUND)
pkg_check_modules(DepBLAS REQUIRED openblas)
endif()
elseif (${GGML_BLAS_VENDOR} MATCHES "FLAME")
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME")
pkg_check_modules(DepBLAS REQUIRED blis)
elseif (${GGML_BLAS_VENDOR} MATCHES "ATLAS")
elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS")
pkg_check_modules(DepBLAS REQUIRED blas-atlas)
elseif (${GGML_BLAS_VENDOR} MATCHES "FlexiBLAS")
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FlexiBLAS")
pkg_check_modules(DepBLAS REQUIRED flexiblas_api)
elseif (${GGML_BLAS_VENDOR} MATCHES "Intel")
elseif (${LLAMA_BLAS_VENDOR} MATCHES "Intel")
# all Intel* libraries share the same include path
pkg_check_modules(DepBLAS REQUIRED mkl-sdl)
elseif (${GGML_BLAS_VENDOR} MATCHES "NVHPC")
elseif (${LLAMA_BLAS_VENDOR} MATCHES "NVHPC")
# this doesn't provide pkg-config
# suggest to assign BLAS_INCLUDE_DIRS on your own
if ("${NVHPC_VERSION}" STREQUAL "")
@ -176,7 +170,7 @@ if (GGML_BLAS)
list(APPEND GGML_COMPILE_DEFS GGML_USE_OPENBLAS)
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel"))
list(APPEND GGML_COMPILE_DEFS GGML_BLAS_USE_MKL)
endif()
@ -185,18 +179,18 @@ if (GGML_BLAS)
else()
message(WARNING "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
" to set correct LLAMA_BLAS_VENDOR")
endif()
endif()
if (GGML_LLAMAFILE)
if (LLAMA_LLAMAFILE)
list(APPEND GGML_COMPILE_DEFS GGML_USE_LLAMAFILE)
set(GGML_HEADERS_LLAMAFILE ${DIRECTORY}/ggml/src/llamafile/sgemm.h)
set(GGML_SOURCES_LLAMAFILE ${DIRECTORY}/ggml/src/llamafile/sgemm.cpp)
set(GGML_HEADERS_LLAMAFILE ${DIRECTORY}/sgemm.h)
set(GGML_SOURCES_LLAMAFILE ${DIRECTORY}/sgemm.cpp)
endif()
if (GGML_QKK_64)
if (LLAMA_QKK_64)
list(APPEND GGML_COMPILE_DEFS GGML_QKK_64)
endif()
@ -367,9 +361,8 @@ function(include_ggml SUFFIX)
# libraries
#
if (GGML_CUDA)
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
if (LLAMA_CUDA)
cmake_minimum_required(VERSION 3.17)
get_property(LANGS GLOBAL PROPERTY ENABLED_LANGUAGES)
if (NOT CUDA IN_LIST LANGS)
message(FATAL_ERROR "The CUDA language must be enabled.")
@ -378,64 +371,26 @@ function(include_ggml SUFFIX)
find_package(CUDAToolkit REQUIRED)
set(CUDAToolkit_BIN_DIR ${CUDAToolkit_BIN_DIR} PARENT_SCOPE)
# architectures are set in gpt4all-backend/CMakeLists.txt
set(GGML_HEADERS_CUDA ${DIRECTORY}/ggml-cuda.h)
set(GGML_HEADERS_CUDA ${DIRECTORY}/ggml/include/ggml-cuda.h)
file(GLOB GGML_HEADERS_CUDA "${DIRECTORY}/ggml/src/ggml-cuda/*.cuh")
list(APPEND GGML_HEADERS_CUDA "${DIRECTORY}/ggml/include/ggml-cuda.h")
file(GLOB GGML_SOURCES_CUDA "${DIRECTORY}/ggml/src/ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_CUDA "${DIRECTORY}/ggml/src/ggml-cuda.cu")
file(GLOB SRCS "${DIRECTORY}/ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "${DIRECTORY}/ggml/src/ggml-cuda/template-instances/mmq*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
if (GGML_CUDA_FA_ALL_QUANTS)
file(GLOB SRCS "${DIRECTORY}/ggml/src/ggml-cuda/template-instances/fattn-vec*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
else()
file(GLOB SRCS "${DIRECTORY}/ggml/src/ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "${DIRECTORY}/ggml/src/ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "${DIRECTORY}/ggml/src/ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
endif()
file(GLOB GGML_SOURCES_CUDA "${DIRECTORY}/ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_CUDA "${DIRECTORY}/ggml-cuda.cu")
list(APPEND GGML_COMPILE_DEFS_PUBLIC GGML_USE_CUDA)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
list(APPEND GGML_COMPILE_DEFS K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
if (GGML_CUDA_USE_GRAPHS)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_USE_GRAPHS)
endif()
if (GGML_CUDA_FORCE_DMMV)
if (LLAMA_CUDA_FORCE_DMMV)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_FORCE_DMMV)
endif()
if (GGML_CUDA_FORCE_MMQ)
if (LLAMA_CUDA_FORCE_MMQ)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_FORCE_MMQ)
endif()
if (GGML_CUDA_FORCE_CUBLAS)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_FORCE_CUBLAS)
endif()
if (GGML_CUDA_NO_VMM)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_NO_VMM)
endif()
if (GGML_CUDA_F16)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
if (LLAMA_CUDA_F16)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_F16)
endif()
if (GGML_CUDA_NO_PEER_COPY)
list(APPEND GGML_COMPILE_DEFS K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
if (LLAMA_CUDA_NO_PEER_COPY)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_NO_PEER_COPY)
endif()
@ -451,36 +406,63 @@ function(include_ggml SUFFIX)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver)
if (DEFINED CMAKE_CUDA_ARCHITECTURES)
set(GGML_CUDA_ARCHITECTURES "${CMAKE_CUDA_ARCHITECTURES}")
else()
# 52 == lowest CUDA 12 standard
# 60 == f16 CUDA intrinsics
# 61 == integer CUDA intrinsics
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
set(GGML_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics
else()
set(GGML_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
#set(GGML_CUDA_ARCHITECTURES "") # use this to compile much faster, but only F16 models work
endif()
endif()
message(STATUS "Using CUDA architectures: ${GGML_CUDA_ARCHITECTURES}")
endif()
if (GGML_VULKAN)
if (LLAMA_CLBLAST)
find_package(CLBlast REQUIRED)
set(GGML_HEADERS_OPENCL ${DIRECTORY}/ggml-opencl.h)
set(GGML_SOURCES_OPENCL ${DIRECTORY}/ggml-opencl.cpp)
list(APPEND GGML_COMPILE_DEFS_PUBLIC GGML_USE_CLBLAST)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast)
endif()
if (LLAMA_VULKAN)
find_package(Vulkan REQUIRED)
set(GGML_HEADERS_VULKAN ${DIRECTORY}/ggml/include/ggml-vulkan.h)
set(GGML_SOURCES_VULKAN ${DIRECTORY}/ggml/src/ggml-vulkan.cpp)
set(GGML_HEADERS_VULKAN ${DIRECTORY}/ggml-vulkan.h)
set(GGML_SOURCES_VULKAN ${DIRECTORY}/ggml-vulkan.cpp)
list(APPEND GGML_COMPILE_DEFS_PUBLIC GGML_USE_VULKAN)
if (GGML_VULKAN_CHECK_RESULTS)
if (LLAMA_VULKAN_CHECK_RESULTS)
list(APPEND GGML_COMPILE_DEFS GGML_VULKAN_CHECK_RESULTS)
endif()
if (GGML_VULKAN_DEBUG)
if (LLAMA_VULKAN_DEBUG)
list(APPEND GGML_COMPILE_DEFS GGML_VULKAN_DEBUG)
endif()
if (GGML_VULKAN_VALIDATE)
if (LLAMA_VULKAN_VALIDATE)
list(APPEND GGML_COMPILE_DEFS GGML_VULKAN_VALIDATE)
endif()
if (GGML_VULKAN_RUN_TESTS)
if (LLAMA_VULKAN_RUN_TESTS)
list(APPEND GGML_COMPILE_DEFS GGML_VULKAN_RUN_TESTS)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} Vulkan::Vulkan)
endif()
if (GGML_HIPBLAS)
if (LLAMA_HIPBLAS)
if ($ENV{ROCM_PATH})
set(ROCM_PATH $ENV{ROCM_PATH})
else()
@ -510,32 +492,32 @@ function(include_ggml SUFFIX)
message(STATUS "HIP and hipBLAS found")
set(GGML_HEADERS_ROCM ${DIRECTORY}/ggml/include/ggml-cuda.h)
set(GGML_HEADERS_ROCM ${DIRECTORY}/ggml-cuda.h)
file(GLOB GGML_SOURCES_ROCM "${DIRECTORY}/ggml/src/ggml-rocm/*.cu")
list(APPEND GGML_SOURCES_ROCM "${DIRECTORY}/ggml/src/ggml-rocm.cu")
file(GLOB GGML_SOURCES_ROCM "${DIRECTORY}/ggml-rocm/*.cu")
list(APPEND GGML_SOURCES_ROCM "${DIRECTORY}/ggml-rocm.cu")
list(APPEND GGML_COMPILE_DEFS_PUBLIC GGML_USE_HIPBLAS GGML_USE_CUDA)
if (GGML_HIP_UMA)
if (LLAMA_HIP_UMA)
list(APPEND GGML_COMPILE_DEFS GGML_HIP_UMA)
endif()
if (GGML_CUDA_FORCE_DMMV)
if (LLAMA_CUDA_FORCE_DMMV)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_FORCE_DMMV)
endif()
if (GGML_CUDA_FORCE_MMQ)
if (LLAMA_CUDA_FORCE_MMQ)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_FORCE_MMQ)
endif()
if (GGML_CUDA_NO_PEER_COPY)
if (LLAMA_CUDA_NO_PEER_COPY)
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_NO_PEER_COPY)
endif()
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
list(APPEND GGML_COMPILE_DEFS K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
list(APPEND GGML_COMPILE_DEFS GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
list(APPEND GGML_COMPILE_DEFS K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
if (CXX_IS_HIPCC)
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
@ -553,9 +535,9 @@ function(include_ggml SUFFIX)
set(LLAMA_DIR ${CMAKE_CURRENT_SOURCE_DIR}/${DIRECTORY})
if (GGML_KOMPUTE AND NOT GGML_KOMPUTE_ONCE)
if (LLAMA_KOMPUTE AND NOT GGML_KOMPUTE_ONCE)
set(GGML_KOMPUTE_ONCE ON PARENT_SCOPE)
if (NOT EXISTS "${LLAMA_DIR}/ggml/src/kompute/CMakeLists.txt")
if (NOT EXISTS "${LLAMA_DIR}/kompute/CMakeLists.txt")
message(FATAL_ERROR "Kompute not found")
endif()
message(STATUS "Kompute found")
@ -579,12 +561,12 @@ function(include_ggml SUFFIX)
set(spv_file ${CMAKE_CURRENT_BINARY_DIR}/${OP_FILE}.spv)
add_custom_command(
OUTPUT ${spv_file}
DEPENDS ${LLAMA_DIR}/ggml/src/kompute-shaders/${source}
${LLAMA_DIR}/ggml/src/kompute-shaders/common.comp
${LLAMA_DIR}/ggml/src/kompute-shaders/op_getrows.comp
${LLAMA_DIR}/ggml/src/kompute-shaders/op_mul_mv_q_n_pre.comp
${LLAMA_DIR}/ggml/src/kompute-shaders/op_mul_mv_q_n.comp
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${LLAMA_DIR}/ggml/src/kompute-shaders/${source}
DEPENDS ${LLAMA_DIR}/${source}
${LLAMA_DIR}/kompute-shaders/common.comp
${LLAMA_DIR}/kompute-shaders/op_getrows.comp
${LLAMA_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
${LLAMA_DIR}/kompute-shaders/op_mul_mv_q_n.comp
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${LLAMA_DIR}/${source}
COMMENT "Compiling ${source} to ${source}.spv"
)
@ -630,39 +612,39 @@ function(include_ggml SUFFIX)
set(KOMPUTE_OPT_BUILT_IN_VULKAN_HEADER_TAG "v1.3.239" CACHE STRING "Kompute Vulkan headers tag")
set(KOMPUTE_OPT_LOG_LEVEL Critical CACHE STRING "Kompute log level")
set(FMT_INSTALL OFF)
add_subdirectory(${LLAMA_DIR}/ggml/src/kompute)
add_subdirectory(${LLAMA_DIR}/kompute)
# Compile our shaders
compile_shader(SOURCES
op_scale.comp
op_scale_8.comp
op_add.comp
op_addrow.comp
op_mul.comp
op_silu.comp
op_relu.comp
op_gelu.comp
op_softmax.comp
op_norm.comp
op_rmsnorm.comp
op_diagmask.comp
op_mul_mat_mat_f32.comp
op_mul_mat_f16.comp
op_mul_mat_q8_0.comp
op_mul_mat_q4_0.comp
op_mul_mat_q4_1.comp
op_mul_mat_q6_k.comp
op_getrows_f32.comp
op_getrows_f16.comp
op_getrows_q4_0.comp
op_getrows_q4_1.comp
op_getrows_q6_k.comp
op_rope_f16.comp
op_rope_f32.comp
op_cpy_f16_f16.comp
op_cpy_f16_f32.comp
op_cpy_f32_f16.comp
op_cpy_f32_f32.comp
kompute-shaders/op_scale.comp
kompute-shaders/op_scale_8.comp
kompute-shaders/op_add.comp
kompute-shaders/op_addrow.comp
kompute-shaders/op_mul.comp
kompute-shaders/op_silu.comp
kompute-shaders/op_relu.comp
kompute-shaders/op_gelu.comp
kompute-shaders/op_softmax.comp
kompute-shaders/op_norm.comp
kompute-shaders/op_rmsnorm.comp
kompute-shaders/op_diagmask.comp
kompute-shaders/op_mul_mat_mat_f32.comp
kompute-shaders/op_mul_mat_f16.comp
kompute-shaders/op_mul_mat_q8_0.comp
kompute-shaders/op_mul_mat_q4_0.comp
kompute-shaders/op_mul_mat_q4_1.comp
kompute-shaders/op_mul_mat_q6_k.comp
kompute-shaders/op_getrows_f32.comp
kompute-shaders/op_getrows_f16.comp
kompute-shaders/op_getrows_q4_0.comp
kompute-shaders/op_getrows_q4_1.comp
kompute-shaders/op_getrows_q6_k.comp
kompute-shaders/op_rope_f16.comp
kompute-shaders/op_rope_f32.comp
kompute-shaders/op_cpy_f16_f16.comp
kompute-shaders/op_cpy_f16_f32.comp
kompute-shaders/op_cpy_f32_f16.comp
kompute-shaders/op_cpy_f32_f32.comp
)
# Create a custom target for our generated shaders
@ -707,12 +689,12 @@ function(include_ggml SUFFIX)
)
endif()
if (GGML_KOMPUTE)
if (LLAMA_KOMPUTE)
list(APPEND GGML_COMPILE_DEFS VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
# Add the stamp to the main sources to ensure dependency tracking
set(GGML_SOURCES_KOMPUTE ${LLAMA_DIR}/ggml/src/ggml-kompute.cpp ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
set(GGML_HEADERS_KOMPUTE ${LLAMA_DIR}/ggml/include/ggml-kompute.h)
set(GGML_SOURCES_KOMPUTE ${LLAMA_DIR}/ggml-kompute.cpp ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
set(GGML_HEADERS_KOMPUTE ${LLAMA_DIR}/ggml-kompute.h)
list(APPEND GGML_COMPILE_DEFS_PUBLIC GGML_USE_KOMPUTE)
@ -721,7 +703,7 @@ function(include_ggml SUFFIX)
set(CUDA_CXX_FLAGS "")
if (GGML_CUDA)
if (LLAMA_CUDA)
set(CUDA_FLAGS -use_fast_math)
if (LLAMA_FATAL_WARNINGS)
@ -768,25 +750,25 @@ function(include_ggml SUFFIX)
endif()
endif()
if (GGML_METAL)
if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
message(STATUS "Metal framework found")
set(GGML_HEADERS_METAL ${DIRECTORY}/ggml/include/ggml-metal.h)
set(GGML_SOURCES_METAL ${DIRECTORY}/ggml/src/ggml-metal.m)
set(GGML_HEADERS_METAL ${DIRECTORY}/ggml-metal.h)
set(GGML_SOURCES_METAL ${DIRECTORY}/ggml-metal.m)
list(APPEND GGML_COMPILE_DEFS_PUBLIC GGML_USE_METAL)
if (GGML_METAL_NDEBUG)
if (LLAMA_METAL_NDEBUG)
list(APPEND GGML_COMPILE_DEFS GGML_METAL_NDEBUG)
endif()
# copy ggml-common.h and ggml-metal.metal to bin directory
configure_file(${DIRECTORY}/ggml/src/ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
configure_file(${DIRECTORY}/ggml/src/ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
configure_file(${DIRECTORY}/ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
configure_file(${DIRECTORY}/ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
if (GGML_METAL_SHADER_DEBUG)
if (LLAMA_METAL_SHADER_DEBUG)
# custom command to do the following:
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
@ -802,17 +784,16 @@ function(include_ggml SUFFIX)
endif()
# Append macOS metal versioning flags
if (GGML_METAL_MACOSX_VERSION_MIN)
message(STATUS "Adding -mmacosx-version-min=${GGML_METAL_MACOSX_VERSION_MIN} flag to metal compilation")
list(APPEND XC_FLAGS -mmacosx-version-min=${GGML_METAL_MACOSX_VERSION_MIN})
if (LLAMA_METAL_MACOSX_VERSION_MIN)
message(STATUS "Adding -mmacosx-version-min=${LLAMA_METAL_MACOSX_VERSION_MIN} flag to metal compilation")
list(APPEND XC_FLAGS -mmacosx-version-min=${LLAMA_METAL_MACOSX_VERSION_MIN})
endif()
if (GGML_METAL_STD)
message(STATUS "Adding -std=${GGML_METAL_STD} flag to metal compilation")
list(APPEND XC_FLAGS -std=${GGML_METAL_STD})
if (LLAMA_METAL_STD)
message(STATUS "Adding -std=${LLAMA_METAL_STD} flag to metal compilation")
list(APPEND XC_FLAGS -std=${LLAMA_METAL_STD})
endif()
set(GGML_METALLIB "${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib")
set(GGML_METALLIB "${GGML_METALLIB}" PARENT_SCOPE)
set(GGML_METALLIB ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib)
add_custom_command(
OUTPUT ${GGML_METALLIB}
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
@ -820,9 +801,10 @@ function(include_ggml SUFFIX)
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
DEPENDS ${DIRECTORY}/ggml/src/ggml-metal.metal ${DIRECTORY}/ggml/src/ggml-common.h
DEPENDS ${DIRECTORY}/ggml-metal.metal ${DIRECTORY}/ggml-common.h
COMMENT "Compiling Metal kernels"
)
set_source_files_properties(${GGML_METALLIB} DIRECTORY ${CMAKE_SOURCE_DIR} PROPERTIES GENERATED ON)
add_custom_target(
ggml-metal ALL
@ -873,49 +855,49 @@ function(include_ggml SUFFIX)
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
message(STATUS "x86 detected")
if (MSVC)
if (GGML_AVX512)
if (LLAMA_AVX512)
list(APPEND ARCH_FLAGS /arch:AVX512)
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (GGML_AVX512_VBMI)
if (LLAMA_AVX512_VBMI)
list(APPEND GGML_COMPILE_DEFS $<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
list(APPEND GGML_COMPILE_DEFS $<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
endif()
if (GGML_AVX512_VNNI)
if (LLAMA_AVX512_VNNI)
list(APPEND GGML_COMPILE_DEFS $<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
list(APPEND GGML_COMPILE_DEFS $<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
endif()
elseif (GGML_AVX2)
elseif (LLAMA_AVX2)
list(APPEND ARCH_FLAGS /arch:AVX2)
elseif (GGML_AVX)
elseif (LLAMA_AVX)
list(APPEND ARCH_FLAGS /arch:AVX)
endif()
else()
if (GGML_NATIVE)
if (LLAMA_NATIVE)
list(APPEND ARCH_FLAGS -march=native)
endif()
if (GGML_F16C)
if (LLAMA_F16C)
list(APPEND ARCH_FLAGS -mf16c)
endif()
if (GGML_FMA)
if (LLAMA_FMA)
list(APPEND ARCH_FLAGS -mfma)
endif()
if (GGML_AVX)
if (LLAMA_AVX)
list(APPEND ARCH_FLAGS -mavx)
endif()
if (GGML_AVX2)
if (LLAMA_AVX2)
list(APPEND ARCH_FLAGS -mavx2)
endif()
if (GGML_AVX512)
if (LLAMA_AVX512)
list(APPEND ARCH_FLAGS -mavx512f)
list(APPEND ARCH_FLAGS -mavx512bw)
endif()
if (GGML_AVX512_VBMI)
if (LLAMA_AVX512_VBMI)
list(APPEND ARCH_FLAGS -mavx512vbmi)
endif()
if (GGML_AVX512_VNNI)
if (LLAMA_AVX512_VNNI)
list(APPEND ARCH_FLAGS -mavx512vnni)
endif()
endif()
@ -934,7 +916,7 @@ function(include_ggml SUFFIX)
list(APPEND GGML_COMPILE_OPTS "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
list(APPEND GGML_COMPILE_OPTS "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
if (GGML_CUDA)
if (LLAMA_CUDA)
list(APPEND CUDA_CXX_FLAGS ${ARCH_FLAGS})
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "")
@ -946,26 +928,24 @@ function(include_ggml SUFFIX)
# ggml
add_library(ggml${SUFFIX} OBJECT
${DIRECTORY}/ggml/include/ggml.h
${DIRECTORY}/ggml/include/ggml-alloc.h
${DIRECTORY}/ggml/include/ggml-backend.h
${DIRECTORY}/ggml/src/ggml.c
${DIRECTORY}/ggml/src/ggml-alloc.c
${DIRECTORY}/ggml/src/ggml-backend.c
${DIRECTORY}/ggml/src/ggml-quants.c
${DIRECTORY}/ggml/src/ggml-quants.h
${DIRECTORY}/ggml.c
${DIRECTORY}/ggml.h
${DIRECTORY}/ggml-alloc.c
${DIRECTORY}/ggml-alloc.h
${DIRECTORY}/ggml-backend.c
${DIRECTORY}/ggml-backend.h
${DIRECTORY}/ggml-quants.c
${DIRECTORY}/ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE}
${DIRECTORY}/ggml/src/ggml-aarch64.c
${DIRECTORY}/ggml/src/ggml-aarch64.h
)
target_include_directories(ggml${SUFFIX} PUBLIC ${DIRECTORY}/ggml/include ${LLAMA_EXTRA_INCLUDES})
target_include_directories(ggml${SUFFIX} PRIVATE ${DIRECTORY}/ggml/src)
target_include_directories(ggml${SUFFIX} PUBLIC ${DIRECTORY} ${LLAMA_EXTRA_INCLUDES})
target_compile_features(ggml${SUFFIX} PUBLIC c_std_11) # don't bump
target_link_libraries(ggml${SUFFIX} PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
@ -977,18 +957,14 @@ function(include_ggml SUFFIX)
# llama
add_library(llama${SUFFIX} STATIC
${DIRECTORY}/include/llama.h
${DIRECTORY}/src/llama-grammar.cpp
${DIRECTORY}/src/llama-sampling.cpp
${DIRECTORY}/src/llama-vocab.cpp
${DIRECTORY}/src/llama.cpp
${DIRECTORY}/src/unicode-data.cpp
${DIRECTORY}/src/unicode.cpp
${DIRECTORY}/src/unicode.h
${DIRECTORY}/llama.cpp
${DIRECTORY}/llama.h
${DIRECTORY}/unicode.h
${DIRECTORY}/unicode.cpp
${DIRECTORY}/unicode-data.cpp
)
target_include_directories(llama${SUFFIX} PUBLIC ${DIRECTORY}/include ${DIRECTORY}/ggml/include)
target_include_directories(llama${SUFFIX} PRIVATE ${DIRECTORY}/src)
target_include_directories(llama${SUFFIX} PUBLIC ${DIRECTORY})
target_compile_features (llama${SUFFIX} PUBLIC cxx_std_11) # don't bump
target_link_libraries(llama${SUFFIX} PRIVATE
@ -1009,6 +985,9 @@ function(include_ggml SUFFIX)
C_STANDARD 11
C_STANDARD_REQUIRED true
)
if (GGML_CUDA_ARCHITECTURES)
set_property(TARGET ggml${SUFFIX} llama${SUFFIX} PROPERTY CUDA_ARCHITECTURES "${GGML_CUDA_ARCHITECTURES}")
endif()
target_compile_options(ggml${SUFFIX} PRIVATE "${GGML_COMPILE_OPTS}")
target_compile_options(llama${SUFFIX} PRIVATE "${GGML_COMPILE_OPTS}")

View File

@ -1,45 +1,36 @@
#define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "llamamodel_impl.h"
#include "llmodel.h"
#include "utils.h"
#include <ggml.h>
#include <llama.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <memory>
#include <map>
#include <numeric>
#include <optional>
#include <random>
#include <sstream>
#include <stdexcept>
#include <string>
#include <thread>
#include <unordered_set>
#include <vector>
#include <llama.h>
#include <ggml.h>
#ifdef GGML_USE_KOMPUTE
# include <ggml-kompute.h>
#elif defined(GGML_USE_VULKAN)
#elif GGML_USE_VULKAN
# include <ggml-vulkan.h>
#elif defined(GGML_USE_CUDA)
#elif GGML_USE_CUDA
# include <ggml-cuda.h>
#endif
using namespace std::string_literals;
// Maximum supported GGUF version
static constexpr int GGUF_VER_MAX = 3;
@ -52,16 +43,14 @@ static const std::vector<const char *> KNOWN_ARCHES {
// "grok", -- 314B parameters
"gpt2",
// "gptj", -- no inference code
"gptneox",
"granite",
"granitemoe",
// "gptneox", -- no inference code
"mpt",
"baichuan",
"starcoder",
// "persimmon", -- CUDA generates garbage
"refact",
"bert",
"nomic-bert",
// "jina-bert-v2", -- Assertion `i01 >= 0 && i01 < ne01' failed.
"bloom",
"stablelm",
"qwen",
@ -75,66 +64,36 @@ static const std::vector<const char *> KNOWN_ARCHES {
"internlm2",
// "minicpm", -- CUDA generates garbage
"gemma",
"gemma2",
"starcoder2",
// "mamba", -- CUDA missing SSM_CONV
"xverse",
"command-r",
// "dbrx", -- 16x12B parameters
"olmo",
"olmoe",
"openelm",
// "arctic", -- 10B+128x3.66B parameters
"deepseek2",
"chatglm",
// "bitnet", -- tensor not within file bounds?
// "t5", -- seq2seq model
"jais",
};
static const std::vector<const char *> EMBEDDING_ARCHES {
"bert", "nomic-bert",
};
static bool is_embedding_arch(const std::string &arch)
{
static bool is_embedding_arch(const std::string &arch) {
return std::find(EMBEDDING_ARCHES.begin(), EMBEDDING_ARCHES.end(), arch) < EMBEDDING_ARCHES.end();
}
static bool llama_verbose()
{
static bool llama_verbose() {
const char* var = getenv("GPT4ALL_VERBOSE_LLAMACPP");
return var && *var;
}
static void llama_log_callback(ggml_log_level level, const char *text, void *userdata, bool warn)
{
static void llama_log_callback(enum ggml_log_level level, const char *text, void *userdata) {
(void)userdata;
static ggml_log_level lastlevel = GGML_LOG_LEVEL_NONE;
if (!llama_verbose()) {
auto efflevel = level == GGML_LOG_LEVEL_CONT ? lastlevel : level;
lastlevel = efflevel;
switch (efflevel) {
case GGML_LOG_LEVEL_CONT:
UNREACHABLE();
break;
case GGML_LOG_LEVEL_WARN:
if (warn) break;
[[fallthrough]];
case GGML_LOG_LEVEL_NONE: // not used?
case GGML_LOG_LEVEL_INFO:
case GGML_LOG_LEVEL_DEBUG:
return; // suppress
case GGML_LOG_LEVEL_ERROR:
;
}
if (llama_verbose() || level <= GGML_LOG_LEVEL_ERROR) {
fputs(text, stderr);
}
fputs(text, stderr);
}
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
// sampling parameters
@ -149,8 +108,38 @@ struct gpt_params {
bool use_mlock = false; // use mlock to keep model in memory
};
const char *get_arch_name(gguf_context *ctx_gguf)
{
static int llama_sample_top_p_top_k(
llama_context *ctx,
const llama_token *last_n_tokens_data,
int last_n_tokens_size,
int top_k,
float top_p,
float min_p,
float temp,
float repeat_penalty,
int32_t pos) {
auto logits = llama_get_logits_ith(ctx, pos);
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
// Populate initial list of all candidates
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Sample repeat penalty
llama_sample_repetition_penalties(nullptr, &candidates_p, last_n_tokens_data, last_n_tokens_size, repeat_penalty, 0.0f, 0.0f);
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, 1.0f, 1);
llama_sample_typical(ctx, &candidates_p, 1.0f, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_min_p(ctx, &candidates_p, min_p, 1);
llama_sample_temp(ctx, &candidates_p, temp);
return llama_sample_token(ctx, &candidates_p);
}
const char *get_arch_name(gguf_context *ctx_gguf) {
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
if (kid == -1)
throw std::runtime_error("key not found in model: general.architecture");
@ -162,8 +151,7 @@ const char *get_arch_name(gguf_context *ctx_gguf)
return gguf_get_val_str(ctx_gguf, kid);
}
static gguf_context *load_gguf(const char *fname)
{
static gguf_context *load_gguf(const char *fname) {
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ nullptr,
@ -184,8 +172,7 @@ static gguf_context *load_gguf(const char *fname)
return ctx;
}
static int32_t get_arch_key_u32(std::string const &modelPath, std::string const &archKey)
{
static int32_t get_arch_key_u32(std::string const &modelPath, std::string const &archKey) {
int32_t value = -1;
std::string arch;
@ -205,7 +192,7 @@ static int32_t get_arch_key_u32(std::string const &modelPath, std::string const
if (keyidx != -1) {
value = gguf_get_val_u32(ctx, keyidx);
} else {
std::cerr << __func__ << ": " << key << " not found in " << modelPath << "\n";
std::cerr << __func__ << ": " << key << "not found in " << modelPath << "\n";
}
}
@ -215,27 +202,21 @@ cleanup:
}
struct LLamaPrivate {
bool modelLoaded = false;
int device = -1;
std::string deviceName;
int64_t n_threads = 0;
std::vector<LLModel::Token> end_tokens;
const char *backend_name = nullptr;
std::vector<LLModel::Token> inputTokens;
llama_model *model = nullptr;
llama_context *ctx = nullptr;
llama_model_params model_params;
llama_context_params ctx_params;
llama_sampler *sampler_chain;
const std::string modelPath;
bool modelLoaded = false;
int device = -1;
std::string deviceName;
llama_model *model = nullptr;
llama_context *ctx = nullptr;
llama_model_params model_params;
llama_context_params ctx_params;
int64_t n_threads = 0;
std::vector<LLModel::Token> end_tokens;
const char *backend_name = nullptr;
};
LLamaModel::LLamaModel()
: d_ptr(std::make_unique<LLamaPrivate>())
{
auto sparams = llama_sampler_chain_default_params();
d_ptr->sampler_chain = llama_sampler_chain_init(sparams);
}
: d_ptr(new LLamaPrivate) {}
// default hparams (LLaMA 7B)
struct llama_file_hparams {
@ -248,8 +229,7 @@ struct llama_file_hparams {
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
};
size_t LLamaModel::requiredMem(const std::string &modelPath, int n_ctx, int ngl)
{
size_t LLamaModel::requiredMem(const std::string &modelPath, int n_ctx, int ngl) {
// TODO(cebtenzzre): update to GGUF
(void)ngl; // FIXME(cetenzzre): use this value
auto fin = std::ifstream(modelPath, std::ios::binary);
@ -273,8 +253,7 @@ size_t LLamaModel::requiredMem(const std::string &modelPath, int n_ctx, int ngl)
return filesize + est_kvcache_size;
}
bool LLamaModel::isModelBlacklisted(const std::string &modelPath) const
{
bool LLamaModel::isModelBlacklisted(const std::string &modelPath) const {
auto * ctx = load_gguf(modelPath.c_str());
if (!ctx) {
std::cerr << __func__ << ": failed to load " << modelPath << "\n";
@ -310,8 +289,7 @@ bool LLamaModel::isModelBlacklisted(const std::string &modelPath) const
return res;
}
bool LLamaModel::isEmbeddingModel(const std::string &modelPath) const
{
bool LLamaModel::isEmbeddingModel(const std::string &modelPath) const {
bool result = false;
std::string arch;
@ -376,11 +354,6 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
d_ptr->model_params.main_gpu = d_ptr->device;
d_ptr->model_params.n_gpu_layers = ngl;
d_ptr->model_params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else {
#ifdef GGML_USE_CUDA
std::cerr << "Llama ERROR: CUDA loadModel was called without a device\n";
return false;
#endif // GGML_USE_CUDA
}
#elif defined(GGML_USE_METAL)
(void)ngl;
@ -393,17 +366,15 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
// always fully offload on Metal
// TODO(cebtenzzre): use this parameter to allow using more than 53% of system RAM to load a model
d_ptr->model_params.n_gpu_layers = 100;
#else // !KOMPUTE && !VULKAN && !CUDA && !METAL
#else
(void)ngl;
#endif
d_ptr->model = llama_load_model_from_file(modelPath.c_str(), d_ptr->model_params);
d_ptr->model = llama_load_model_from_file_gpt4all(modelPath.c_str(), &d_ptr->model_params);
if (!d_ptr->model) {
fflush(stdout);
#ifndef GGML_USE_CUDA
d_ptr->device = -1;
d_ptr->deviceName.clear();
#endif
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
@ -415,8 +386,7 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
bool isEmbedding = is_embedding_arch(llama_model_arch(d_ptr->model));
const int n_ctx_train = llama_n_ctx_train(d_ptr->model);
if (isEmbedding) {
d_ptr->ctx_params.n_batch = n_ctx;
d_ptr->ctx_params.n_ubatch = n_ctx;
d_ptr->ctx_params.n_batch = n_ctx;
} else {
if (n_ctx > n_ctx_train) {
std::cerr << "warning: model was trained on only " << n_ctx_train << " context tokens ("
@ -424,9 +394,10 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
}
}
d_ptr->ctx_params.n_ctx = n_ctx;
d_ptr->ctx_params.type_k = params.kv_type;
d_ptr->ctx_params.type_v = params.kv_type;
d_ptr->ctx_params.n_ctx = n_ctx;
d_ptr->ctx_params.seed = params.seed;
d_ptr->ctx_params.type_k = params.kv_type;
d_ptr->ctx_params.type_v = params.kv_type;
// The new batch API provides space for n_vocab*n_tokens logits. Tell llama.cpp early
// that we want this many logits so the state serializes consistently.
@ -445,10 +416,8 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
std::cerr << "LLAMA ERROR: failed to init context for model " << modelPath << std::endl;
llama_free_model(d_ptr->model);
d_ptr->model = nullptr;
#ifndef GGML_USE_CUDA
d_ptr->device = -1;
d_ptr->deviceName.clear();
#endif
return false;
}
@ -475,14 +444,12 @@ bool LLamaModel::loadModel(const std::string &modelPath, int n_ctx, int ngl)
return true;
}
void LLamaModel::setThreadCount(int32_t n_threads)
{
void LLamaModel::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
llama_set_n_threads(d_ptr->ctx, n_threads, n_threads);
}
int32_t LLamaModel::threadCount() const
{
int32_t LLamaModel::threadCount() const {
return d_ptr->n_threads;
}
@ -492,7 +459,6 @@ LLamaModel::~LLamaModel()
llama_free(d_ptr->ctx);
}
llama_free_model(d_ptr->model);
llama_sampler_free(d_ptr->sampler_chain);
}
bool LLamaModel::isModelLoaded() const
@ -502,48 +468,38 @@ bool LLamaModel::isModelLoaded() const
size_t LLamaModel::stateSize() const
{
return llama_state_get_size(d_ptr->ctx);
return llama_get_state_size(d_ptr->ctx);
}
size_t LLamaModel::saveState(std::span<uint8_t> stateOut, std::vector<Token> &inputTokensOut) const
size_t LLamaModel::saveState(uint8_t *dest) const
{
size_t bytesWritten = llama_state_get_data(d_ptr->ctx, stateOut.data(), stateOut.size());
if (bytesWritten)
inputTokensOut.assign(d_ptr->inputTokens.begin(), d_ptr->inputTokens.end());
return bytesWritten;
return llama_copy_state_data(d_ptr->ctx, dest);
}
size_t LLamaModel::restoreState(std::span<const uint8_t> state, std::span<const Token> inputTokens)
size_t LLamaModel::restoreState(const uint8_t *src)
{
size_t bytesRead = llama_state_set_data(d_ptr->ctx, state.data(), state.size());
if (bytesRead)
d_ptr->inputTokens.assign(inputTokens.begin(), inputTokens.end());
return bytesRead;
// const_cast is required, see: https://github.com/ggerganov/llama.cpp/pull/1540
return llama_set_state_data(d_ptr->ctx, const_cast<uint8_t*>(src));
}
std::vector<LLModel::Token> LLamaModel::tokenize(std::string_view str) const
std::vector<LLModel::Token> LLamaModel::tokenize(PromptContext &ctx, const std::string &str, bool special) const
{
std::vector<LLModel::Token> fres(str.length() + 4);
int32_t fres_len = llama_tokenize(
d_ptr->model, str.data(), str.length(), fres.data(), fres.size(), /*add_special*/ true, /*parse_special*/ true
);
const bool wantBOS = ctx.n_past == 0 && ctx.tokens.empty();
const bool useBOS = wantBOS && shouldAddBOS();
auto strCat = wantBOS && !special ? " " + str : str; // insert leading space ourselves, llama.cpp fork doesn't anymore
std::vector<LLModel::Token> fres(strCat.size()+4);
auto fres_len = llama_tokenize(d_ptr->model, strCat.c_str(), strCat.length(), fres.data(), fres.size(), useBOS, special);
fres.resize(fres_len);
return fres;
}
bool LLamaModel::isSpecialToken(Token id) const
{
return llama_token_get_attr(d_ptr->model, id)
& (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN);
}
std::string LLamaModel::tokenToString(Token id) const
{
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(d_ptr->model, id, result.data(), result.size(), 0, true);
const int n_tokens = llama_token_to_piece(d_ptr->model, id, result.data(), result.size(), false);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(d_ptr->model, id, result.data(), result.size(), 0, true);
int check = llama_token_to_piece(d_ptr->model, id, result.data(), result.size(), false);
GGML_ASSERT(check == -n_tokens);
}
else {
@ -553,66 +509,27 @@ std::string LLamaModel::tokenToString(Token id) const
return std::string(result.data(), result.size());
}
void LLamaModel::initSampler(const PromptContext &promptCtx)
LLModel::Token LLamaModel::sampleToken(PromptContext &promptCtx) const
{
auto *model = d_ptr->model;
auto *chain = d_ptr->sampler_chain;
// clear sampler chain
for (int i = llama_sampler_chain_n(chain) - 1; i >= 0; i--) {
auto *smpl = llama_sampler_chain_remove(chain, i);
llama_sampler_free(smpl);
}
// build new chain
llama_sampler_chain_add(chain,
llama_sampler_init_penalties(
llama_n_vocab(model),
llama_token_eos(model),
llama_token_nl(model),
promptCtx.repeat_last_n,
promptCtx.repeat_penalty,
// TODO(jared): consider making the below configurable
/*penalty_freq*/ 0.0f,
/*penalty_present*/ 0.0f,
/*penalize_nl*/ true,
/*ignore_eos*/ false
)
);
if (promptCtx.temp == 0.0f) {
llama_sampler_chain_add(chain, llama_sampler_init_greedy());
} else {
struct llama_sampler *samplers[] = {
llama_sampler_init_top_k(promptCtx.top_k),
llama_sampler_init_top_p(promptCtx.top_p, 1),
llama_sampler_init_min_p(promptCtx.min_p, 1),
llama_sampler_init_temp(promptCtx.temp),
llama_sampler_init_softmax(),
llama_sampler_init_dist(LLAMA_DEFAULT_SEED),
};
for (auto *smpl : samplers)
llama_sampler_chain_add(chain, smpl);
}
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return llama_sample_top_p_top_k(d_ptr->ctx,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.min_p, promptCtx.temp,
promptCtx.repeat_penalty, promptCtx.n_last_batch_tokens - 1);
}
LLModel::Token LLamaModel::sampleToken() const
bool LLamaModel::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
return llama_sampler_sample(d_ptr->sampler_chain, d_ptr->ctx, -1);
}
bool LLamaModel::evalTokens(int32_t nPast, std::span<const Token> tokens) const
{
assert(!tokens.empty());
llama_kv_cache_seq_rm(d_ptr->ctx, 0, nPast, -1);
llama_kv_cache_seq_rm(d_ptr->ctx, 0, ctx.n_past, -1);
llama_batch batch = llama_batch_init(tokens.size(), 0, 1);
batch.n_tokens = tokens.size();
ctx.n_last_batch_tokens = tokens.size();
for (int32_t i = 0; i < batch.n_tokens; i++) {
batch.token [i] = tokens[i];
batch.pos [i] = nPast + i;
batch.pos [i] = ctx.n_past + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i][0] = 0;
batch.logits [i] = false;
@ -626,86 +543,11 @@ bool LLamaModel::evalTokens(int32_t nPast, std::span<const Token> tokens) const
return res == 0;
}
void LLamaModel::shiftContext(const PromptContext &promptCtx, int32_t *nPast)
{
// infinite text generation via context shifting
// erase up to n_ctx*contextErase tokens
int n_keep = shouldAddBOS();
int n_past = *nPast;
int n_discard = std::min(n_past - n_keep, int(contextLength() * promptCtx.contextErase));
assert(n_discard > 0);
if (n_discard <= 0)
return;
std::cerr << "Llama: context full, swapping: n_past = " << n_past << ", n_keep = " << n_keep
<< ", n_discard = " << n_discard << "\n";
// erase the first n_discard tokens from the context
llama_kv_cache_seq_rm (d_ptr->ctx, 0, n_keep, n_keep + n_discard);
llama_kv_cache_seq_add(d_ptr->ctx, 0, n_keep + n_discard, n_past, -n_discard);
auto &inp = d_ptr->inputTokens;
inp.erase(inp.begin() + n_keep, inp.begin() + n_keep + n_discard);
*nPast = inp.size();
}
int32_t LLamaModel::contextLength() const
{
return llama_n_ctx(d_ptr->ctx);
}
auto LLamaModel::specialTokens() -> std::unordered_map<std::string, std::string> const
{
if (!d_ptr->model)
throw std::logic_error("model not loaded");
std::unordered_map<std::string, std::string> tokens;
if (auto id = llama_token_bos(d_ptr->model); id != LLAMA_TOKEN_NULL)
tokens.emplace("bos_token", tokenToString(id));
if (auto id = llama_token_eos(d_ptr->model); id != LLAMA_TOKEN_NULL)
tokens.emplace("eos_token", tokenToString(id));
return tokens;
}
int32_t LLamaModel::inputLength() const
{
return d_ptr->inputTokens.size();
}
int32_t LLamaModel::computeModelInputPosition(std::span<const Token> input) const
{
// find common prefix
auto cacheIt = d_ptr->inputTokens.begin();
auto inputIt = input.begin();
while (cacheIt < d_ptr->inputTokens.end() && inputIt < input.end() && *cacheIt == *inputIt) {
++cacheIt; ++inputIt;
}
// tell the caller to ignore the tokens between [begin, inputIt)
return inputIt - input.begin();
}
void LLamaModel::setModelInputPosition(int32_t pos)
{
auto &inp = d_ptr->inputTokens;
assert(pos >= 0);
assert(pos <= inp.size());
// truncate token cache to end at the new n_past
if (pos < inp.size())
inp.resize(pos);
}
void LLamaModel::appendInputToken(Token tok)
{
d_ptr->inputTokens.push_back(tok);
}
auto LLamaModel::inputTokens() const -> std::span<const Token>
{
return d_ptr->inputTokens;
}
const std::vector<LLModel::Token> &LLamaModel::endTokens() const
{
return d_ptr->end_tokens;
@ -713,7 +555,10 @@ const std::vector<LLModel::Token> &LLamaModel::endTokens() const
bool LLamaModel::shouldAddBOS() const
{
return llama_add_bos_token(d_ptr->model);
int add_bos = llama_add_bos_token(d_ptr->model);
if (add_bos != -1) { return add_bos; }
auto vocab_type = llama_vocab_type(d_ptr->model);
return vocab_type == LLAMA_VOCAB_TYPE_SPM || vocab_type == LLAMA_VOCAB_TYPE_WPM;
}
int32_t LLamaModel::maxContextLength(std::string const &modelPath) const
@ -726,40 +571,8 @@ int32_t LLamaModel::layerCount(std::string const &modelPath) const
return get_arch_key_u32(modelPath, "block_count");
}
// TODO(jared): reduce redundant code and operations by combining all metadata getters for unloaded
// models into a class that keeps the model file open
auto LLamaModel::chatTemplate(const char *modelPath) const -> std::expected<std::string, std::string>
{
auto *ctx = load_gguf(modelPath);
if (!ctx)
return std::unexpected("failed to open model file");
std::expected<std::string, std::string> result;
enum gguf_type ktype;
const int kid = gguf_find_key(ctx, "tokenizer.chat_template");
if (kid == -1) {
result = std::unexpected("key not found");
goto cleanup;
}
ktype = gguf_get_kv_type(ctx, kid);
if (ktype != GGUF_TYPE_STRING) {
result = std::unexpected(
"expected key type STRING (" + std::to_string(GGUF_TYPE_STRING) + "), got " + std::to_string(ktype)
);
goto cleanup;
}
result = gguf_get_val_str(ctx, kid);
cleanup:
gguf_free(ctx);
return result;
}
#ifdef GGML_USE_VULKAN
static const char *getVulkanVendorName(uint32_t vendorID)
{
static const char *getVulkanVendorName(uint32_t vendorID) {
switch (vendorID) {
case 0x10DE: return "nvidia";
case 0x1002: return "amd";
@ -889,30 +702,41 @@ bool LLamaModel::initializeGPUDevice(int device, std::string *unavail_reason) co
#endif
}
bool LLamaModel::usingGPUDevice() const
bool LLamaModel::hasGPUDevice() const
{
if (!d_ptr->model)
return false;
bool usingGPU = llama_model_using_gpu(d_ptr->model);
#ifdef GGML_USE_KOMPUTE
assert(!usingGPU || ggml_vk_has_device());
#if defined(GGML_USE_KOMPUTE) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CUDA)
return d_ptr->device != -1;
#else
return false;
#endif
return usingGPU;
}
const char *LLamaModel::backendName() const
bool LLamaModel::usingGPUDevice() const
{
bool hasDevice;
#ifdef GGML_USE_KOMPUTE
hasDevice = hasGPUDevice() && d_ptr->model_params.n_gpu_layers > 0;
assert(!hasDevice || ggml_vk_has_device());
#elif defined(GGML_USE_VULKAN) || defined(GGML_USE_CUDA)
hasDevice = hasGPUDevice() && d_ptr->model_params.n_gpu_layers > 0;
#elif defined(GGML_USE_METAL)
hasDevice = true;
#else
hasDevice = false;
#endif
return hasDevice;
}
const char *LLamaModel::backendName() const {
return d_ptr->backend_name;
}
const char *LLamaModel::gpuDeviceName() const
{
const char *LLamaModel::gpuDeviceName() const {
if (usingGPUDevice()) {
#if defined(GGML_USE_KOMPUTE) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CUDA)
return d_ptr->deviceName.c_str();
#elif defined(GGML_USE_METAL)
return "Metal";
#endif
}
return nullptr;
@ -935,15 +759,13 @@ void llama_batch_add(
batch.n_tokens++;
}
static void batch_add_seq(llama_batch &batch, const std::vector<LLModel::Token> &tokens, int seq_id)
{
static void batch_add_seq(llama_batch &batch, const std::vector<LLModel::Token> &tokens, int seq_id) {
for (unsigned i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
}
}
size_t LLamaModel::embeddingSize() const
{
size_t LLamaModel::embeddingSize() const {
return llama_n_embd(d_ptr->model);
}
@ -1063,14 +885,12 @@ void LLamaModel::embed(
// MD5 hash of "nomic empty"
static const char EMPTY_PLACEHOLDER[] = "24df574ea1c998de59d5be15e769658e";
auto product(double a) -> std::function<double(double)>
{
auto product(double a) -> std::function<double(double)> {
return [a](double b) { return a * b; };
}
template <typename T>
double getL2NormScale(T *start, T *end)
{
double getL2NormScale(T *start, T *end) {
double magnitude = std::sqrt(std::inner_product(start, end, start, 0.0));
return 1.0 / std::max(magnitude, 1e-12);
}
@ -1086,7 +906,7 @@ void LLamaModel::embedInternal(
const llama_token bos_token = llama_token_bos(d_ptr->model);
const llama_token eos_token = llama_token_eos(d_ptr->model);
bool useBOS = llama_add_bos_token(d_ptr->model);
bool useBOS = shouldAddBOS();
bool useEOS = llama_vocab_type(d_ptr->model) == LLAMA_VOCAB_TYPE_WPM;
// no EOS, optional BOS
@ -1094,20 +914,17 @@ void LLamaModel::embedInternal(
if (!text.empty() && text[0] != ' ') {
text = ' ' + text; // normalize for SPM - our fork of llama.cpp doesn't add a space prefix
}
wantBOS &= useBOS;
tokens.resize(text.length()+4);
int32_t n_tokens = llama_tokenize_gpt4all(
d_ptr->model, text.c_str(), text.length(), tokens.data(), tokens.size(), /*add_special*/ wantBOS,
/*parse_special*/ false, /*insert_space*/ false
);
int32_t n_tokens = llama_tokenize(d_ptr->model, text.c_str(), text.length(), tokens.data(), tokens.size(), wantBOS, false);
if (n_tokens) {
(void)eos_token;
(void)useBOS;
assert((useEOS && wantBOS && useBOS) == (eos_token != -1 && tokens[n_tokens - 1] == eos_token));
if (useEOS && wantBOS)
n_tokens--; // erase EOS/SEP
assert(useEOS == (eos_token != -1 && tokens[n_tokens - 1] == eos_token));
tokens.resize(n_tokens - useEOS); // erase EOS/SEP
} else {
tokens.clear();
}
tokens.resize(n_tokens);
};
// tokenize the texts
@ -1159,14 +976,14 @@ void LLamaModel::embedInternal(
size_t totalTokens = 0;
for (unsigned i = 0; i < inputs.size(); i++) {
auto &input = inputs[i];
for (unsigned j = 0; j < input.size(); j += max_len) {
if (j) { j -= chunkOverlap; }
unsigned end = std::min(j + max_len, unsigned(input.size()));
for (auto it = input.begin(); it < input.end(); it += max_len) {
if (it > input.begin()) { it -= chunkOverlap; }
auto end = std::min(it + max_len, input.end());
batches.push_back({ i, {} });
auto &batch = batches.back().batch;
batch = prefixTokens;
batch.insert(batch.end(), input.begin() + j, input.begin() + end);
totalTokens += end - j;
batch.insert(batch.end(), it, end);
totalTokens += end - it;
batch.push_back(eos_token);
if (!doMean) { break; /* limit text to one chunk */ }
}
@ -1281,23 +1098,19 @@ void LLamaModel::embedInternal(
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation()
{
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type()
{
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant()
{
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT char *get_file_arch(const char *fname)
{
DLL_EXPORT char *get_file_arch(const char *fname) {
char *arch = nullptr;
std::string archStr;
@ -1322,17 +1135,12 @@ cleanup:
return arch;
}
DLL_EXPORT bool is_arch_supported(const char *arch)
{
DLL_EXPORT bool is_arch_supported(const char *arch) {
return std::find(KNOWN_ARCHES.begin(), KNOWN_ARCHES.end(), std::string(arch)) < KNOWN_ARCHES.end();
}
DLL_EXPORT LLModel *construct()
{
llama_log_set([](auto l, auto t, auto u) { llama_log_callback(l, t, u, false); }, nullptr);
#ifdef GGML_USE_CUDA
ggml_backend_cuda_log_set_callback([](auto l, auto t, auto u) { llama_log_callback(l, t, u, true); }, nullptr);
#endif
DLL_EXPORT LLModel *construct() {
llama_log_set(llama_log_callback, nullptr);
return new LLamaModel;
}
}

View File

@ -4,14 +4,11 @@
#ifndef LLAMAMODEL_H
#define LLAMAMODEL_H
#include "llmodel.h"
#include <functional>
#include <memory>
#include <span>
#include <string>
#include <string_view>
#include <vector>
#include <unordered_map>
#include "llmodel.h"
struct LLamaPrivate;
struct EmbModelSpec;
@ -29,13 +26,14 @@ public:
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) override;
size_t stateSize() const override;
size_t saveState(std::span<uint8_t> stateOut, std::vector<Token> &inputTokensOut) const override;
size_t restoreState(std::span<const uint8_t> state, std::span<const Token> inputTokens) override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired = 0) const override;
bool initializeGPUDevice(size_t memoryRequired, const std::string &name) const override;
bool initializeGPUDevice(int device, std::string *unavail_reason = nullptr) const override;
bool hasGPUDevice() const override;
bool usingGPUDevice() const override;
const char *backendName() const override;
const char *gpuDeviceName() const override;
@ -49,36 +47,25 @@ public:
void embed(const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality = -1,
size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false) override;
int32_t contextLength() const override;
auto specialTokens() -> std::unordered_map<std::string, std::string> const override;
protected:
std::vector<Token> tokenize(std::string_view str) const override;
bool isSpecialToken(Token id) const override;
std::string tokenToString(Token id) const override;
void initSampler(const PromptContext &ctx) override;
Token sampleToken() const override;
bool evalTokens(int32_t nPast, std::span<const Token> tokens) const override;
void shiftContext(const PromptContext &promptCtx, int32_t *nPast) override;
int32_t inputLength() const override;
int32_t computeModelInputPosition(std::span<const Token> input) const override;
void setModelInputPosition(int32_t pos) override;
void appendInputToken(Token tok) override;
std::span<const Token> inputTokens() const override;
const std::vector<Token> &endTokens() const override;
bool shouldAddBOS() const override;
int32_t maxContextLength(std::string const &modelPath) const override;
int32_t layerCount(std::string const &modelPath) const override;
auto chatTemplate(const char *modelPath) const -> std::expected<std::string, std::string> override;
void embedInternal(const std::vector<std::string> &texts, float *embeddings, std::string prefix, int dimensionality,
size_t *tokenCount, bool doMean, bool atlas, EmbedCancelCallback *cancelCb,
const EmbModelSpec *spec);
private:
std::unique_ptr<LLamaPrivate> d_ptr;
bool m_supportsEmbedding = false;
bool m_supportsCompletion = false;
protected:
std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special) const override;
std::string tokenToString(Token id) const override;
Token sampleToken(PromptContext &ctx) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token> &endTokens() const override;
bool shouldAddBOS() const override;
int32_t maxContextLength(std::string const &modelPath) const override;
int32_t layerCount(std::string const &modelPath) const override;
void embedInternal(const std::vector<std::string> &texts, float *embeddings, std::string prefix, int dimensionality,
size_t *tokenCount, bool doMean, bool atlas, EmbedCancelCallback *cancelCb,
const EmbModelSpec *spec);
};
#endif // LLAMAMODEL_H

View File

@ -1,13 +1,12 @@
#include "llmodel.h"
#include "dlhandle.h"
#include "sysinfo.h"
#include <cassert>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <iterator>
#include <memory>
#include <optional>
#include <regex>
@ -28,12 +27,6 @@
# include <intrin.h>
#endif
#if defined(__APPLE__) && defined(__aarch64__)
# include "sysinfo.h" // for getSystemTotalRAMInBytes
#endif
namespace fs = std::filesystem;
#ifndef __APPLE__
static const std::string DEFAULT_BACKENDS[] = {"kompute", "cpu"};
#elif defined(__aarch64__)
@ -92,20 +85,17 @@ LLModel::Implementation::Implementation(Implementation &&o)
o.m_dlhandle = nullptr;
}
LLModel::Implementation::~Implementation()
{
LLModel::Implementation::~Implementation() {
delete m_dlhandle;
}
static bool isImplementation(const Dlhandle &dl)
{
static bool isImplementation(const Dlhandle &dl) {
return dl.get<bool(uint32_t)>("is_g4a_backend_model_implementation");
}
// Add the CUDA Toolkit to the DLL search path on Windows.
// This is necessary for chat.exe to find CUDA when started from Qt Creator.
static void addCudaSearchPath()
{
static void addCudaSearchPath() {
#ifdef _WIN32
if (const auto *cudaPath = _wgetenv(L"CUDA_PATH")) {
auto libDir = std::wstring(cudaPath) + L"\\bin";
@ -117,8 +107,7 @@ static void addCudaSearchPath()
#endif
}
const std::vector<LLModel::Implementation> &LLModel::Implementation::implementationList()
{
const std::vector<LLModel::Implementation> &LLModel::Implementation::implementationList() {
if (cpu_supports_avx() == 0) {
throw std::runtime_error("CPU does not support AVX");
}
@ -130,7 +119,7 @@ const std::vector<LLModel::Implementation> &LLModel::Implementation::implementat
addCudaSearchPath();
std::string impl_name_re = "llamamodel-mainline-(cpu|metal|kompute|vulkan|cuda)";
std::string impl_name_re = "(gptj|llamamodel-mainline)-(cpu|metal|kompute|vulkan|cuda)";
if (cpu_supports_avx2() == 0) {
impl_name_re += "-avxonly";
}
@ -140,32 +129,21 @@ const std::vector<LLModel::Implementation> &LLModel::Implementation::implementat
std::string path;
// Split the paths string by the delimiter and process each path.
while (std::getline(ss, path, ';')) {
fs::directory_iterator iter;
try {
iter = fs::directory_iterator(std::u8string(path.begin(), path.end()));
} catch (const fs::filesystem_error &) {
continue; // skip nonexistent path
}
std::filesystem::path fs_path(path);
// Iterate over all libraries
for (const auto &f : iter) {
const fs::path &p = f.path();
for (const auto& f : std::filesystem::directory_iterator(fs_path)) {
const std::filesystem::path& p = f.path();
if (p.extension() != LIB_FILE_EXT) continue;
if (!std::regex_search(p.stem().string(), re)) continue;
// Add to list if model implementation
Dlhandle dl;
try {
dl = Dlhandle(p);
} catch (const Dlhandle::Exception &e) {
std::cerr << "Failed to load " << p.filename().string() << ": " << e.what() << "\n";
continue;
}
if (!isImplementation(dl)) {
std::cerr << "Not an implementation: " << p.filename().string() << "\n";
continue;
}
fres.emplace_back(Implementation(std::move(dl)));
Dlhandle dl(p.string());
if (!isImplementation(dl))
continue;
fres.emplace_back(Implementation(std::move(dl)));
} catch (...) {}
}
}
};
@ -178,16 +156,14 @@ const std::vector<LLModel::Implementation> &LLModel::Implementation::implementat
return *libs;
}
static std::string applyCPUVariant(const std::string &buildVariant)
{
static std::string applyCPUVariant(const std::string &buildVariant) {
if (buildVariant != "metal" && cpu_supports_avx2() == 0) {
return buildVariant + "-avxonly";
}
return buildVariant;
}
const LLModel::Implementation* LLModel::Implementation::implementation(const char *fname, const std::string& buildVariant)
{
const LLModel::Implementation* LLModel::Implementation::implementation(const char *fname, const std::string& buildVariant) {
bool buildVariantMatched = false;
std::optional<std::string> archName;
for (const auto& i : implementationList()) {
@ -211,8 +187,7 @@ const LLModel::Implementation* LLModel::Implementation::implementation(const cha
throw BadArchError(std::move(*archName));
}
LLModel *LLModel::Implementation::construct(const std::string &modelPath, const std::string &backend, int n_ctx)
{
LLModel *LLModel::Implementation::construct(const std::string &modelPath, const std::string &backend, int n_ctx) {
std::vector<std::string> desiredBackends;
if (backend != "auto") {
desiredBackends.push_back(backend);
@ -252,8 +227,7 @@ LLModel *LLModel::Implementation::construct(const std::string &modelPath, const
throw MissingImplementationError("Could not find any implementations for backend: " + backend);
}
LLModel *LLModel::Implementation::constructGlobalLlama(const std::optional<std::string> &backend)
{
LLModel *LLModel::Implementation::constructGlobalLlama(const std::optional<std::string> &backend) {
static std::unordered_map<std::string, std::unique_ptr<LLModel>> implCache;
const std::vector<Implementation> *impls;
@ -297,8 +271,7 @@ LLModel *LLModel::Implementation::constructGlobalLlama(const std::optional<std::
return nullptr;
}
std::vector<LLModel::GPUDevice> LLModel::Implementation::availableGPUDevices(size_t memoryRequired)
{
std::vector<LLModel::GPUDevice> LLModel::Implementation::availableGPUDevices(size_t memoryRequired) {
std::vector<LLModel::GPUDevice> devices;
#ifndef __APPLE__
static const std::string backends[] = {"kompute", "cuda"};
@ -313,46 +286,33 @@ std::vector<LLModel::GPUDevice> LLModel::Implementation::availableGPUDevices(siz
return devices;
}
int32_t LLModel::Implementation::maxContextLength(const std::string &modelPath)
{
int32_t LLModel::Implementation::maxContextLength(const std::string &modelPath) {
auto *llama = constructGlobalLlama();
return llama ? llama->maxContextLength(modelPath) : -1;
}
int32_t LLModel::Implementation::layerCount(const std::string &modelPath)
{
int32_t LLModel::Implementation::layerCount(const std::string &modelPath) {
auto *llama = constructGlobalLlama();
return llama ? llama->layerCount(modelPath) : -1;
}
bool LLModel::Implementation::isEmbeddingModel(const std::string &modelPath)
{
bool LLModel::Implementation::isEmbeddingModel(const std::string &modelPath) {
auto *llama = constructGlobalLlama();
return llama && llama->isEmbeddingModel(modelPath);
}
auto LLModel::Implementation::chatTemplate(const char *modelPath) -> std::expected<std::string, std::string>
{
auto *llama = constructGlobalLlama();
return llama ? llama->chatTemplate(modelPath) : std::unexpected("backend not available");
}
void LLModel::Implementation::setImplementationsSearchPath(const std::string& path)
{
void LLModel::Implementation::setImplementationsSearchPath(const std::string& path) {
s_implementations_search_path = path;
}
const std::string& LLModel::Implementation::implementationsSearchPath()
{
const std::string& LLModel::Implementation::implementationsSearchPath() {
return s_implementations_search_path;
}
bool LLModel::Implementation::hasSupportedCPU()
{
bool LLModel::Implementation::hasSupportedCPU() {
return cpu_supports_avx() != 0;
}
int LLModel::Implementation::cpuSupportsAVX2()
{
int LLModel::Implementation::cpuSupportsAVX2() {
return cpu_supports_avx2();
}

View File

@ -2,33 +2,24 @@
#define LLMODEL_H
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <expected>
#include <fstream>
#include <functional>
#include <limits>
#include <optional>
#include <span>
#include <stdexcept>
#include <string>
#include <string_view>
#include <unordered_map>
#include <utility>
#include <vector>
class Dlhandle;
using namespace std::string_literals;
#define LLMODEL_MAX_PROMPT_BATCH 128
class Dlhandle;
class LLModel {
public:
using Token = int32_t;
using PromptCallback = std::function<bool(std::span<const Token> batch, bool cached)>;
using ResponseCallback = std::function<bool(Token token, std::string_view piece)>;
using EmbedCancelCallback = bool(unsigned *batchSizes, unsigned nBatch, const char *backend);
using ProgressCallback = std::function<bool(float progress)>;
class BadArchError: public std::runtime_error {
public:
@ -65,30 +56,23 @@ public:
backend(backend), index(index), type(type), heapSize(heapSize), name(std::move(name)),
vendor(std::move(vendor)) {}
std::string selectionName() const
{
assert(backend == "cuda"s || backend == "kompute"s);
return backendName() + ": " + name;
}
std::string backendName() const { return backendIdToName(backend); }
static std::string backendIdToName(const std::string &backend) { return s_backendNames.at(backend); }
std::string selectionName() const { return m_backendNames.at(backend) + ": " + name; }
std::string reportedName() const { return name + " (" + m_backendNames.at(backend) + ")"; }
static std::string updateSelectionName(const std::string &name) {
if (name == "Auto" || name == "CPU" || name == "Metal")
return name;
auto it = std::find_if(s_backendNames.begin(), s_backendNames.end(), [&name](const auto &entry) {
auto it = std::find_if(m_backendNames.begin(), m_backendNames.end(), [&name](const auto &entry) {
return name.starts_with(entry.second + ": ");
});
if (it != s_backendNames.end())
if (it != m_backendNames.end())
return name;
return "Vulkan: " + name; // previously, there were only Vulkan devices
}
private:
static inline const std::unordered_map<std::string, std::string> s_backendNames {
{"cpu", "CPU"}, {"metal", "Metal"}, {"cuda", "CUDA"}, {"kompute", "Vulkan"},
static inline const std::unordered_map<std::string, std::string> m_backendNames {
{"cuda", "CUDA"}, {"kompute", "Vulkan"},
};
};
@ -106,7 +90,6 @@ public:
static int32_t maxContextLength(const std::string &modelPath);
static int32_t layerCount(const std::string &modelPath);
static bool isEmbeddingModel(const std::string &modelPath);
static auto chatTemplate(const char *modelPath) -> std::expected<std::string, std::string>;
static void setImplementationsSearchPath(const std::string &path);
static const std::string &implementationsSearchPath();
static bool hasSupportedCPU();
@ -130,6 +113,10 @@ public:
};
struct PromptContext {
std::vector<float> logits; // logits of current context
std::vector<int32_t> tokens; // current tokens in the context window
int32_t n_past = 0; // number of tokens in past conversation
int32_t n_ctx = 0; // number of tokens possible in context window
int32_t n_predict = 200;
int32_t top_k = 40;
float top_p = 0.9f;
@ -138,31 +125,38 @@ public:
int32_t n_batch = 9;
float repeat_penalty = 1.10f;
int32_t repeat_last_n = 64; // last n tokens to penalize
float contextErase = 0.5f; // percent of context to erase if we exceed the context window
float contextErase = 0.75f; // percent of context to erase if we exceed the context window
int32_t n_last_batch_tokens = 0;
};
using ProgressCallback = std::function<bool(float progress)>;
explicit LLModel() {}
virtual ~LLModel() {}
virtual bool supportsEmbedding() const = 0;
virtual bool supportsCompletion() const = 0;
virtual bool loadModel(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual bool isModelBlacklisted(const std::string &modelPath) const { (void)modelPath; return false; }
virtual bool isModelBlacklisted(const std::string &modelPath) const { (void)modelPath; return false; };
virtual bool isEmbeddingModel(const std::string &modelPath) const { (void)modelPath; return false; }
virtual bool isModelLoaded() const = 0;
virtual size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual size_t stateSize() const = 0;
virtual size_t saveState(std::span<uint8_t> stateOut, std::vector<Token> &inputTokensOut) const = 0;
virtual size_t restoreState(std::span<const uint8_t> state, std::span<const Token> inputTokens) = 0;
virtual size_t stateSize() const { return 0; }
virtual size_t saveState(uint8_t *dest) const { (void)dest; return 0; }
virtual size_t restoreState(const uint8_t *src) { (void)src; return 0; }
// This method requires the model to return true from supportsCompletion otherwise it will throw
// an error
virtual void prompt(std::string_view prompt,
const PromptCallback &promptCallback,
const ResponseCallback &responseCallback,
const PromptContext &ctx);
virtual void prompt(const std::string &prompt,
const std::string &promptTemplate,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &ctx,
bool special = false,
std::string *fakeReply = nullptr);
virtual int32_t countPromptTokens(std::string_view prompt) const;
using EmbedCancelCallback = bool(unsigned *batchSizes, unsigned nBatch, const char *backend);
virtual size_t embeddingSize() const {
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
@ -201,30 +195,21 @@ public:
return false;
}
virtual bool hasGPUDevice() const { return false; }
virtual bool usingGPUDevice() const { return false; }
virtual const char *backendName() const { return "cpu"; }
virtual const char *gpuDeviceName() const { return nullptr; }
void setProgressCallback(ProgressCallback callback) { m_progressCallback = callback; }
virtual int32_t contextLength() const = 0;
virtual auto specialTokens() -> std::unordered_map<std::string, std::string> const = 0;
protected:
// These are pure virtual because subclasses need to implement as the default implementation of
// 'prompt' above calls these functions
virtual std::vector<Token> tokenize(std::string_view str) const = 0;
virtual bool isSpecialToken(Token id) const = 0;
virtual std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special = false) const = 0;
virtual std::string tokenToString(Token id) const = 0;
virtual void initSampler(const PromptContext &ctx) = 0;
virtual Token sampleToken() const = 0;
virtual bool evalTokens(int32_t nPast, std::span<const Token> tokens) const = 0;
virtual void shiftContext(const PromptContext &promptCtx, int32_t *nPast) = 0;
virtual int32_t inputLength() const = 0;
virtual int32_t computeModelInputPosition(std::span<const Token> input) const = 0;
virtual void setModelInputPosition(int32_t pos) = 0;
virtual void appendInputToken(Token tok) = 0;
virtual std::span<const Token> inputTokens() const = 0;
virtual Token sampleToken(PromptContext &ctx) const = 0;
virtual bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const = 0;
virtual int32_t contextLength() const = 0;
virtual const std::vector<Token> &endTokens() const = 0;
virtual bool shouldAddBOS() const = 0;
@ -240,11 +225,9 @@ protected:
return -1;
}
virtual auto chatTemplate(const char *modelPath) const -> std::expected<std::string, std::string>
{
(void)modelPath;
return std::unexpected("not implemented");
}
// This is a helper function called from the default implementation of 'prompt' but it can be
// shared by all base classes so it isn't virtual
void recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate);
const Implementation *m_implementation = nullptr;
@ -257,16 +240,16 @@ protected:
return true;
}
// prefill context with prompt
auto decodePrompt(const PromptCallback &promptCallback,
const PromptContext &promptCtx,
std::vector<Token> embd_inp)
-> std::optional<int32_t>;
// generate a response
void generateResponse(const ResponseCallback &responseCallback,
const PromptContext &promptCtx,
int32_t nPast);
void decodePrompt(std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx,
std::vector<Token> embd_inp);
void generateResponse(std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx);
private:
friend class LLMImplementation;
};

View File

@ -1,31 +1,20 @@
#include "llmodel_c.h"
#include "llmodel.h"
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cerrno>
#include <cstring>
#include <exception>
#include <iostream>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <vector>
#include <span>
namespace ranges = std::ranges;
static_assert(sizeof(token_t) == sizeof(LLModel::Token));
#include <utility>
struct LLModelWrapper {
LLModel *llModel = nullptr;
LLModel::PromptContext promptContext;
~LLModelWrapper() { delete llModel; }
};
llmodel_model llmodel_model_create(const char *model_path)
{
llmodel_model llmodel_model_create(const char *model_path) {
const char *error;
auto fres = llmodel_model_create2(model_path, "auto", &error);
if (!fres) {
@ -34,8 +23,7 @@ llmodel_model llmodel_model_create(const char *model_path)
return fres;
}
static void llmodel_set_error(const char **errptr, const char *message)
{
static void llmodel_set_error(const char **errptr, const char *message) {
thread_local static std::string last_error_message;
if (errptr) {
last_error_message = message;
@ -43,8 +31,7 @@ static void llmodel_set_error(const char **errptr, const char *message)
}
}
llmodel_model llmodel_model_create2(const char *model_path, const char *backend, const char **error)
{
llmodel_model llmodel_model_create2(const char *model_path, const char *backend, const char **error) {
LLModel *llModel;
try {
llModel = LLModel::Implementation::construct(model_path, backend);
@ -58,8 +45,7 @@ llmodel_model llmodel_model_create2(const char *model_path, const char *backend,
return wrapper;
}
void llmodel_model_destroy(llmodel_model model)
{
void llmodel_model_destroy(llmodel_model model) {
delete static_cast<LLModelWrapper *>(model);
}
@ -88,80 +74,82 @@ bool llmodel_isModelLoaded(llmodel_model model)
return wrapper->llModel->isModelLoaded();
}
uint64_t llmodel_state_get_size(llmodel_model model)
uint64_t llmodel_get_state_size(llmodel_model model)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->stateSize();
}
uint64_t llmodel_state_get_data(llmodel_model model, uint8_t *state_out, uint64_t state_size,
token_t **input_tokens_out, uint64_t *n_input_tokens)
uint64_t llmodel_save_state_data(llmodel_model model, uint8_t *dest)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
std::vector<LLModel::Token> inputTokens;
auto bytesWritten = wrapper->llModel->saveState({state_out, size_t(state_size)}, inputTokens);
if (bytesWritten) {
auto *buf = new LLModel::Token[inputTokens.size()];
ranges::copy(inputTokens, buf);
*input_tokens_out = buf;
*n_input_tokens = uint64_t(inputTokens.size());
} else {
*input_tokens_out = nullptr;
*n_input_tokens = 0;
}
return bytesWritten;
return wrapper->llModel->saveState(dest);
}
void llmodel_state_free_input_tokens(LLModel::Token *input_tokens)
{
delete[] input_tokens;
}
uint64_t llmodel_state_set_data(llmodel_model model, const uint8_t *state, uint64_t state_size,
const token_t *input_tokens, uint64_t n_input_tokens)
uint64_t llmodel_restore_state_data(llmodel_model model, const uint8_t *src)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->restoreState({state, size_t(state_size)}, {input_tokens, size_t(n_input_tokens)});
return wrapper->llModel->restoreState(src);
}
bool llmodel_prompt(llmodel_model model,
const char *prompt,
llmodel_prompt_callback prompt_callback,
llmodel_response_callback response_callback,
llmodel_prompt_context *ctx,
const char **error)
void llmodel_prompt(llmodel_model model, const char *prompt,
const char *prompt_template,
llmodel_prompt_callback prompt_callback,
llmodel_response_callback response_callback,
llmodel_recalculate_callback recalculate_callback,
llmodel_prompt_context *ctx,
bool special,
const char *fake_reply)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
auto response_func = [response_callback](int32_t token_id, const std::string &response) {
return response_callback(token_id, response.c_str());
};
if (size_t(ctx->n_past) < wrapper->promptContext.tokens.size())
wrapper->promptContext.tokens.resize(ctx->n_past);
// Copy the C prompt context
LLModel::PromptContext promptContext {
.n_predict = ctx->n_predict,
.top_k = ctx->top_k,
.top_p = ctx->top_p,
.min_p = ctx->min_p,
.temp = ctx->temp,
.n_batch = ctx->n_batch,
.repeat_penalty = ctx->repeat_penalty,
.repeat_last_n = ctx->repeat_last_n,
.contextErase = ctx->context_erase,
};
wrapper->promptContext.n_past = ctx->n_past;
wrapper->promptContext.n_ctx = ctx->n_ctx;
wrapper->promptContext.n_predict = ctx->n_predict;
wrapper->promptContext.top_k = ctx->top_k;
wrapper->promptContext.top_p = ctx->top_p;
wrapper->promptContext.min_p = ctx->min_p;
wrapper->promptContext.temp = ctx->temp;
wrapper->promptContext.n_batch = ctx->n_batch;
wrapper->promptContext.repeat_penalty = ctx->repeat_penalty;
wrapper->promptContext.repeat_last_n = ctx->repeat_last_n;
wrapper->promptContext.contextErase = ctx->context_erase;
auto prompt_func = [prompt_callback](std::span<const LLModel::Token> token_ids, bool cached) {
return prompt_callback(token_ids.data(), token_ids.size(), cached);
};
auto response_func = [response_callback](LLModel::Token token_id, std::string_view piece) {
return response_callback(token_id, piece.data());
};
std::string fake_reply_str;
if (fake_reply) { fake_reply_str = fake_reply; }
auto *fake_reply_p = fake_reply ? &fake_reply_str : nullptr;
// Call the C++ prompt method
try {
wrapper->llModel->prompt(prompt, prompt_func, response_func, promptContext);
} catch (std::exception const &e) {
llmodel_set_error(error, e.what());
return false;
}
wrapper->llModel->prompt(prompt, prompt_template, prompt_callback, response_func, recalculate_callback,
wrapper->promptContext, special, fake_reply_p);
return true;
// Update the C context by giving access to the wrappers raw pointers to std::vector data
// which involves no copies
ctx->logits = wrapper->promptContext.logits.data();
ctx->logits_size = wrapper->promptContext.logits.size();
ctx->tokens = wrapper->promptContext.tokens.data();
ctx->tokens_size = wrapper->promptContext.tokens.size();
// Update the rest of the C prompt context
ctx->n_past = wrapper->promptContext.n_past;
ctx->n_ctx = wrapper->promptContext.n_ctx;
ctx->n_predict = wrapper->promptContext.n_predict;
ctx->top_k = wrapper->promptContext.top_k;
ctx->top_p = wrapper->promptContext.top_p;
ctx->min_p = wrapper->promptContext.min_p;
ctx->temp = wrapper->promptContext.temp;
ctx->n_batch = wrapper->promptContext.n_batch;
ctx->repeat_penalty = wrapper->promptContext.repeat_penalty;
ctx->repeat_last_n = wrapper->promptContext.repeat_last_n;
ctx->context_erase = wrapper->promptContext.contextErase;
}
float *llmodel_embed(
@ -289,6 +277,12 @@ bool llmodel_gpu_init_gpu_device_by_int(llmodel_model model, int device)
return wrapper->llModel->initializeGPUDevice(device);
}
bool llmodel_has_gpu_device(llmodel_model model)
{
const auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->hasGPUDevice();
}
const char *llmodel_model_backend_name(llmodel_model model)
{
const auto *wrapper = static_cast<LLModelWrapper *>(model);
@ -300,21 +294,3 @@ const char *llmodel_model_gpu_device_name(llmodel_model model)
const auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->gpuDeviceName();
}
int32_t llmodel_count_prompt_tokens(llmodel_model model, const char *prompt, const char **error)
{
auto *wrapper = static_cast<const LLModelWrapper *>(model);
try {
return wrapper->llModel->countPromptTokens(prompt);
} catch (const std::exception& e) {
llmodel_set_error(error, e.what());
return -1;
}
}
void llmodel_model_foreach_special_token(llmodel_model model, llmodel_special_token_callback callback)
{
auto *wrapper = static_cast<const LLModelWrapper *>(model);
for (auto &[name, token] : wrapper->llModel->specialTokens())
callback(name.c_str(), token.c_str());
}

View File

@ -1,9 +1,9 @@
#ifndef LLMODEL_C_H
#define LLMODEL_C_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#ifdef __GNUC__
#define DEPRECATED __attribute__ ((deprecated))
@ -23,11 +23,6 @@ extern "C" {
*/
typedef void *llmodel_model;
/**
* A token.
*/
typedef int32_t token_t;
/**
* llmodel_prompt_context structure for holding the prompt context.
* NOTE: The implementation takes care of all the memory handling of the raw logits pointer and the
@ -35,15 +30,21 @@ typedef int32_t token_t;
* behavior.
*/
struct llmodel_prompt_context {
float *logits; // logits of current context
size_t logits_size; // the size of the raw logits vector
int32_t *tokens; // current tokens in the context window
size_t tokens_size; // the size of the raw tokens vector
int32_t n_past; // number of tokens in past conversation
int32_t n_ctx; // number of tokens possible in context window
int32_t n_predict; // number of tokens to predict
int32_t top_k; // top k logits to sample from
float top_p; // nucleus sampling probability threshold
float min_p; // Min P sampling
float temp; // temperature to adjust model's output distribution
float top_p; // nucleus sampling probability threshold
float min_p; // Min P sampling
float temp; // temperature to adjust model's output distribution
int32_t n_batch; // number of predictions to generate in parallel
float repeat_penalty; // penalty factor for repeated tokens
float repeat_penalty; // penalty factor for repeated tokens
int32_t repeat_last_n; // last n tokens to penalize
float context_erase; // percent of context to erase if we exceed the context window
float context_erase; // percent of context to erase if we exceed the context window
};
struct llmodel_gpu_device {
@ -62,12 +63,10 @@ typedef struct llmodel_gpu_device llmodel_gpu_device;
/**
* Callback type for prompt processing.
* @param token_ids An array of token ids of the prompt.
* @param n_token_ids The number of tokens in the array.
* @param cached Whether the tokens were already in cache.
* @param token_id The token id of the prompt.
* @return a bool indicating whether the model should keep processing.
*/
typedef bool (*llmodel_prompt_callback)(const token_t *token_ids, size_t n_token_ids, bool cached);
typedef bool (*llmodel_prompt_callback)(int32_t token_id);
/**
* Callback type for response.
@ -75,7 +74,14 @@ typedef bool (*llmodel_prompt_callback)(const token_t *token_ids, size_t n_token
* @param response The response string. NOTE: a token_id of -1 indicates the string is an error string.
* @return a bool indicating whether the model should keep generating.
*/
typedef bool (*llmodel_response_callback)(token_t token_id, const char *response);
typedef bool (*llmodel_response_callback)(int32_t token_id, const char *response);
/**
* Callback type for recalculation of context.
* @param whether the model is recalculating the context.
* @return a bool indicating whether the model should keep generating.
*/
typedef bool (*llmodel_recalculate_callback)(bool is_recalculating);
/**
* Embedding cancellation callback for use with llmodel_embed.
@ -86,8 +92,6 @@ typedef bool (*llmodel_response_callback)(token_t token_id, const char *response
*/
typedef bool (*llmodel_emb_cancel_callback)(unsigned *batch_sizes, unsigned n_batch, const char *backend);
typedef void (*llmodel_special_token_callback)(const char *name, const char *token);
/**
* Create a llmodel instance.
* Recognises correct model type from file at model_path
@ -146,57 +150,46 @@ bool llmodel_isModelLoaded(llmodel_model model);
* @param model A pointer to the llmodel_model instance.
* @return the size in bytes of the internal state of the model
*/
uint64_t llmodel_state_get_size(llmodel_model model);
uint64_t llmodel_get_state_size(llmodel_model model);
/**
* Saves the internal state of the model.
* Saves the internal state of the model to the specified destination address.
* NOTE: This state data is specific to the type of model you have created.
* @param model A pointer to the llmodel_model instance.
* @param state Where to store the state. This must be a buffer of at least llmodel_state_get_size() bytes.
* @param state_size The size of the destination for the state.
* @param input_tokens_out Where to store the address of the token cache state. This is dynamically allocated and must
* be freed with llmodel_state_free_input_tokens.
* @param n_input_tokens Where to store the size of the token cache state.
* @return The number of bytes copied. On error, zero is returned, the token cache is set to NULL, and the token cache
* size is set to zero.
* @param dest A pointer to the destination.
* @return the number of bytes copied
*/
uint64_t llmodel_state_get_data(llmodel_model model, uint8_t *state_out, uint64_t state_size,
token_t **input_tokens_out, uint64_t *n_input_tokens);
/**
* Frees the temporary token cache buffer created by a call to llmodel_state_get_data().
* @param input_tokens The token cache buffer.
*/
void llmodel_state_free_input_tokens(token_t *input_tokens);
uint64_t llmodel_save_state_data(llmodel_model model, uint8_t *dest);
/**
* Restores the internal state of the model using data from the specified address.
* NOTE: This state data is specific to the type of model you have created.
* @param model A pointer to the llmodel_model instance.
* @param state A pointer to the state data.
* @param state_size The size of the state data.
* @param input_tokens The token cache associated with the saved state.
* @param n_input_tokens The number of tokens in input_tokens.
* @return The number of bytes read, or zero on error.
* @param src A pointer to the src.
* @return the number of bytes read
*/
uint64_t llmodel_state_set_data(llmodel_model model, const uint8_t *state, uint64_t state_size,
const token_t *input_tokens, uint64_t n_input_tokens);
uint64_t llmodel_restore_state_data(llmodel_model model, const uint8_t *src);
/**
* Generate a response using the model.
* @param model A pointer to the llmodel_model instance.
* @param prompt A string representing the input prompt.
* @param prompt_template A string representing the input prompt template.
* @param prompt_callback A callback function for handling the processing of prompt.
* @param response_callback A callback function for handling the generated response.
* @param recalculate_callback A callback function for handling recalculation requests.
* @param special True if special tokens in the prompt should be processed, false otherwise.
* @param fake_reply A string to insert into context as the model's reply, or NULL to generate one.
* @param ctx A pointer to the llmodel_prompt_context structure.
* @param error A pointer to a string; will only be set on error.
*/
bool llmodel_prompt(llmodel_model model,
const char *prompt,
llmodel_prompt_callback prompt_callback,
llmodel_response_callback response_callback,
llmodel_prompt_context *ctx,
const char **error);
void llmodel_prompt(llmodel_model model, const char *prompt,
const char *prompt_template,
llmodel_prompt_callback prompt_callback,
llmodel_response_callback response_callback,
llmodel_recalculate_callback recalculate_callback,
llmodel_prompt_context *ctx,
bool special,
const char *fake_reply);
/**
* Generate an embedding using the model.
@ -298,6 +291,11 @@ bool llmodel_gpu_init_gpu_device_by_struct(llmodel_model model, const llmodel_gp
*/
bool llmodel_gpu_init_gpu_device_by_int(llmodel_model model, int device);
/**
* @return True if a GPU device is successfully initialized, false otherwise.
*/
bool llmodel_has_gpu_device(llmodel_model model);
/**
* @return The name of the llama.cpp backend currently in use. One of "cpu", "kompute", or "metal".
*/
@ -308,10 +306,6 @@ const char *llmodel_model_backend_name(llmodel_model model);
*/
const char *llmodel_model_gpu_device_name(llmodel_model model);
int32_t llmodel_count_prompt_tokens(llmodel_model model, const char *prompt, const char **error);
void llmodel_model_foreach_special_token(llmodel_model model, llmodel_special_token_callback callback);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,298 @@
#include "llmodel.h"
#include <cassert>
#include <iostream>
#include <regex>
#include <string>
#include <unordered_set>
// TODO(cebtenzzre): replace this with llama_kv_cache_seq_shift for llamamodel (GPT-J needs this as-is)
void LLModel::recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate) {
int n_keep = shouldAddBOS();
const int32_t n_discard = (promptCtx.n_ctx - n_keep) * promptCtx.contextErase;
// Erase the first percentage of context from the tokens
std::cerr << implementation().modelType() << ": reached the end of the context window so resizing\n";
promptCtx.tokens.erase(promptCtx.tokens.begin() + n_keep, promptCtx.tokens.begin() + n_keep + n_discard);
size_t i = n_keep;
promptCtx.n_past = n_keep;
while (i < promptCtx.tokens.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, promptCtx.tokens.size());
std::vector<int32_t> batch(promptCtx.tokens.begin() + i, promptCtx.tokens.begin() + batch_end);
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
if (!evalTokens(promptCtx, batch)) {
std::cerr << "LLModel ERROR: Failed to process prompt\n";
goto stop_generating;
}
promptCtx.n_past += batch.size();
if (!recalculate(true))
goto stop_generating;
i = batch_end;
}
assert(promptCtx.n_past == int32_t(promptCtx.tokens.size()));
stop_generating:
recalculate(false);
}
static bool parsePromptTemplate(const std::string &tmpl, std::vector<std::smatch> &placeholders, std::string &err) {
static const std::regex placeholderRegex(R"(%[1-2](?![0-9]))");
auto it = std::sregex_iterator(tmpl.begin(), tmpl.end(), placeholderRegex);
placeholders.clear();
placeholders.insert(placeholders.end(), it, std::sregex_iterator());
if (placeholders.size() > 2) {
err = "ERROR: expected at most two placeholders, got " + std::to_string(placeholders.size());
return false;
}
if (placeholders.size() >= 1 && placeholders[0].str() != "%1") {
err = "ERROR: first placeholder must be %1, got " + placeholders[0].str();
return false;
}
if (placeholders.size() >= 2 && placeholders[1].str() != "%2") {
err = "ERROR: second placeholder must be %2, got " + placeholders[1].str();
return false;
}
return true;
}
void LLModel::prompt(const std::string &prompt,
const std::string &promptTemplate,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx,
bool special,
std::string *fakeReply)
{
if (!isModelLoaded()) {
std::cerr << implementation().modelType() << " ERROR: prompt won't work with an unloaded model!\n";
return;
}
if (!supportsCompletion()) {
std::string errorMessage = "ERROR: this model does not support text completion or chat!";
responseCallback(-1, errorMessage);
std::cerr << implementation().modelType() << " " << errorMessage << "\n";
return;
}
// parse the prompt template
std::vector<std::smatch> placeholders;
{
std::string err;
if (!parsePromptTemplate(promptTemplate, placeholders, err)) {
responseCallback(-1, err);
std::cerr << err << "\n";
return;
}
}
auto old_n_past = promptCtx.n_past; // prepare to fake n_past for tokenize
// tokenize the user prompt
std::vector<Token> embd_inp;
if (placeholders.empty()) {
// this is unusual, but well-defined
std::cerr << __func__ << ": prompt template has no placeholder\n";
embd_inp = tokenize(promptCtx, promptTemplate, true);
} else {
// template: beginning of user prompt
const auto &phUser = placeholders[0];
std::string userPrefix(phUser.prefix());
if (!userPrefix.empty()) {
embd_inp = tokenize(promptCtx, userPrefix, true);
promptCtx.n_past += embd_inp.size();
}
// user input (shouldn't have special token processing)
auto tokens = tokenize(promptCtx, prompt, special);
embd_inp.insert(embd_inp.end(), tokens.begin(), tokens.end());
promptCtx.n_past += tokens.size();
// template: end of user prompt + start of assistant prompt
size_t start = phUser.position() + phUser.length();
size_t end = placeholders.size() >= 2 ? placeholders[1].position() : promptTemplate.length();
auto userToAsst = promptTemplate.substr(start, end - start);
if (!userToAsst.empty()) {
tokens = tokenize(promptCtx, userToAsst, true);
embd_inp.insert(embd_inp.end(), tokens.begin(), tokens.end());
promptCtx.n_past += tokens.size();
}
}
promptCtx.n_past = old_n_past; // restore n_past so decodePrompt can increment it
// decode the user prompt
decodePrompt(promptCallback, responseCallback, recalculateCallback, promptCtx, embd_inp);
// decode the assistant's reply, either generated or spoofed
if (fakeReply == nullptr) {
generateResponse(responseCallback, recalculateCallback, promptCtx);
} else {
embd_inp = tokenize(promptCtx, *fakeReply, false);
decodePrompt(promptCallback, responseCallback, recalculateCallback, promptCtx, embd_inp);
}
// decode the rest of the prompt template
// template: end of assistant prompt
std::string asstSuffix;
if (placeholders.size() >= 2) {
size_t start = placeholders[1].position() + placeholders[1].length();
asstSuffix = promptTemplate.substr(start);
} else {
asstSuffix = "\n\n"; // default to a blank link, good for e.g. Alpaca
}
if (!asstSuffix.empty()) {
embd_inp = tokenize(promptCtx, asstSuffix, true);
decodePrompt(promptCallback, responseCallback, recalculateCallback, promptCtx, embd_inp);
}
}
void LLModel::decodePrompt(std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx,
std::vector<Token> embd_inp) {
// save the context size
promptCtx.n_ctx = contextLength();
if ((int) embd_inp.size() > promptCtx.n_ctx - 4) {
responseCallback(-1, "ERROR: The prompt size exceeds the context window size and cannot be processed.");
std::cerr << implementation().modelType() << " ERROR: The prompt is " << embd_inp.size() <<
" tokens and the context window is " << promptCtx.n_ctx << "!\n";
return;
}
promptCtx.n_predict = std::min(promptCtx.n_predict, promptCtx.n_ctx - (int) embd_inp.size());
promptCtx.n_past = std::min(promptCtx.n_past, promptCtx.n_ctx);
promptCtx.n_batch = std::min(promptCtx.n_batch, LLMODEL_MAX_PROMPT_BATCH);
// process the prompt in batches
size_t i = 0;
while (i < embd_inp.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, embd_inp.size());
std::vector<Token> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
// Check if the context has run out...
if (promptCtx.n_past + int32_t(batch.size()) > promptCtx.n_ctx) {
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
}
if (!evalTokens(promptCtx, batch)) {
std::cerr << implementation().modelType() << " ERROR: Failed to process prompt\n";
return;
}
size_t tokens = batch_end - i;
for (size_t t = 0; t < tokens; ++t) {
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(batch.at(t));
promptCtx.n_past += 1;
if (!promptCallback(batch.at(t)))
return;
}
i = batch_end;
}
}
void LLModel::generateResponse(std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx) {
std::string cachedResponse;
std::vector<Token> cachedTokens;
std::unordered_set<std::string> reversePrompts
= { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant", "### Context" };
// predict next tokens
for (int i = 0; i < promptCtx.n_predict; i++) {
// sample next token
auto id = sampleToken(promptCtx);
// Check if the context has run out...
if (promptCtx.n_past + 1 > promptCtx.n_ctx) {
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + 1 <= promptCtx.n_ctx);
}
if (!evalTokens(promptCtx, { id })) {
std::cerr << implementation().modelType() << " ERROR: Failed to predict next token\n";
return;
}
// display text
for (const auto token : endTokens()) {
if (id == token) return;
}
const std::string str = tokenToString(id);
// Check if the provided str is part of our reverse prompts
bool foundPartialReversePrompt = false;
const std::string completed = cachedResponse + std::string(str);
if (reversePrompts.find(completed) != reversePrompts.end())
return;
// Check if it partially matches our reverse prompts and if so, cache
for (const auto& s : reversePrompts) {
if (s.compare(0, completed.size(), completed) == 0) {
foundPartialReversePrompt = true;
cachedResponse = completed;
break;
}
}
// Regardless the token gets added to our cache
cachedTokens.push_back(id);
// Continue if we have found a partial match
if (foundPartialReversePrompt)
continue;
// Empty the cache
for (auto t : cachedTokens) {
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(t);
promptCtx.n_past += 1;
//TODO: Conversion to std::string can be avoided here...
if (!responseCallback(t, std::string(tokenToString(t))))
return;
}
cachedTokens.clear();
}
}
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix, int dimensionality,
size_t *tokenCount, bool doMean, bool atlas, EmbedCancelCallback *cancelCb
) {
(void)texts;
(void)embeddings;
(void)prefix;
(void)dimensionality;
(void)tokenCount;
(void)doMean;
(void)atlas;
(void)cancelCb;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality, size_t *tokenCount,
bool doMean, bool atlas
) {
(void)texts;
(void)embeddings;
(void)isRetrieval;
(void)dimensionality;
(void)tokenCount;
(void)doMean;
(void)atlas;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}

View File

@ -0,0 +1,46 @@
#pragma once
#include <cstdint>
#include <cstddef>
#include <vector>
#include <ggml.h>
struct llm_buffer {
uint8_t * addr = NULL;
size_t size = 0;
void resize(size_t size) {
delete[] addr;
addr = new uint8_t[size];
this->size = size;
}
~llm_buffer() {
delete[] addr;
}
};
struct llm_kv_cache {
struct ggml_tensor * k;
struct ggml_tensor * v;
struct ggml_context * ctx = NULL;
llm_buffer buf;
int n; // number of tokens currently in the cache
~llm_kv_cache() {
if (ctx) {
ggml_free(ctx);
}
}
};
inline void ggml_graph_compute_g4a(llm_buffer& buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.addr;
}
ggml_graph_compute(graph, &plan);
}

View File

@ -0,0 +1,140 @@
#!/usr/bin/env python3
from __future__ import annotations
import json
import struct
import sys
from pathlib import Path
import gguf
import numpy as np
from transformers import AutoConfig, AutoModel, AutoTokenizer
if not 2 <= len(sys.argv) < 4:
print("Usage: {} dir-model [ftype]\n".format(Path(__file__).name))
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = Path(sys.argv[1])
with open(dir_model / "vocab.txt", encoding="utf-8") as f:
vocab = f.readlines()
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf")
ARCH = gguf.MODEL_ARCH.BERT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
config = AutoConfig.from_pretrained(dir_model)
block_count = config.num_hidden_layers
gguf_writer.add_name("BERT")
gguf_writer.add_context_length(config.max_position_embeddings)
gguf_writer.add_embedding_length(config.hidden_size)
gguf_writer.add_feed_forward_length(config.intermediate_size)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(config.num_attention_heads)
gguf_writer.add_file_type(ftype)
print("gguf: get tokenizer metadata")
try:
with open(dir_model / "tokenizer.json", encoding="utf-8") as f:
tokenizer_json = json.load(f)
except FileNotFoundError as e:
print(f'Error: Missing {e.filename!r}', file=sys.stderr)
sys.exit(1)
print("gguf: get wordpiece tokenizer vocab")
tokenizer = AutoTokenizer.from_pretrained(dir_model)
print(tokenizer.encode('I believe the meaning of life is'))
tokens: list[bytearray] = []
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
for i in range(config.vocab_size):
try:
text = reverse_vocab[i]
except KeyError:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
gguf_writer.add_tokenizer_model("bert") # wordpiece
gguf_writer.add_token_list(tokens)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)
print("gguf: get tensor metadata")
model = AutoModel.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
print(model)
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
list_vars = model.state_dict()
for name in list_vars.keys():
print(name, list_vars[name].shape, list_vars[name].dtype)
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if name in ['embeddings.position_ids', 'pooler.dense.weight', 'pooler.dense.bias']:
continue
print("Processing variable:", name, "with shape:", data.shape)
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
l_type = 1
else:
l_type = 0
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print()

View File

@ -0,0 +1,165 @@
#!/usr/bin/env python3
# Convert GPT-J-6B h5 transformer model to ggml format
#
# Load the model using GPTJForCausalLM.
# Iterate over all variables and write them to a binary file.
#
# For each variable, write the following:
# - Number of dimensions (int)
# - Name length (int)
# - Dimensions (int[n_dims])
# - Name (char[name_length])
# - Data (float[n_dims])
#
# By default, the bigger matrices are converted to 16-bit floats.
# This can be disabled by adding the "ftype" CLI argument.
#
# At the start of the ggml file we write the model parameters
# and vocabulary.
#
from __future__ import annotations
import sys
import struct
import json
from pathlib import Path
import gguf
import numpy as np
from transformers import AutoConfig, AutoTokenizer, GPTJForCausalLM
from transformers.models.gpt2 import tokenization_gpt2
if not 2 <= len(sys.argv) < 4:
print("Usage: python {} dir-model [ftype]\n".format(Path(__file__).name))
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = Path(sys.argv[1])
fname_out = dir_model / "ggml-model.gguf"
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf")
ARCH = gguf.MODEL_ARCH.GPTJ
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
config = AutoConfig.from_pretrained(dir_model)
block_count = config.n_layer
gguf_writer.add_name("GPT-J")
gguf_writer.add_context_length(config.n_positions)
gguf_writer.add_embedding_length(config.n_embd)
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(4 * config.n_embd)
gguf_writer.add_head_count(config.n_head)
gguf_writer.add_rope_dimension_count(config.rotary_dim)
gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon)
gguf_writer.add_file_type(ftype)
print("gguf: get gpt2 tokenizer vocab")
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = tokenization_gpt2.bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
tokens: list[bytearray] = []
for i in range(config.vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[c])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
gguf_writer.add_tokenizer_model("gpt2")
gguf_writer.add_token_list(tokens)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)
print("gguf: get tensor metadata")
model = GPTJForCausalLM.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
#print (model)
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
list_vars = model.state_dict()
#print (list_vars)
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable:", name, "with shape:", data.shape)
# we don't need these
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
print(" Skipping variable:", name)
continue
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1 or data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print()

View File

@ -1,73 +0,0 @@
#include "dlhandle.h"
#include <string>
#ifndef _WIN32
# include <dlfcn.h>
#else
# include <cassert>
# include <sstream>
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#endif
using namespace std::string_literals;
namespace fs = std::filesystem;
#ifndef _WIN32
Dlhandle::Dlhandle(const fs::path &fpath)
{
chandle = dlopen(fpath.c_str(), RTLD_LAZY | RTLD_LOCAL);
if (!chandle) {
throw Exception("dlopen: "s + dlerror());
}
}
Dlhandle::~Dlhandle()
{
if (chandle) dlclose(chandle);
}
void *Dlhandle::get_internal(const char *symbol) const
{
return dlsym(chandle, symbol);
}
#else // defined(_WIN32)
Dlhandle::Dlhandle(const fs::path &fpath)
{
fs::path afpath = fs::absolute(fpath);
// Suppress the "Entry Point Not Found" dialog, caused by outdated nvcuda.dll from the GPU driver
UINT lastErrorMode = GetErrorMode();
SetErrorMode(lastErrorMode | SEM_FAILCRITICALERRORS);
chandle = LoadLibraryExW(afpath.c_str(), NULL, LOAD_LIBRARY_SEARCH_DEFAULT_DIRS | LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR);
SetErrorMode(lastErrorMode);
if (!chandle) {
DWORD err = GetLastError();
std::ostringstream ss;
ss << "LoadLibraryExW failed with error 0x" << std::hex << err;
throw Exception(ss.str());
}
}
Dlhandle::~Dlhandle()
{
if (chandle) FreeLibrary(HMODULE(chandle));
}
void *Dlhandle::get_internal(const char *symbol) const
{
return GetProcAddress(HMODULE(chandle), symbol);
}
#endif // defined(_WIN32)

View File

@ -1,47 +0,0 @@
#pragma once
#include <filesystem>
#include <stdexcept>
#include <string>
#include <utility>
namespace fs = std::filesystem;
class Dlhandle {
void *chandle = nullptr;
public:
class Exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
Dlhandle() = default;
Dlhandle(const fs::path &fpath);
Dlhandle(const Dlhandle &o) = delete;
Dlhandle(Dlhandle &&o)
: chandle(o.chandle)
{
o.chandle = nullptr;
}
~Dlhandle();
Dlhandle &operator=(Dlhandle &&o) {
chandle = std::exchange(o.chandle, nullptr);
return *this;
}
template <typename T>
T *get(const std::string &symbol) const {
return reinterpret_cast<T *>(get_internal(symbol.c_str()));
}
auto get_fnc(const std::string &symbol) const {
return get<void*(...)>(symbol);
}
private:
void *get_internal(const char *symbol) const;
};

View File

@ -1,298 +0,0 @@
#include "llmodel.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <iterator>
#include <optional>
#include <ranges>
#include <stdexcept>
#include <string>
#include <string_view>
#include <vector>
namespace ranges = std::ranges;
namespace views = std::ranges::views;
void LLModel::prompt(
std::string_view prompt,
const PromptCallback &promptCallback,
const ResponseCallback &responseCallback,
const PromptContext &promptCtx
) {
if (!isModelLoaded())
throw std::invalid_argument("Attempted to prompt an unloaded model.");
if (!supportsCompletion())
throw std::invalid_argument("Not a text completion model.");
if (!promptCtx.n_batch)
throw std::invalid_argument("Batch size cannot be zero.");
if (!promptCtx.n_predict)
return; // nothing requested
auto embd_inp = tokenize(prompt);
if (embd_inp.empty())
throw std::invalid_argument("Prompt tokenized to zero tokens.");
if (auto res = decodePrompt(promptCallback, promptCtx, std::move(embd_inp)))
generateResponse(responseCallback, promptCtx, /*n_past*/ *res);
}
int32_t LLModel::countPromptTokens(std::string_view prompt) const
{
if (!isModelLoaded())
throw std::invalid_argument("Attempted to tokenize with an unloaded model.");
return int32_t(tokenize(prompt).size());
}
auto LLModel::decodePrompt(
const PromptCallback &promptCallback,
const PromptContext &promptCtx,
std::vector<Token> embd_inp
) -> std::optional<int32_t>
{
assert(!embd_inp.empty());
int32_t nCtx = contextLength();
int32_t n_batch = std::min(promptCtx.n_batch, LLMODEL_MAX_PROMPT_BATCH);
// Find the greatest n_past where the beginning of embd_inp matches the end of the token cache, starting at the
// requested n_past.
// This is used to skip unnecessary work when the prompt shares a common prefix with the previous result.
int32_t nPast = computeModelInputPosition(embd_inp);
// always decode up to a full batch before generating, even if cached
nPast -= std::min(n_batch, nPast);
// TODO(jared): generalize this to find the smallest new_embd_inp.size() - nPast given the cache
if (!nPast && int32_t(embd_inp.size()) > nCtx) {
// no cache hit -> shift the input before even processing
int32_t nKeep = shouldAddBOS();
auto newLength = int32_t(nCtx * (1.f - promptCtx.contextErase));
int32_t nDiscard = int32_t(embd_inp.size()) - std::max(1, std::min(nCtx, newLength));
// execute the callback even for skipped tokens. this misrepresents the position of BOS but we don't care
auto discardedTokens = embd_inp | views::drop(nKeep) | views::take(nDiscard);
if (!promptCallback(discardedTokens, true))
return std::nullopt;
// erase nDiscard tokens
embd_inp.erase(discardedTokens.begin(), discardedTokens.end());
assert(int32_t(embd_inp.size()) <= nCtx);
// check the cache again, just in case
nPast = computeModelInputPosition(embd_inp);
nPast -= std::min(n_batch, nPast);
}
setModelInputPosition(nPast);
// execute the callback even for skipped tokens
if (!promptCallback(embd_inp | views::take(nPast), true))
return std::nullopt;
// process the prompt in batches
for (int32_t i = nPast; i < embd_inp.size();) {
auto batch_end = std::min(i + n_batch, int32_t(embd_inp.size()));
std::span batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
// Check if the context has run out...
if (nPast + int32_t(batch.size()) > nCtx) {
shiftContext(promptCtx, &nPast);
assert(nPast + int32_t(batch.size()) <= nCtx);
}
// FIXME(Adam): We should find a way to bubble these strings to the UI level to allow for translation
if (!evalTokens(nPast, batch))
throw std::runtime_error("An internal error was encountered during prompt processing.");
for (auto &tok : batch) {
appendInputToken(tok);
nPast++;
if (!promptCallback({ &tok, 1 }, false))
return std::nullopt;
}
i = batch_end;
}
return nPast;
}
/*
* If string s overlaps with the string key such that some prefix of the key is at the end
* of the string, return the position in s where the first match starts. Otherwise, return
* std::string::npos. Examples:
* s = "bfo", key = "foo" -> 1
* s = "fooa", key = "foo" -> npos
*/
static std::string::size_type stringsOverlap(const std::string &s, const std::string &key)
{
if (s.empty() || key.empty())
throw std::invalid_argument("arguments to stringsOverlap must not be empty");
for (int start = std::max(0, int(s.size()) - int(key.size())); start < s.size(); start++) {
if (s.compare(start, s.size(), key, 0, s.size() - start) == 0)
return start;
}
return std::string::npos;
}
void LLModel::generateResponse(
const ResponseCallback &responseCallback,
const PromptContext &promptCtx,
int32_t nPast
) {
static const char *stopSequences[] {
"### System", "### Instruction", "### Human", "### User", "### Response", "### Assistant", "### Context",
"<|im_start|>", "<|im_end|>", "<|endoftext|>",
};
initSampler(promptCtx);
std::string cachedResponse;
std::vector<Token> cachedTokens;
int n_predicted = 0;
// Predict next tokens
for (bool stop = false; !stop;) {
// Sample next token
std::optional<Token> new_tok = sampleToken();
std::string new_piece = tokenToString(new_tok.value());
cachedTokens.push_back(new_tok.value());
cachedResponse += new_piece;
auto accept = [this, &promptCtx, &new_tok, &nPast] {
// Shift context if out of space
if (nPast >= contextLength()) {
shiftContext(promptCtx, &nPast);
assert(nPast < contextLength());
}
// Accept the token
Token tok = std::exchange(new_tok, std::nullopt).value();
if (!evalTokens(nPast, { &tok, 1 }))
throw std::runtime_error("An internal error was encountered during response generation.");
appendInputToken(tok);
nPast++;
};
// Check for EOS
auto lengthLimit = std::string::npos;
for (const auto token : endTokens()) {
if (new_tok == token) {
stop = true;
lengthLimit = cachedResponse.size() - new_piece.size();
}
}
if (lengthLimit != std::string::npos) {
// EOS matched
} else if (!isSpecialToken(new_tok.value())) {
// Check if the response contains a stop sequence
for (const auto &p : stopSequences) {
auto match = cachedResponse.find(p);
if (match != std::string::npos) stop = true;
lengthLimit = std::min(lengthLimit, match);
if (match == 0) break;
}
// Check if the response matches the start of a stop sequence
if (lengthLimit == std::string::npos) {
for (const auto &p : stopSequences) {
auto match = stringsOverlap(cachedResponse, p);
lengthLimit = std::min(lengthLimit, match);
if (match == 0) break;
}
}
} else if (ranges::find(stopSequences, new_piece) < std::end(stopSequences)) {
// Special tokens must exactly match a stop sequence
stop = true;
lengthLimit = cachedResponse.size() - new_piece.size();
}
// Empty the cache, up to the length limit
std::string::size_type responseLength = 0;
while (!cachedTokens.empty()) {
Token tok = cachedTokens.front();
std::string piece = tokenToString(tok);
// Stop if the piece (or part of it) does not fit within the length limit
if (responseLength + (stop ? 1 : piece.size()) > lengthLimit)
break;
// Remove token from cache
assert(cachedResponse.starts_with(piece));
cachedTokens.erase(cachedTokens.begin(), cachedTokens.begin() + 1);
cachedResponse.erase(cachedResponse.begin(), cachedResponse.begin() + piece.size());
// Accept the token, if needed (not cached)
if (cachedTokens.empty() && new_tok)
accept();
// Send the token
if (!responseCallback(tok, piece) || ++n_predicted >= promptCtx.n_predict) {
stop = true;
break;
}
// FIXME(jared): we could avoid printing partial stop sequences if we didn't have to
// output token IDs and could cache a partial token for the next prompt call
responseLength += piece.size();
}
assert(cachedTokens.empty() == cachedResponse.empty());
// Accept the token, if needed (in cache)
if (new_tok) {
assert(!cachedTokens.empty() && cachedTokens.back() == new_tok);
if (stop) {
cachedTokens.pop_back();
} else {
accept();
}
}
}
if (inputLength() < cachedTokens.size()) {
/* This is theoretically possible if the longest stop sequence is greater than
* n_ctx * contextErase tokens. */
throw std::runtime_error("shifted too much context, can't go back");
}
#ifndef NDEBUG
auto inp = inputTokens();
auto discard_start = inp.end() - cachedTokens.size();
assert(std::equal(discard_start, inp.end(), cachedTokens.begin()));
#endif
}
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix, int dimensionality,
size_t *tokenCount, bool doMean, bool atlas, EmbedCancelCallback *cancelCb
) {
(void)texts;
(void)embeddings;
(void)prefix;
(void)dimensionality;
(void)tokenCount;
(void)doMean;
(void)atlas;
(void)cancelCb;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality, size_t *tokenCount,
bool doMean, bool atlas
) {
(void)texts;
(void)embeddings;
(void)isRetrieval;
(void)dimensionality;
(void)tokenCount;
(void)doMean;
(void)atlas;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}

View File

@ -1,17 +0,0 @@
#pragma once
#include <cassert>
#ifdef NDEBUG
# ifdef __has_builtin
# if __has_builtin(__builtin_unreachable)
# define UNREACHABLE() __builtin_unreachable()
# else
# define UNREACHABLE() do {} while (0)
# endif
# else
# define UNREACHABLE() do {} while (0)
# endif
#else
# define UNREACHABLE() assert(!"Unreachable statement was reached")
#endif

View File

@ -2,21 +2,17 @@
#define SYSINFO_H
#include <fstream>
#include <iomanip>
#include <sstream>
#include <string>
#include <sstream>
#include <iomanip>
#if defined(__linux__)
# include <unistd.h>
#include <unistd.h>
#elif defined(__APPLE__)
# include <sys/types.h>
# include <sys/sysctl.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#elif defined(_WIN32)
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#include <windows.h>
#endif
static long long getSystemTotalRAMInBytes()

328
gpt4all-backend/utils.cpp Normal file
View File

@ -0,0 +1,328 @@
#include "utils.h"
#include <fstream>
#include <regex>
void replace(std::string & str, const std::string & needle, const std::string & replacement) {
size_t pos = 0;
while ((pos = str.find(needle, pos)) != std::string::npos) {
str.replace(pos, needle.length(), replacement);
pos += replacement.length();
}
}
std::map<std::string, int32_t> json_parse(const std::string & fname) {
std::map<std::string, int32_t> result;
// read file into string
std::string json;
{
std::ifstream ifs(fname);
if (!ifs) {
fprintf(stderr, "Failed to open %s\n", fname.c_str());
exit(1);
}
json = std::string((std::istreambuf_iterator<char>(ifs)),
(std::istreambuf_iterator<char>()));
}
if (json[0] != '{') {
return result;
}
// parse json
{
bool has_key = false;
bool in_token = false;
std::string str_key = "";
std::string str_val = "";
int n = json.size();
for (int i = 1; i < n; ++i) {
if (!in_token) {
if (json[i] == ' ') continue;
if (json[i] == '"') {
in_token = true;
continue;
}
} else {
if (json[i] == '\\' && i+1 < n) {
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
++i;
} else if (json[i] == '"') {
if (has_key == false) {
has_key = true;
++i;
while (json[i] == ' ') ++i;
++i; // :
while (json[i] == ' ') ++i;
if (json[i] != '\"') {
while (json[i] != ',' && json[i] != '}') {
str_val += json[i++];
}
has_key = false;
} else {
in_token = true;
continue;
}
} else {
has_key = false;
}
::replace(str_key, "\\u0120", " " ); // \u0120 -> space
::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
::replace(str_key, "\\\"", "\""); // \\\" -> "
try {
result[str_key] = std::stoi(str_val);
} catch (...) {
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
}
str_key = "";
str_val = "";
in_token = false;
continue;
}
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
}
}
}
return result;
}
std::vector<gpt_vocab::id> gpt_tokenize_inner(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
// find the longest tokens that form the words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
if (word.size() == 0) continue;
int i = 0;
int n = word.size();
while (i < n) {
int j = n;
while (j > i) {
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
break;
}
--j;
}
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
}
++i;
}
}
}
return tokens;
}
std::string regex_escape(const std::string &s) {
static const std::regex metacharacters(R"([\.\^\$\-\+\(\)\[\]\{\}\|\?\*])");
return std::regex_replace(s, metacharacters, "\\$&");
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
std::vector<gpt_vocab::id> out;
std::vector<std::string> chunks;
std::string str = text;
std::string special_tokens_subpattern;
for (const auto &token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += regex_escape(token);
}
std::regex re(special_tokens_subpattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
auto tok = vocab.token_to_id.find(m.str());
if (tok != vocab.token_to_id.end()) {
auto tokid = tok->second;
auto pfxtoks = gpt_tokenize_inner(vocab, m.prefix());
out.insert(out.end(), pfxtoks.begin(), pfxtoks.end());
out.push_back(tokid);
str = m.suffix();
}
}
if (!str.empty()) {
auto tokrest = gpt_tokenize_inner(vocab, str);
out.insert(out.end(), tokrest.begin(), tokrest.end());
}
return out;
} else {
return gpt_tokenize_inner(vocab, text);
}
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto & kv : vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const size_t actualVocabSize,
const int32_t * last_n_tokens_data,
int last_n_tokens_size,
const std::vector<float> logits,
int top_k,
double top_p,
double temp,
float repeat_penalty,
std::mt19937 & rng) {
int n_logits = actualVocabSize;
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
const auto * plogits = logits.data();
if (temp <= 0) {
// select the token with the highest logit directly
float max_logit = plogits[0];
gpt_vocab::id max_id = 0;
for (int i = 1; i < n_logits; ++i) {
if (plogits[i] > max_logit) {
max_logit = plogits[i];
max_id = i;
}
}
return max_id;
}
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const float scale = 1.0f/temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (plogits[i] < 0.0f) {
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
}
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
}
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}

97
gpt4all-backend/utils.h Normal file
View File

@ -0,0 +1,97 @@
// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
//
// General purpose inline functions
//
constexpr inline unsigned long long operator ""_MiB(unsigned long long bytes) {
return bytes*1024*1024;
}
//
// CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t n_batch = 8; // batch size for prompt processing
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string &token) {
special_tokens.push_back(token);
}
};
void replace(std::string & str, const std::string & needle, const std::string & replacement);
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
//
gpt_vocab::id gpt_sample_top_k_top_p(
const size_t actualVocabSize,
const int32_t * last_n_tokens_data,
int last_n_tokens_size,
const std::vector<float> logits,
int top_k,
double top_p,
double temp,
float repeat_penalty,
std::mt19937 & rng);

View File

@ -1,21 +1,3 @@
# GPT4All Language Bindings
These are the language bindings for the GPT4All backend. They provide functionality to load GPT4All models (and other llama.cpp models), generate text, and (in the case of the Python bindings) embed text as a vector representation.
See their respective folders for language-specific documentation.
### Languages
- [Python](https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/python) (Nomic official, maintained by [@cebtenzzre](https://github.com/cebtenzzre))
- [Node.js/Typescript](https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/typescript) (community, maintained by [@jacoobes](https://github.com/jacoobes) and [@iimez](https://github.com/iimez))
<br/>
<br/>
<details><summary><b>Archived Bindings</b></summary>
<br/>
The following bindings have been removed from this repository due to lack of maintenance. If adopted, they can be brought back&mdash;feel free to message a developer on Dicsord if you are interested in maintaining one of them. Below are links to their last available version (not necessarily the last working version).
- C#: [41c9013f](https://github.com/nomic-ai/gpt4all/tree/41c9013fa46a194b3e4fee6ced1b9d1b65e177ac/gpt4all-bindings/csharp)
- Java: [41c9013f](https://github.com/nomic-ai/gpt4all/tree/41c9013fa46a194b3e4fee6ced1b9d1b65e177ac/gpt4all-bindings/java)
- Go: [41c9013f](https://github.com/nomic-ai/gpt4all/tree/41c9013fa46a194b3e4fee6ced1b9d1b65e177ac/gpt4all-bindings/golang)
</details>
# GPT4All Bindings
This directory will contain language specific bindings on top of the C/C++ model backends.
We will have one directory per language binding (e.g. Python, Typescript, Golang, etc.).

View File

@ -2,7 +2,8 @@
GPT4All on the command-line.
More details on the [wiki](https://github.com/nomic-ai/gpt4all/wiki/Python-CLI).
## Documentation
<https://docs.gpt4all.io/gpt4all_cli.html>
## Quickstart
@ -33,11 +34,11 @@ python -m pip install --user --upgrade gpt4all typer
# run the CLI
python app.py repl
```
By default, it will automatically download the `Mistral Instruct` model to `.cache/gpt4all/` in your
user directory, if necessary.
By default, it will automatically download the `groovy` model to `.cache/gpt4all/` in your user
directory, if necessary.
If you have already saved a model beforehand, specify its path with the `-m`/`--model` argument,
for example:
```shell
python app.py repl --model /home/user/my-gpt4all-models/mistral-7b-instruct-v0.1.Q4_0.gguf
python app.py repl --model /home/user/my-gpt4all-models/gpt4all-13b-snoozy-q4_0.gguf
```

View File

@ -113,7 +113,10 @@ def _old_loop(gpt4all_instance):
full_response = gpt4all_instance.chat_completion(
MESSAGES,
# preferential kwargs for chat ux
logits_size=0,
tokens_size=0,
n_past=0,
n_ctx=0,
n_predict=200,
top_k=40,
top_p=0.9,

View File

@ -0,0 +1,348 @@
# EditorConfig is awesome: https://EditorConfig.org
# top-most EditorConfig file
root = true
# Don't use tabs for indentation.
[*]
indent_style = space
# (Please don't specify an indent_size here; that has too many unintended consequences.)
# Code files
[*.{cs,csx,vb,vbx}]
indent_size = 4
insert_final_newline = true
charset = utf-8-bom
# XML project files
[*.{csproj,vbproj,vcxproj,vcxproj.filters,proj,projitems,shproj}]
indent_size = 4
# XML config files
[*.{props,targets,ruleset,config,nuspec,resx,vsixmanifest,vsct}]
indent_size = 2
# JSON files
[*.json]
indent_size = 2
# Powershell files
[*.ps1]
indent_size = 2
# Shell script files
[*.sh]
end_of_line = lf
indent_size = 2
insert_final_newline = true
# Dotnet code style settings:
[*.{cs,vb}]
# IDE0055: Fix formatting
dotnet_diagnostic.IDE0055.severity = error
dotnet_diagnostic.CS1573.severity = suggestion
dotnet_diagnostic.CS1591.severity = suggestion
# Sort using and Import directives with System.* appearing first
dotnet_sort_system_directives_first = true
dotnet_separate_import_directive_groups = false
# Avoid "this." and "Me." if not necessary
dotnet_style_qualification_for_field = false:suggestion
dotnet_style_qualification_for_property = false:suggestion
dotnet_style_qualification_for_method = false:suggestion
dotnet_style_qualification_for_event = false:suggestion
# Use language keywords instead of framework type names for type references
dotnet_style_predefined_type_for_locals_parameters_members = true:warning
dotnet_style_predefined_type_for_member_access = true:warning
# Suggest more modern language features when available
dotnet_style_object_initializer = true:suggestion
dotnet_style_collection_initializer = true:suggestion
dotnet_style_coalesce_expression = true:suggestion
dotnet_style_null_propagation = true:suggestion
dotnet_style_explicit_tuple_names = true:suggestion
# Whitespace options
dotnet_style_allow_multiple_blank_lines_experimental = false
# Private fields are camelCase with '_' prefix
dotnet_naming_rule.private_members_with_underscore.symbols = private_fields
dotnet_naming_rule.private_members_with_underscore.style = prefix_underscore
dotnet_naming_rule.private_members_with_underscore.severity = error
dotnet_naming_symbols.private_fields.applicable_kinds = field
dotnet_naming_symbols.private_fields.applicable_accessibilities = private
dotnet_naming_style.prefix_underscore.capitalization = camel_case
dotnet_naming_style.prefix_underscore.required_prefix = _
# Non-private static fields are PascalCase
dotnet_naming_rule.non_private_static_fields_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.non_private_static_fields_should_be_pascal_case.symbols = non_private_static_fields
dotnet_naming_rule.non_private_static_fields_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.non_private_static_fields.applicable_kinds = field
dotnet_naming_symbols.non_private_static_fields.applicable_accessibilities = public, protected, internal, protected_internal, private_protected
dotnet_naming_symbols.non_private_static_fields.required_modifiers = static
dotnet_naming_style.non_private_static_field_style.capitalization = pascal_case
# Non-private readonly fields are PascalCase
dotnet_naming_rule.non_private_readonly_fields_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.non_private_readonly_fields_should_be_pascal_case.symbols = non_private_readonly_fields
dotnet_naming_rule.non_private_readonly_fields_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.non_private_readonly_fields.applicable_kinds = field
dotnet_naming_symbols.non_private_readonly_fields.applicable_accessibilities = public, protected, internal, protected_internal, private_protected
dotnet_naming_symbols.non_private_readonly_fields.required_modifiers = readonly
dotnet_naming_style.non_private_readonly_field_style.capitalization = pascal_case
# Constants are PascalCase
dotnet_naming_rule.constants_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.constants_should_be_pascal_case.symbols = constants
dotnet_naming_rule.constants_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.constants.applicable_kinds = field, local
dotnet_naming_symbols.constants.required_modifiers = const
dotnet_naming_style.constant_style.capitalization = pascal_case
# Static fields are camelCase and start with s_
dotnet_naming_rule.static_fields_should_be_camel_case.severity = none
dotnet_naming_rule.static_fields_should_be_camel_case.symbols = static_fields
dotnet_naming_rule.static_fields_should_be_camel_case.style = static_field_style
dotnet_naming_symbols.static_fields.applicable_kinds = field
dotnet_naming_symbols.static_fields.required_modifiers = static
dotnet_naming_style.static_field_style.capitalization = camel_case
dotnet_naming_style.static_field_style.required_prefix = s_
# Instance fields are camelCase and start with _
dotnet_naming_rule.instance_fields_should_be_camel_case.severity = none
dotnet_naming_rule.instance_fields_should_be_camel_case.symbols = instance_fields
dotnet_naming_rule.instance_fields_should_be_camel_case.style = instance_field_style
dotnet_naming_symbols.instance_fields.applicable_kinds = field
dotnet_naming_style.instance_field_style.capitalization = camel_case
dotnet_naming_style.instance_field_style.required_prefix = _
# Locals and parameters are camelCase
dotnet_naming_rule.locals_should_be_camel_case.severity = suggestion
dotnet_naming_rule.locals_should_be_camel_case.symbols = locals_and_parameters
dotnet_naming_rule.locals_should_be_camel_case.style = camel_case_style
dotnet_naming_symbols.locals_and_parameters.applicable_kinds = parameter, local
dotnet_naming_style.camel_case_style.capitalization = camel_case
# Local functions are PascalCase
dotnet_naming_rule.local_functions_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.local_functions_should_be_pascal_case.symbols = local_functions
dotnet_naming_rule.local_functions_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.local_functions.applicable_kinds = local_function
dotnet_naming_style.local_function_style.capitalization = pascal_case
# By default, name items with PascalCase
dotnet_naming_rule.members_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.members_should_be_pascal_case.symbols = all_members
dotnet_naming_rule.members_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.all_members.applicable_kinds = *
dotnet_naming_style.pascal_case_style.capitalization = pascal_case
# error RS2008: Enable analyzer release tracking for the analyzer project containing rule '{0}'
dotnet_diagnostic.RS2008.severity = none
# IDE0073: File header
dotnet_diagnostic.IDE0073.severity = none
#file_header_template = Licensed to the .NET Foundation under one or more agreements.\nThe .NET Foundation licenses this file to you under the MIT license.\nSee the LICENSE file in the project root for more information.
# IDE0035: Remove unreachable code
dotnet_diagnostic.IDE0035.severity = warning
# IDE0036: Order modifiers
dotnet_diagnostic.IDE0036.severity = warning
# IDE0043: Format string contains invalid placeholder
dotnet_diagnostic.IDE0043.severity = warning
# IDE0044: Make field readonly
dotnet_diagnostic.IDE0044.severity = warning
# IDE1006: Naming rule violation
#dotnet_diagnostic.IDE1006.severity = none
# RS0016: Only enable if API files are present
dotnet_public_api_analyzer.require_api_files = true
dotnet_style_operator_placement_when_wrapping = beginning_of_line
tab_width = 4
end_of_line = crlf
dotnet_style_prefer_is_null_check_over_reference_equality_method = true:suggestion
dotnet_style_prefer_auto_properties = true:silent
dotnet_style_prefer_simplified_boolean_expressions = true:suggestion
dotnet_style_prefer_conditional_expression_over_assignment = true:silent
dotnet_style_prefer_conditional_expression_over_return = true:silent
dotnet_style_prefer_inferred_tuple_names = true:suggestion
dotnet_style_prefer_inferred_anonymous_type_member_names = true:suggestion
dotnet_style_prefer_compound_assignment = true:suggestion
dotnet_style_prefer_simplified_interpolation = true:suggestion
dotnet_style_namespace_match_folder = true:suggestion
# CSharp code style settings:
[*.cs]
# Newline settings
csharp_new_line_before_open_brace = all
csharp_new_line_before_else = true
csharp_new_line_before_catch = true
csharp_new_line_before_finally = true
csharp_new_line_before_members_in_object_initializers = true
csharp_new_line_before_members_in_anonymous_types = true
csharp_new_line_between_query_expression_clauses = true
# Indentation preferences
csharp_indent_block_contents = true
csharp_indent_braces = false
csharp_indent_case_contents = true
csharp_indent_case_contents_when_block = true
csharp_indent_switch_labels = true
csharp_indent_labels = flush_left
# Whitespace options
csharp_style_allow_embedded_statements_on_same_line_experimental = false
csharp_style_allow_blank_lines_between_consecutive_braces_experimental = false
csharp_style_allow_blank_line_after_colon_in_constructor_initializer_experimental = false
# Prefer "var" everywhere
csharp_style_var_for_built_in_types = true:suggestion
csharp_style_var_when_type_is_apparent = true:suggestion
csharp_style_var_elsewhere = true:suggestion
# Prefer method-like constructs to have a block body
csharp_style_expression_bodied_methods = false:none
csharp_style_expression_bodied_constructors = false:none
csharp_style_expression_bodied_operators = false:none
# Prefer property-like constructs to have an expression-body
csharp_style_expression_bodied_properties = true:none
csharp_style_expression_bodied_indexers = true:none
csharp_style_expression_bodied_accessors = true:none
# Suggest more modern language features when available
csharp_style_pattern_matching_over_is_with_cast_check = true:suggestion
csharp_style_pattern_matching_over_as_with_null_check = true:suggestion
csharp_style_inlined_variable_declaration = true:suggestion
csharp_style_throw_expression = true:suggestion
csharp_style_conditional_delegate_call = true:suggestion
# Space preferences
csharp_space_after_cast = false
csharp_space_after_colon_in_inheritance_clause = true
csharp_space_after_comma = true
csharp_space_after_dot = false
csharp_space_after_keywords_in_control_flow_statements = true
csharp_space_after_semicolon_in_for_statement = true
csharp_space_around_binary_operators = before_and_after
csharp_space_around_declaration_statements = do_not_ignore
csharp_space_before_colon_in_inheritance_clause = true
csharp_space_before_comma = false
csharp_space_before_dot = false
csharp_space_before_open_square_brackets = false
csharp_space_before_semicolon_in_for_statement = false
csharp_space_between_empty_square_brackets = false
csharp_space_between_method_call_empty_parameter_list_parentheses = false
csharp_space_between_method_call_name_and_opening_parenthesis = false
csharp_space_between_method_call_parameter_list_parentheses = false
csharp_space_between_method_declaration_empty_parameter_list_parentheses = false
csharp_space_between_method_declaration_name_and_open_parenthesis = false
csharp_space_between_method_declaration_parameter_list_parentheses = false
csharp_space_between_parentheses = false
csharp_space_between_square_brackets = false
# Blocks are allowed
csharp_prefer_braces = true:silent
csharp_preserve_single_line_blocks = true
csharp_preserve_single_line_statements = true
# Target-type new expressio
csharp_style_implicit_object_creation_when_type_is_apparent = true:suggestion
# Currently only enabled for C# due to crash in VB analyzer. VB can be enabled once
# https://github.com/dotnet/roslyn/pull/54259 has been published.
dotnet_style_allow_statement_immediately_after_block_experimental = false
dotnet_diagnostic.RCS0003.severity=warning
dotnet_diagnostic.RCS1036.severity=error
dotnet_diagnostic.IDE0005.severity=warning
dotnet_diagnostic.IDE0007.severity=error
csharp_using_directive_placement = outside_namespace:silent
csharp_prefer_simple_using_statement = true:suggestion
csharp_style_namespace_declarations = block_scoped:silent
csharp_style_expression_bodied_lambdas = true:silent
csharp_style_expression_bodied_local_functions = false:silent
csharp_style_prefer_null_check_over_type_check = true:suggestion
dotnet_diagnostic.RCS1075.severity = suggestion
[src/CodeStyle/**.{cs,vb}]
# warning RS0005: Do not use generic CodeAction.Create to create CodeAction
dotnet_diagnostic.RS0005.severity = none
[src/{Analyzers,CodeStyle,Features,Workspaces,EditorFeatures,VisualStudio}/**/*.{cs,vb}]
# IDE0011: Add braces
csharp_prefer_braces = when_multiline:warning
# NOTE: We need the below severity entry for Add Braces due to https://github.com/dotnet/roslyn/issues/44201
dotnet_diagnostic.IDE0011.severity = warning
# IDE0040: Add accessibility modifiers
dotnet_diagnostic.IDE0040.severity = warning
# CONSIDER: Are IDE0051 and IDE0052 too noisy to be warnings for IDE editing scenarios? Should they be made build-only warnings?
# IDE0051: Remove unused private member
dotnet_diagnostic.IDE0051.severity = warning
# IDE0052: Remove unread private member
dotnet_diagnostic.IDE0052.severity = warning
# IDE0059: Unnecessary assignment to a value
dotnet_diagnostic.IDE0059.severity = warning
# IDE0060: Remove unused parameter
dotnet_diagnostic.IDE0060.severity = warning
# CA1012: Abstract types should not have public constructors
dotnet_diagnostic.CA1012.severity = warning
# CA1822: Make member static
dotnet_diagnostic.CA1822.severity = warning
# Prefer "var" everywhere
dotnet_diagnostic.IDE0007.severity = warning
csharp_style_var_for_built_in_types = true:warning
csharp_style_var_when_type_is_apparent = true:warning
csharp_style_var_elsewhere = true:warning
# dotnet_style_allow_multiple_blank_lines_experimental
dotnet_diagnostic.IDE2000.severity = warning
# csharp_style_allow_embedded_statements_on_same_line_experimental
dotnet_diagnostic.IDE2001.severity = warning
# csharp_style_allow_blank_lines_between_consecutive_braces_experimental
dotnet_diagnostic.IDE2002.severity = warning
# dotnet_style_allow_statement_immediately_after_block_experimental
dotnet_diagnostic.IDE2003.severity = warning
# csharp_style_allow_blank_line_after_colon_in_constructor_initializer_experimental
dotnet_diagnostic.IDE2004.severity = warning
[src/{VisualStudio}/**/*.{cs,vb}]
# CA1822: Make member static
# There is a risk of accidentally breaking an internal API that partners rely on though IVT.
dotnet_code_quality.CA1822.api_surface = private

379
gpt4all-bindings/csharp/.gitignore vendored Normal file
View File

@ -0,0 +1,379 @@
## Ignore Visual Studio temporary files, build results, and
## files generated by popular Visual Studio add-ons.
##
## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
runtimes
**/*nuget
*.zip
include/
*.exp
*.lib
*.dll
# User-specific files
*.rsuser
*.suo
*.user
*.userosscache
*.sln.docstates
# User-specific files (MonoDevelop/Xamarin Studio)
*.userprefs
# Mono auto generated files
mono_crash.*
Tests/**/launchSettings.json
# Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/
x86/
[Ww][Ii][Nn]32/
[Aa][Rr][Mm]/
[Aa][Rr][Mm]64/
bld/
[Bb]in/
[Oo]bj/
[Oo]ut/
[Ll]og/
[Ll]ogs/
# Visual Studio 2015/2017 cache/options directory
.vs/
# Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/
# Visual Studio 2017 auto generated files
Generated\ Files/
# MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*
# NUnit
*.VisualState.xml
TestResult.xml
nunit-*.xml
# Build Results of an ATL Project
[Dd]ebugPS/
[Rr]eleasePS/
dlldata.c
# Benchmark Results
BenchmarkDotNet.Artifacts/
# .NET Core
project.lock.json
project.fragment.lock.json
artifacts/
# ASP.NET Scaffolding
ScaffoldingReadMe.txt
# StyleCop
StyleCopReport.xml
# Files built by Visual Studio
*_i.c
*_p.c
*_h.h
*.ilk
*.meta
*.obj
*.iobj
*.pch
*.pdb
*.ipdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*_wpftmp.csproj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.svclog
*.scc
# Chutzpah Test files
_Chutzpah*
# Visual C++ cache files
ipch/
*.aps
*.ncb
*.opendb
*.opensdf
*.sdf
*.cachefile
*.VC.db
*.VC.VC.opendb
# Visual Studio profiler
*.psess
*.vsp
*.vspx
*.sap
# Visual Studio Trace Files
*.e2e
# TFS 2012 Local Workspace
$tf/
# Guidance Automation Toolkit
*.gpState
# ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
*.DotSettings.user
# TeamCity is a build add-in
_TeamCity*
# DotCover is a Code Coverage Tool
*.dotCover
# AxoCover is a Code Coverage Tool
.axoCover/*
!.axoCover/settings.json
# Coverlet is a free, cross platform Code Coverage Tool
coverage*.json
coverage*.xml
coverage*.info
# Visual Studio code coverage results
*.coverage
*.coveragexml
# NCrunch
_NCrunch_*
.*crunch*.local.xml
nCrunchTemp_*
# MightyMoose
*.mm.*
AutoTest.Net/
# Web workbench (sass)
.sass-cache/
# Installshield output folder
[Ee]xpress/
# DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html
# Click-Once directory
publish/
# Publish Web Output
*.[Pp]ublish.xml
*.azurePubxml
# Note: Comment the next line if you want to checkin your web deploy settings,
# but database connection strings (with potential passwords) will be unencrypted
*.pubxml
*.publishproj
# Microsoft Azure Web App publish settings. Comment the next line if you want to
# checkin your Azure Web App publish settings, but sensitive information contained
# in these scripts will be unencrypted
PublishScripts/
# NuGet Packages
*.nupkg
# NuGet Symbol Packages
*.snupkg
# The packages folder can be ignored because of Package Restore
**/[Pp]ackages/*
# except build/, which is used as an MSBuild target.
!**/[Pp]ackages/build/
# Uncomment if necessary however generally it will be regenerated when needed
#!**/[Pp]ackages/repositories.config
# NuGet v3's project.json files produces more ignorable files
*.nuget.props
*.nuget.targets
# Microsoft Azure Build Output
csx/
*.build.csdef
# Microsoft Azure Emulator
ecf/
rcf/
# Windows Store app package directories and files
AppPackages/
BundleArtifacts/
Package.StoreAssociation.xml
_pkginfo.txt
*.appx
*.appxbundle
*.appxupload
# Visual Studio cache files
# files ending in .cache can be ignored
*.[Cc]ache
# but keep track of directories ending in .cache
!?*.[Cc]ache/
# Others
ClientBin/
~$*
*~
*.dbmdl
*.dbproj.schemaview
*.jfm
*.pfx
*.publishsettings
orleans.codegen.cs
# Including strong name files can present a security risk
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
#*.snk
# Since there are multiple workflows, uncomment next line to ignore bower_components
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
#bower_components/
# RIA/Silverlight projects
Generated_Code/
# Backup & report files from converting an old project file
# to a newer Visual Studio version. Backup files are not needed,
# because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm
ServiceFabricBackup/
*.rptproj.bak
# SQL Server files
*.mdf
*.ldf
*.ndf
# Business Intelligence projects
*.rdl.data
*.bim.layout
*.bim_*.settings
*.rptproj.rsuser
*- [Bb]ackup.rdl
*- [Bb]ackup ([0-9]).rdl
*- [Bb]ackup ([0-9][0-9]).rdl
# Microsoft Fakes
FakesAssemblies/
# GhostDoc plugin setting file
*.GhostDoc.xml
# Node.js Tools for Visual Studio
.ntvs_analysis.dat
node_modules/
# Visual Studio 6 build log
*.plg
# Visual Studio 6 workspace options file
*.opt
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
*.vbw
# Visual Studio LightSwitch build output
**/*.HTMLClient/GeneratedArtifacts
**/*.DesktopClient/GeneratedArtifacts
**/*.DesktopClient/ModelManifest.xml
**/*.Server/GeneratedArtifacts
**/*.Server/ModelManifest.xml
_Pvt_Extensions
# Paket dependency manager
.paket/paket.exe
paket-files/
# FAKE - F# Make
.fake/
# CodeRush personal settings
.cr/personal
# Python Tools for Visual Studio (PTVS)
__pycache__/
*.pyc
# Cake - Uncomment if you are using it
# tools/**
# !tools/packages.config
# Tabs Studio
*.tss
# Telerik's JustMock configuration file
*.jmconfig
# BizTalk build output
*.btp.cs
*.btm.cs
*.odx.cs
*.xsd.cs
# OpenCover UI analysis results
OpenCover/
# Azure Stream Analytics local run output
ASALocalRun/
# MSBuild Binary and Structured Log
*.binlog
# NVidia Nsight GPU debugger configuration file
*.nvuser
# MFractors (Xamarin productivity tool) working folder
.mfractor/
# Local History for Visual Studio
.localhistory/
# BeatPulse healthcheck temp database
healthchecksdb
# Backup folder for Package Reference Convert tool in Visual Studio 2017
MigrationBackup/
# Ionide (cross platform F# VS Code tools) working folder
.ionide/
# Fody - auto-generated XML schema
FodyWeavers.xsd
# JetBrains Rider
.idea
# Visual Studio Code
.vscode

View File

@ -0,0 +1,44 @@
<?xml version="1.0" encoding="utf-8"?>
<Project>
<PropertyGroup>
<Company></Company>
<Copyright></Copyright>
<NeutralLanguage>en-US</NeutralLanguage>
<Version>0.6.4-alpha</Version>
<VersionSuffix>$(VersionSuffix)</VersionSuffix>
<Version Condition=" '$(VersionSuffix)' != '' ">$(Version)$(VersionSuffix)</Version>
<TreatWarningsAsErrors>true</TreatWarningsAsErrors>
<RepositoryUrl></RepositoryUrl>
<RepositoryType>git</RepositoryType>
<IncludeSymbols>true</IncludeSymbols>
<IncludeSource>true</IncludeSource>
<AnalysisLevel>latest-minimum</AnalysisLevel>
<EnforceCodeStyleInBuild>true</EnforceCodeStyleInBuild>
</PropertyGroup>
<ItemGroup>
<Using Include="System"/>
</ItemGroup>
<PropertyGroup>
<LangVersion>preview</LangVersion>
<Features>strict</Features>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Roslynator.Analyzers" Version="4.2.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
<PackageReference Include="Roslynator.CodeAnalysis.Analyzers" Version="4.2.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
<PackageReference Include="Roslynator.Formatting.Analyzers" Version="4.2.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
</ItemGroup>
</Project>

View File

@ -0,0 +1,33 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<GenerateDocumentationFile>true</GenerateDocumentationFile>
</PropertyGroup>
<ItemGroup>
<ProjectReference Include="..\Gpt4All\Gpt4All.csproj" />
</ItemGroup>
<ItemGroup>
<!-- Windows -->
<None Include="..\runtimes\win-x64\native\*.dll" Pack="true" PackagePath="runtimes\win-x64\native\%(Filename)%(Extension)" />
<!-- Linux -->
<None Include="..\runtimes\linux-x64\native\*.so" Pack="true" PackagePath="runtimes\linux-x64\native\%(Filename)%(Extension)" />
<!-- MacOS -->
<None Include="..\runtimes\osx\native\*.dylib" Pack="true" PackagePath="runtimes\osx\native\%(Filename)%(Extension)" />
</ItemGroup>
<ItemGroup>
<!-- Windows -->
<None Condition="$([MSBuild]::IsOSPlatform('Windows'))" Include="..\runtimes\win-x64\native\*.dll" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<!-- Linux -->
<None Condition="$([MSBuild]::IsOSPlatform('Linux'))" Include="..\runtimes\linux-x64\native\*.so" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<!-- MacOS -->
<None Condition="$([MSBuild]::IsOSPlatform('OSX'))" Include="..\runtimes\osx\native\*.dylib" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<Content Condition="$([MSBuild]::IsOSPlatform('OSX'))" Include="..\runtimes\osx\native\*.metal" Visible="False" CopyToOutputDirectory="PreserveNewest" />
</ItemGroup>
</Project>

View File

@ -0,0 +1,22 @@
using Gpt4All;
var modelFactory = new Gpt4AllModelFactory();
if (args.Length < 2)
{
Console.WriteLine($"Usage: Gpt4All.Samples <model-path> <prompt>");
return;
}
var modelPath = args[0];
var prompt = args[1];
using var model = modelFactory.LoadModel(modelPath);
var result = await model.GetStreamingPredictionAsync(
prompt,
PredictRequestOptions.Defaults);
await foreach (var token in result.GetPredictionStreamingAsync())
{
Console.Write(token);
}

View File

@ -0,0 +1,9 @@
namespace Gpt4All.Tests;
public static class Constants
{
public const string MODELS_BASE_DIR = "../../../models";
public const string LLAMA_MODEL_PATH = $"{MODELS_BASE_DIR}/ggml-gpt4all-l13b-snoozy.bin";
public const string GPTJ_MODEL_PATH = $"{MODELS_BASE_DIR}/ggml-gpt4all-j-v1.3-groovy.bin";
public const string MPT_MODEL_PATH = $"{MODELS_BASE_DIR}/ggml-mpt-7b-chat.bin";
}

View File

@ -0,0 +1,60 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFramework>net8.0</TargetFramework>
<Nullable>enable</Nullable>
<IsPackable>false</IsPackable>
<GenerateDocumentationFile>true</GenerateDocumentationFile>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.6.2" />
<PackageReference Include="xunit" Version="2.4.2" />
<PackageReference Include="xunit.runner.visualstudio" Version="2.4.5">
<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
<PrivateAssets>all</PrivateAssets>
</PackageReference>
<PackageReference Include="coverlet.collector" Version="6.0.0">
<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
<PrivateAssets>all</PrivateAssets>
</PackageReference>
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\Gpt4All\Gpt4All.csproj" />
</ItemGroup>
<ItemGroup>
<!-- Windows -->
<None Include="..\runtimes\win-x64\native\*.dll" Pack="true" PackagePath="runtimes\win-x64\native\%(Filename)%(Extension)" />
<!-- Linux -->
<None Include="..\runtimes\linux-x64\native\*.so" Pack="true" PackagePath="runtimes\linux-x64\native\%(Filename)%(Extension)" />
<!-- MacOS -->
<None Include="..\runtimes\osx\native\*.dylib" Pack="true" PackagePath="runtimes\osx\native\%(Filename)%(Extension)" />
</ItemGroup>
<ItemGroup>
<!-- Windows -->
<None Condition="$([MSBuild]::IsOSPlatform('Windows'))" Include="..\runtimes\win-x64\native\*.dll" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<!-- Linux -->
<None Condition="$([MSBuild]::IsOSPlatform('Linux'))" Include="..\runtimes\linux-x64\native\*.so" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<!-- MacOS -->
<None Condition="$([MSBuild]::IsOSPlatform('OSX'))" Include="..\runtimes\osx\native\*.dylib" Visible="False" CopyToOutputDirectory="PreserveNewest" />
</ItemGroup>
<ItemGroup>
<PackageReference Update="Roslynator.Analyzers" Version="4.3.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
<PackageReference Update="Roslynator.CodeAnalysis.Analyzers" Version="4.3.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
<PackageReference Update="Roslynator.Formatting.Analyzers" Version="4.3.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
</ItemGroup>
</Project>

View File

@ -0,0 +1,34 @@
using Xunit;
namespace Gpt4All.Tests;
public class ModelFactoryTests
{
private readonly Gpt4AllModelFactory _modelFactory;
public ModelFactoryTests()
{
_modelFactory = new Gpt4AllModelFactory();
}
[Fact]
[Trait(Traits.SkipOnCI, "True")]
public void CanLoadLlamaModel()
{
using var model = _modelFactory.LoadModel(Constants.LLAMA_MODEL_PATH);
}
[Fact]
[Trait(Traits.SkipOnCI, "True")]
public void CanLoadGptjModel()
{
using var model = _modelFactory.LoadModel(Constants.GPTJ_MODEL_PATH);
}
[Fact]
[Trait(Traits.SkipOnCI, "True")]
public void CanLoadMptModel()
{
using var model = _modelFactory.LoadModel(Constants.MPT_MODEL_PATH);
}
}

View File

@ -0,0 +1,56 @@
using System.IO;
using Gpt4All.LibraryLoader;
using Xunit;
namespace Gpt4All.Tests;
public class NativeLibraryLoaderTests
{
[Fact]
public void NativeLibraryShouldLoad()
{
var result = NativeLibraryLoader.LoadNativeLibrary(bypassLoading: false);
Assert.True(result.IsSuccess);
}
private const string LLModelLib = "libllmodel.{0}";
[PlatformSpecificFact(Platforms.Windows)]
public void NativeLibraryShouldLoad_Windows()
{
var libraryLoader = new WindowsLibraryLoader();
var libraryPath = Path.Combine(
Environment.CurrentDirectory,
string.Format(LLModelLib, "dll"));
var result = libraryLoader.OpenLibrary(libraryPath);
Assert.True(result.IsSuccess);
}
[PlatformSpecificFact(Platforms.Linux)]
public void NativeLibraryShouldLoad_Linux()
{
var libraryLoader = new LinuxLibraryLoader();
var libraryPath = Path.Combine(
Environment.CurrentDirectory,
string.Format(LLModelLib, "so"));
var result = libraryLoader.OpenLibrary(libraryPath);
Assert.True(result.IsSuccess);
}
[PlatformSpecificFact(Platforms.MacOS)]
public void NativeLibraryShouldLoad_MacOS()
{
var libraryLoader = new MacOsLibraryLoader();
var libraryPath = Path.Combine(
Environment.CurrentDirectory,
string.Format(LLModelLib, "dylib"));
var result = libraryLoader.OpenLibrary(libraryPath);
Assert.True(result.IsSuccess);
}
}

View File

@ -0,0 +1,27 @@
using Xunit;
namespace Gpt4All.Tests;
public static class Platforms
{
public const string Windows = "windows";
public const string Linux = "linux";
public const string MacOS = "macOS";
}
/// <summary>
/// This attribute ensures the Fact is only run on the specified platform.
/// </summary>
/// <remarks>
/// <see cref="OperatingSystem.IsOSPlatform(string)"/> for info about the platform string.
/// </remarks>
public class PlatformSpecificFactAttribute : FactAttribute
{
public PlatformSpecificFactAttribute(string platform)
{
if (!OperatingSystem.IsOSPlatform(platform))
{
Skip = $"Test only runs on {platform}.";
}
}
}

View File

@ -0,0 +1,6 @@
namespace Gpt4All.Tests;
public static class Traits
{
public const string SkipOnCI = "SKIP_ON_CI";
}

View File

@ -0,0 +1,47 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio Version 17
VisualStudioVersion = 17.5.33516.290
MinimumVisualStudioVersion = 10.0.40219.1
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Gpt4All.Samples", "Gpt4All.Samples\Gpt4All.Samples.csproj", "{59864AE8-E45D-42F7-A7C0-1308EF185F39}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Solution Items", "Solution Items", "{DA396C11-CEAD-4368-8234-FB12255A30D2}"
ProjectSection(SolutionItems) = preProject
.gitignore = .gitignore
build_linux.sh = build_linux.sh
build_win-mingw.ps1 = build_win-mingw.ps1
build_win-msvc.ps1 = build_win-msvc.ps1
docs\gpt4all_csharp.md = docs\gpt4all_csharp.md
README.md = README.md
EndProjectSection
EndProject
Project("{9A19103F-16F7-4668-BE54-9A1E7A4F7556}") = "Gpt4All", "Gpt4All\Gpt4All.csproj", "{6015C62B-2008-426B-A334-740D6F1FE38B}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Gpt4All.Tests", "Gpt4All.Tests\Gpt4All.Tests.csproj", "{33A72341-52C1-4EAE-878B-A98BC77F686A}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Release|Any CPU = Release|Any CPU
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{59864AE8-E45D-42F7-A7C0-1308EF185F39}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{59864AE8-E45D-42F7-A7C0-1308EF185F39}.Debug|Any CPU.Build.0 = Debug|Any CPU
{59864AE8-E45D-42F7-A7C0-1308EF185F39}.Release|Any CPU.ActiveCfg = Release|Any CPU
{59864AE8-E45D-42F7-A7C0-1308EF185F39}.Release|Any CPU.Build.0 = Release|Any CPU
{6015C62B-2008-426B-A334-740D6F1FE38B}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{6015C62B-2008-426B-A334-740D6F1FE38B}.Debug|Any CPU.Build.0 = Debug|Any CPU
{6015C62B-2008-426B-A334-740D6F1FE38B}.Release|Any CPU.ActiveCfg = Release|Any CPU
{6015C62B-2008-426B-A334-740D6F1FE38B}.Release|Any CPU.Build.0 = Release|Any CPU
{33A72341-52C1-4EAE-878B-A98BC77F686A}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{33A72341-52C1-4EAE-878B-A98BC77F686A}.Debug|Any CPU.Build.0 = Debug|Any CPU
{33A72341-52C1-4EAE-878B-A98BC77F686A}.Release|Any CPU.ActiveCfg = Release|Any CPU
{33A72341-52C1-4EAE-878B-A98BC77F686A}.Release|Any CPU.Build.0 = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
SolutionGuid = {17632027-F4C2-4903-B88F-310CE3DE386B}
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,29 @@
namespace Gpt4All.Bindings;
/// <summary>
/// Represents the interface exposed by the universal wrapper for GPT4All language models built around llmodel C-API.
/// </summary>
public interface ILLModel : IDisposable
{
ulong GetStateSizeBytes();
int GetThreadCount();
void SetThreadCount(int threadCount);
bool IsLoaded();
bool Load(string modelPath);
void Prompt(
string text,
LLModelPromptContext context,
Func<ModelPromptEventArgs, bool>? promptCallback = null,
Func<ModelResponseEventArgs, bool>? responseCallback = null,
Func<ModelRecalculatingEventArgs, bool>? recalculateCallback = null,
CancellationToken cancellationToken = default);
unsafe ulong RestoreStateData(byte* destination);
unsafe ulong SaveStateData(byte* source);
}

View File

@ -0,0 +1,212 @@
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Abstractions;
namespace Gpt4All.Bindings;
/// <summary>
/// Arguments for the response processing callback
/// </summary>
/// <param name="TokenId">The token id of the response</param>
/// <param name="Response"> The response string. NOTE: a token_id of -1 indicates the string is an error string</param>
/// <return>
/// A bool indicating whether the model should keep generating
/// </return>
public record ModelResponseEventArgs(int TokenId, string Response)
{
public bool IsError => TokenId == -1;
}
/// <summary>
/// Arguments for the prompt processing callback
/// </summary>
/// <param name="TokenId">The token id of the prompt</param>
/// <return>
/// A bool indicating whether the model should keep processing
/// </return>
public record ModelPromptEventArgs(int TokenId)
{
}
/// <summary>
/// Arguments for the recalculating callback
/// </summary>
/// <param name="IsRecalculating"> whether the model is recalculating the context.</param>
/// <return>
/// A bool indicating whether the model should keep generating
/// </return>
public record ModelRecalculatingEventArgs(bool IsRecalculating);
/// <summary>
/// Base class and universal wrapper for GPT4All language models built around llmodel C-API.
/// </summary>
public class LLModel : ILLModel
{
protected readonly IntPtr _handle;
private readonly ILogger _logger;
private bool _disposed;
internal LLModel(IntPtr handle, ILogger? logger = null)
{
_handle = handle;
_logger = logger ?? NullLogger.Instance;
}
/// <summary>
/// Create a new model from a pointer
/// </summary>
/// <param name="handle">Pointer to underlying model</param>
public static LLModel Create(IntPtr handle, ILogger? logger = null)
{
return new LLModel(handle, logger: logger);
}
/// <summary>
/// Generate a response using the model
/// </summary>
/// <param name="text">The input promp</param>
/// <param name="context">The context</param>
/// <param name="promptCallback">A callback function for handling the processing of prompt</param>
/// <param name="responseCallback">A callback function for handling the generated response</param>
/// <param name="recalculateCallback">A callback function for handling recalculation requests</param>
/// <param name="cancellationToken"></param>
public void Prompt(
string text,
LLModelPromptContext context,
Func<ModelPromptEventArgs, bool>? promptCallback = null,
Func<ModelResponseEventArgs, bool>? responseCallback = null,
Func<ModelRecalculatingEventArgs, bool>? recalculateCallback = null,
CancellationToken cancellationToken = default)
{
GC.KeepAlive(promptCallback);
GC.KeepAlive(responseCallback);
GC.KeepAlive(recalculateCallback);
GC.KeepAlive(cancellationToken);
_logger.LogInformation("Prompt input='{Prompt}' ctx={Context}", text, context.Dump());
NativeMethods.llmodel_prompt(
_handle,
text,
(tokenId) =>
{
if (cancellationToken.IsCancellationRequested) return false;
if (promptCallback == null) return true;
var args = new ModelPromptEventArgs(tokenId);
return promptCallback(args);
},
(tokenId, response) =>
{
if (cancellationToken.IsCancellationRequested)
{
_logger.LogDebug("ResponseCallback evt=CancellationRequested");
return false;
}
if (responseCallback == null) return true;
var args = new ModelResponseEventArgs(tokenId, response);
return responseCallback(args);
},
(isRecalculating) =>
{
if (cancellationToken.IsCancellationRequested) return false;
if (recalculateCallback == null) return true;
var args = new ModelRecalculatingEventArgs(isRecalculating);
return recalculateCallback(args);
},
ref context.UnderlyingContext
);
}
/// <summary>
/// Set the number of threads to be used by the model.
/// </summary>
/// <param name="threadCount">The new thread count</param>
public void SetThreadCount(int threadCount)
{
NativeMethods.llmodel_setThreadCount(_handle, threadCount);
}
/// <summary>
/// Get the number of threads used by the model.
/// </summary>
/// <returns>the number of threads used by the model</returns>
public int GetThreadCount()
{
return NativeMethods.llmodel_threadCount(_handle);
}
/// <summary>
/// Get the size of the internal state of the model.
/// </summary>
/// <remarks>
/// This state data is specific to the type of model you have created.
/// </remarks>
/// <returns>the size in bytes of the internal state of the model</returns>
public ulong GetStateSizeBytes()
{
return NativeMethods.llmodel_get_state_size(_handle);
}
/// <summary>
/// Saves the internal state of the model to the specified destination address.
/// </summary>
/// <param name="source">A pointer to the src</param>
/// <returns>The number of bytes copied</returns>
public unsafe ulong SaveStateData(byte* source)
{
return NativeMethods.llmodel_save_state_data(_handle, source);
}
/// <summary>
/// Restores the internal state of the model using data from the specified address.
/// </summary>
/// <param name="destination">A pointer to destination</param>
/// <returns>the number of bytes read</returns>
public unsafe ulong RestoreStateData(byte* destination)
{
return NativeMethods.llmodel_restore_state_data(_handle, destination);
}
/// <summary>
/// Check if the model is loaded.
/// </summary>
/// <returns>true if the model was loaded successfully, false otherwise.</returns>
public bool IsLoaded()
{
return NativeMethods.llmodel_isModelLoaded(_handle);
}
/// <summary>
/// Load the model from a file.
/// </summary>
/// <param name="modelPath">The path to the model file.</param>
/// <returns>true if the model was loaded successfully, false otherwise.</returns>
public bool Load(string modelPath)
{
return NativeMethods.llmodel_loadModel(_handle, modelPath, 2048, 100);
}
protected void Destroy()
{
NativeMethods.llmodel_model_destroy(_handle);
}
protected virtual void Dispose(bool disposing)
{
if (_disposed) return;
if (disposing)
{
// dispose managed state
}
Destroy();
_disposed = true;
}
public void Dispose()
{
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
}

View File

@ -0,0 +1,147 @@
namespace Gpt4All.Bindings;
/// <summary>
/// Wrapper around the llmodel_prompt_context structure for holding the prompt context.
/// </summary>
/// <remarks>
/// The implementation takes care of all the memory handling of the raw logits pointer and the
/// raw tokens pointer.Attempting to resize them or modify them in any way can lead to undefined behavior
/// </remarks>
public unsafe class LLModelPromptContext
{
private llmodel_prompt_context _ctx;
internal ref llmodel_prompt_context UnderlyingContext => ref _ctx;
public LLModelPromptContext()
{
_ctx = new();
}
/// <summary>
/// logits of current context
/// </summary>
public Span<float> Logits => new(_ctx.logits, (int)_ctx.logits_size);
/// <summary>
/// the size of the raw logits vector
/// </summary>
public nuint LogitsSize
{
get => _ctx.logits_size;
set => _ctx.logits_size = value;
}
/// <summary>
/// current tokens in the context window
/// </summary>
public Span<int> Tokens => new(_ctx.tokens, (int)_ctx.tokens_size);
/// <summary>
/// the size of the raw tokens vector
/// </summary>
public nuint TokensSize
{
get => _ctx.tokens_size;
set => _ctx.tokens_size = value;
}
/// <summary>
/// top k logits to sample from
/// </summary>
public int TopK
{
get => _ctx.top_k;
set => _ctx.top_k = value;
}
/// <summary>
/// nucleus sampling probability threshold
/// </summary>
public float TopP
{
get => _ctx.top_p;
set => _ctx.top_p = value;
}
/// <summary>
/// min p sampling probability threshold
/// </summary>
public float MinP
{
get => _ctx.min_p;
set => _ctx.min_p = value;
}
/// <summary>
/// temperature to adjust model's output distribution
/// </summary>
public float Temperature
{
get => _ctx.temp;
set => _ctx.temp = value;
}
/// <summary>
/// number of tokens in past conversation
/// </summary>
public int PastNum
{
get => _ctx.n_past;
set => _ctx.n_past = value;
}
/// <summary>
/// number of predictions to generate in parallel
/// </summary>
public int Batches
{
get => _ctx.n_batch;
set => _ctx.n_batch = value;
}
/// <summary>
/// number of tokens to predict
/// </summary>
public int TokensToPredict
{
get => _ctx.n_predict;
set => _ctx.n_predict = value;
}
/// <summary>
/// penalty factor for repeated tokens
/// </summary>
public float RepeatPenalty
{
get => _ctx.repeat_penalty;
set => _ctx.repeat_penalty = value;
}
/// <summary>
/// last n tokens to penalize
/// </summary>
public int RepeatLastN
{
get => _ctx.repeat_last_n;
set => _ctx.repeat_last_n = value;
}
/// <summary>
/// number of tokens possible in context window
/// </summary>
public int ContextSize
{
get => _ctx.n_ctx;
set => _ctx.n_ctx = value;
}
/// <summary>
/// percent of context to erase if we exceed the context window
/// </summary>
public float ContextErase
{
get => _ctx.context_erase;
set => _ctx.context_erase = value;
}
}

View File

@ -0,0 +1,112 @@
using System.Runtime.InteropServices;
namespace Gpt4All.Bindings;
public unsafe partial struct llmodel_prompt_context
{
public float* logits;
[NativeTypeName("size_t")]
public nuint logits_size;
[NativeTypeName("int32_t *")]
public int* tokens;
[NativeTypeName("size_t")]
public nuint tokens_size;
[NativeTypeName("int32_t")]
public int n_past;
[NativeTypeName("int32_t")]
public int n_ctx;
[NativeTypeName("int32_t")]
public int n_predict;
[NativeTypeName("int32_t")]
public int top_k;
public float top_p;
public float min_p;
public float temp;
[NativeTypeName("int32_t")]
public int n_batch;
public float repeat_penalty;
[NativeTypeName("int32_t")]
public int repeat_last_n;
public float context_erase;
}
#pragma warning disable CA2101
internal static unsafe partial class NativeMethods
{
[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
[return: MarshalAs(UnmanagedType.I1)]
public delegate bool LlmodelResponseCallback(int token_id, [MarshalAs(UnmanagedType.LPUTF8Str)] string response);
[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
[return: MarshalAs(UnmanagedType.I1)]
public delegate bool LlmodelPromptCallback(int token_id);
[UnmanagedFunctionPointer(CallingConvention.Cdecl)]
[return: MarshalAs(UnmanagedType.I1)]
public delegate bool LlmodelRecalculateCallback(bool isRecalculating);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true, BestFitMapping = false, ThrowOnUnmappableChar = true)]
[return: NativeTypeName("llmodel_model")]
public static extern IntPtr llmodel_model_create2(
[NativeTypeName("const char *")][MarshalAs(UnmanagedType.LPUTF8Str)] string model_path,
[NativeTypeName("const char *")][MarshalAs(UnmanagedType.LPUTF8Str)] string build_variant,
out IntPtr error);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true)]
public static extern void llmodel_model_destroy([NativeTypeName("llmodel_model")] IntPtr model);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true, BestFitMapping = false, ThrowOnUnmappableChar = true)]
[return: MarshalAs(UnmanagedType.I1)]
public static extern bool llmodel_loadModel(
[NativeTypeName("llmodel_model")] IntPtr model,
[NativeTypeName("const char *")][MarshalAs(UnmanagedType.LPUTF8Str)] string model_path,
[NativeTypeName("int32_t")] int n_ctx,
[NativeTypeName("int32_t")] int ngl);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true)]
[return: MarshalAs(UnmanagedType.I1)]
public static extern bool llmodel_isModelLoaded([NativeTypeName("llmodel_model")] IntPtr model);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true)]
[return: NativeTypeName("uint64_t")]
public static extern ulong llmodel_get_state_size([NativeTypeName("llmodel_model")] IntPtr model);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true)]
[return: NativeTypeName("uint64_t")]
public static extern ulong llmodel_save_state_data([NativeTypeName("llmodel_model")] IntPtr model, [NativeTypeName("uint8_t *")] byte* dest);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true)]
[return: NativeTypeName("uint64_t")]
public static extern ulong llmodel_restore_state_data([NativeTypeName("llmodel_model")] IntPtr model, [NativeTypeName("const uint8_t *")] byte* src);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true, BestFitMapping = false, ThrowOnUnmappableChar = true)]
public static extern void llmodel_prompt(
[NativeTypeName("llmodel_model")] IntPtr model,
[NativeTypeName("const char *")][MarshalAs(UnmanagedType.LPUTF8Str)] string prompt,
LlmodelPromptCallback prompt_callback,
LlmodelResponseCallback response_callback,
LlmodelRecalculateCallback recalculate_callback,
ref llmodel_prompt_context ctx);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true)]
public static extern void llmodel_setThreadCount([NativeTypeName("llmodel_model")] IntPtr model, [NativeTypeName("int32_t")] int n_threads);
[DllImport("libllmodel", CallingConvention = CallingConvention.Cdecl, ExactSpelling = true)]
[return: NativeTypeName("int32_t")]
public static extern int llmodel_threadCount([NativeTypeName("llmodel_model")] IntPtr model);
}
#pragma warning restore CA2101

View File

@ -0,0 +1,21 @@
using System.Diagnostics;
namespace Gpt4All.Bindings;
/// <summary>Defines the type of a member as it was used in the native signature.</summary>
[AttributeUsage(AttributeTargets.Struct | AttributeTargets.Enum | AttributeTargets.Property | AttributeTargets.Field | AttributeTargets.Parameter | AttributeTargets.ReturnValue, AllowMultiple = false, Inherited = true)]
[Conditional("DEBUG")]
internal sealed partial class NativeTypeNameAttribute : Attribute
{
private readonly string _name;
/// <summary>Initializes a new instance of the <see cref="NativeTypeNameAttribute" /> class.</summary>
/// <param name="name">The name of the type that was used in the native signature.</param>
public NativeTypeNameAttribute(string name)
{
_name = name;
}
/// <summary>Gets the name of the type that was used in the native signature.</summary>
public string Name => _name;
}

View File

@ -0,0 +1,27 @@
using Gpt4All.Bindings;
namespace Gpt4All;
internal static class LLPromptContextExtensions
{
public static string Dump(this LLModelPromptContext context)
{
var ctx = context.UnderlyingContext;
return @$"
{{
logits_size = {ctx.logits_size}
tokens_size = {ctx.tokens_size}
n_past = {ctx.n_past}
n_ctx = {ctx.n_ctx}
n_predict = {ctx.n_predict}
top_k = {ctx.top_k}
top_p = {ctx.top_p}
min_p = {ctx.min_p}
temp = {ctx.temp}
n_batch = {ctx.n_batch}
repeat_penalty = {ctx.repeat_penalty}
repeat_last_n = {ctx.repeat_last_n}
context_erase = {ctx.context_erase}
}}";
}
}

View File

@ -0,0 +1,26 @@
using Gpt4All.Bindings;
namespace Gpt4All;
public static class PredictRequestOptionsExtensions
{
public static LLModelPromptContext ToPromptContext(this PredictRequestOptions opts)
{
return new LLModelPromptContext
{
LogitsSize = opts.LogitsSize,
TokensSize = opts.TokensSize,
TopK = opts.TopK,
TopP = opts.TopP,
MinP = opts.MinP,
PastNum = opts.PastConversationTokensNum,
RepeatPenalty = opts.RepeatPenalty,
Temperature = opts.Temperature,
RepeatLastN = opts.RepeatLastN,
Batches = opts.Batches,
ContextErase = opts.ContextErase,
ContextSize = opts.ContextSize,
TokensToPredict = opts.TokensToPredict
};
}
}

View File

@ -0,0 +1,21 @@
--config
exclude-funcs-with-body
--with-access-specifier
*=Public
--include-directory
..\..\..\gpt4all-backend\
--file
..\..\..\gpt4all-backend\llmodel_c.h
--libraryPath
libllmodel
--remap
sbyte*=IntPtr
void*=IntPtr
--namespace
Gpt4All.Bindings
--methodClassName
NativeMethods
--output
.\Bindings\NativeMethods.cs
--output-mode
CSharp

View File

@ -0,0 +1,135 @@
using System.Diagnostics;
using System.Runtime.CompilerServices;
using Gpt4All.Bindings;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Abstractions;
[assembly: InternalsVisibleTo("Gpt4All.Tests")]
namespace Gpt4All;
public class Gpt4All : IGpt4AllModel
{
private readonly ILLModel _model;
private readonly ILogger _logger;
private const string ResponseErrorMessage =
"The model reported an error during token generation error={ResponseError}";
/// <inheritdoc/>
public IPromptFormatter? PromptFormatter { get; set; }
internal Gpt4All(ILLModel model, ILogger? logger = null)
{
_model = model;
_logger = logger ?? NullLogger.Instance;
PromptFormatter = new DefaultPromptFormatter();
}
private string FormatPrompt(string prompt)
{
if (PromptFormatter == null) return prompt;
return PromptFormatter.FormatPrompt(prompt);
}
public Task<ITextPredictionResult> GetPredictionAsync(string text, PredictRequestOptions opts, CancellationToken cancellationToken = default)
{
ArgumentNullException.ThrowIfNull(text);
return Task.Run(() =>
{
_logger.LogInformation("Start prediction task");
var sw = Stopwatch.StartNew();
var result = new TextPredictionResult();
var context = opts.ToPromptContext();
var prompt = FormatPrompt(text);
try
{
_model.Prompt(prompt, context, responseCallback: e =>
{
if (e.IsError)
{
_logger.LogWarning(ResponseErrorMessage, e.Response);
result.Success = false;
result.ErrorMessage = e.Response;
return false;
}
result.Append(e.Response);
return true;
}, cancellationToken: cancellationToken);
}
catch (Exception e)
{
_logger.LogError(e, "Prompt error");
result.Success = false;
}
sw.Stop();
_logger.LogInformation("Prediction task completed elapsed={Elapsed}s", sw.Elapsed.TotalSeconds);
return (ITextPredictionResult)result;
}, CancellationToken.None);
}
public Task<ITextPredictionStreamingResult> GetStreamingPredictionAsync(string text, PredictRequestOptions opts, CancellationToken cancellationToken = default)
{
ArgumentNullException.ThrowIfNull(text);
var result = new TextPredictionStreamingResult();
_ = Task.Run(() =>
{
_logger.LogInformation("Start streaming prediction task");
var sw = Stopwatch.StartNew();
try
{
var context = opts.ToPromptContext();
var prompt = FormatPrompt(text);
_model.Prompt(prompt, context, responseCallback: e =>
{
if (e.IsError)
{
_logger.LogWarning(ResponseErrorMessage, e.Response);
result.Success = false;
result.ErrorMessage = e.Response;
return false;
}
result.Append(e.Response);
return true;
}, cancellationToken: cancellationToken);
}
catch (Exception e)
{
_logger.LogError(e, "Prompt error");
result.Success = false;
}
finally
{
result.Complete();
sw.Stop();
_logger.LogInformation("Prediction task completed elapsed={Elapsed}s", sw.Elapsed.TotalSeconds);
}
}, CancellationToken.None);
return Task.FromResult((ITextPredictionStreamingResult)result);
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
_model.Dispose();
}
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
}

View File

@ -0,0 +1,23 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
<AllowUnsafeBlocks>true</AllowUnsafeBlocks>
<GenerateDocumentationFile>true</GenerateDocumentationFile>
<TargetFramework>net8.0</TargetFramework>
</PropertyGroup>
<ItemGroup>
<!-- Windows -->
<None Include="..\runtimes\win-x64\native\*.dll" Pack="true" PackagePath="runtimes\win-x64\native\%(Filename)%(Extension)" />
<!-- Linux -->
<None Include="..\runtimes\linux-x64\native\*.so" Pack="true" PackagePath="runtimes\linux-x64\native\%(Filename)%(Extension)" />
<!-- MacOS -->
<None Include="..\runtimes\osx\native\*.dylib" Pack="true" PackagePath="runtimes\osx\native\%(Filename)%(Extension)" />
<Content Include="..\runtimes\osx\native\*.metal" Pack="true" PackagePath="contentFiles\any\any;content">
<PackageCopyToOutput>true</PackageCopyToOutput>
</Content>
</ItemGroup>
<ItemGroup>
<PackageReference Include="Microsoft.Extensions.Logging.Abstractions" Version="7.0.0" />
</ItemGroup>
</Project>

View File

@ -0,0 +1,6 @@
namespace Gpt4All.LibraryLoader;
public interface ILibraryLoader
{
LoadResult OpenLibrary(string? fileName);
}

View File

@ -0,0 +1,53 @@
using System.Runtime.InteropServices;
namespace Gpt4All.LibraryLoader;
internal class LinuxLibraryLoader : ILibraryLoader
{
#pragma warning disable CA2101
[DllImport("libdl.so", ExactSpelling = true, CharSet = CharSet.Auto, EntryPoint = "dlopen")]
#pragma warning restore CA2101
public static extern IntPtr NativeOpenLibraryLibdl(string? filename, int flags);
#pragma warning disable CA2101
[DllImport("libdl.so.2", ExactSpelling = true, CharSet = CharSet.Auto, EntryPoint = "dlopen")]
#pragma warning restore CA2101
public static extern IntPtr NativeOpenLibraryLibdl2(string? filename, int flags);
[DllImport("libdl.so", ExactSpelling = true, CharSet = CharSet.Auto, EntryPoint = "dlerror")]
public static extern IntPtr GetLoadError();
[DllImport("libdl.so.2", ExactSpelling = true, CharSet = CharSet.Auto, EntryPoint = "dlerror")]
public static extern IntPtr GetLoadError2();
public LoadResult OpenLibrary(string? fileName)
{
IntPtr loadedLib;
try
{
// open with rtls lazy flag
loadedLib = NativeOpenLibraryLibdl2(fileName, 0x00001);
}
catch (DllNotFoundException)
{
loadedLib = NativeOpenLibraryLibdl(fileName, 0x00001);
}
if (loadedLib == IntPtr.Zero)
{
string errorMessage;
try
{
errorMessage = Marshal.PtrToStringAnsi(GetLoadError2()) ?? "Unknown error";
}
catch (DllNotFoundException)
{
errorMessage = Marshal.PtrToStringAnsi(GetLoadError()) ?? "Unknown error";
}
return LoadResult.Failure(errorMessage);
}
return LoadResult.Success;
}
}

View File

@ -0,0 +1,20 @@
namespace Gpt4All.LibraryLoader;
public class LoadResult
{
private LoadResult(bool isSuccess, string? errorMessage)
{
IsSuccess = isSuccess;
ErrorMessage = errorMessage;
}
public static LoadResult Success { get; } = new(true, null);
public static LoadResult Failure(string errorMessage)
{
return new(false, errorMessage);
}
public bool IsSuccess { get; }
public string? ErrorMessage { get; }
}

View File

@ -0,0 +1,28 @@
using System.Runtime.InteropServices;
namespace Gpt4All.LibraryLoader;
internal class MacOsLibraryLoader : ILibraryLoader
{
#pragma warning disable CA2101
[DllImport("libdl.dylib", ExactSpelling = true, CharSet = CharSet.Auto, EntryPoint = "dlopen")]
#pragma warning restore CA2101
public static extern IntPtr NativeOpenLibraryLibdl(string? filename, int flags);
[DllImport("libdl.dylib", ExactSpelling = true, CharSet = CharSet.Auto, EntryPoint = "dlerror")]
public static extern IntPtr GetLoadError();
public LoadResult OpenLibrary(string? fileName)
{
var loadedLib = NativeOpenLibraryLibdl(fileName, 0x00001);
if (loadedLib == IntPtr.Zero)
{
var errorMessage = Marshal.PtrToStringAnsi(GetLoadError()) ?? "Unknown error";
return LoadResult.Failure(errorMessage);
}
return LoadResult.Success;
}
}

View File

@ -0,0 +1,81 @@
#if !IOS && !MACCATALYST && !TVOS && !ANDROID
using System.Runtime.InteropServices;
#endif
namespace Gpt4All.LibraryLoader;
public static class NativeLibraryLoader
{
private static ILibraryLoader? defaultLibraryLoader;
/// <summary>
/// Sets the library loader used to load the native libraries. Overwrite this only if you want some custom loading.
/// </summary>
/// <param name="libraryLoader">The library loader to be used.</param>
public static void SetLibraryLoader(ILibraryLoader libraryLoader)
{
defaultLibraryLoader = libraryLoader;
}
internal static LoadResult LoadNativeLibrary(string? path = default, bool bypassLoading = true)
{
// If the user has handled loading the library themselves, we don't need to do anything.
if (bypassLoading)
{
return LoadResult.Success;
}
var architecture = RuntimeInformation.OSArchitecture switch
{
Architecture.X64 => "x64",
Architecture.X86 => "x86",
Architecture.Arm => "arm",
Architecture.Arm64 => "arm64",
_ => throw new PlatformNotSupportedException(
$"Unsupported OS platform, architecture: {RuntimeInformation.OSArchitecture}")
};
var (platform, extension) = Environment.OSVersion.Platform switch
{
_ when RuntimeInformation.IsOSPlatform(OSPlatform.Windows) => ("win", "dll"),
_ when RuntimeInformation.IsOSPlatform(OSPlatform.Linux) => ("linux", "so"),
_ when RuntimeInformation.IsOSPlatform(OSPlatform.OSX) => ("osx", "dylib"),
_ => throw new PlatformNotSupportedException(
$"Unsupported OS platform, architecture: {RuntimeInformation.OSArchitecture}")
};
// If the user hasn't set the path, we'll try to find it ourselves.
if (string.IsNullOrEmpty(path))
{
var libraryName = "libllmodel";
var assemblySearchPath = new[]
{
AppDomain.CurrentDomain.RelativeSearchPath,
Path.GetDirectoryName(typeof(NativeLibraryLoader).Assembly.Location),
Path.GetDirectoryName(Environment.GetCommandLineArgs()[0])
}.FirstOrDefault(it => !string.IsNullOrEmpty(it));
// Search for the library dll within the assembly search path. If it doesn't exist, for whatever reason, use the default path.
path = Directory.EnumerateFiles(assemblySearchPath ?? string.Empty, $"{libraryName}.{extension}", SearchOption.AllDirectories).FirstOrDefault() ?? Path.Combine("runtimes", $"{platform}-{architecture}", $"{libraryName}.{extension}");
}
if (defaultLibraryLoader != null)
{
return defaultLibraryLoader.OpenLibrary(path);
}
if (!File.Exists(path))
{
throw new FileNotFoundException($"Native Library not found in path {path}. " +
$"Verify you have have included the native Gpt4All library in your application.");
}
ILibraryLoader libraryLoader = platform switch
{
"win" => new WindowsLibraryLoader(),
"osx" => new MacOsLibraryLoader(),
"linux" => new LinuxLibraryLoader(),
_ => throw new PlatformNotSupportedException($"Currently {platform} platform is not supported")
};
return libraryLoader.OpenLibrary(path);
}
}

View File

@ -0,0 +1,24 @@
using System.ComponentModel;
using System.Runtime.InteropServices;
namespace Gpt4All.LibraryLoader;
internal class WindowsLibraryLoader : ILibraryLoader
{
public LoadResult OpenLibrary(string? fileName)
{
var loadedLib = LoadLibrary(fileName);
if (loadedLib == IntPtr.Zero)
{
var errorCode = Marshal.GetLastWin32Error();
var errorMessage = new Win32Exception(errorCode).Message;
return LoadResult.Failure(errorMessage);
}
return LoadResult.Success;
}
[DllImport("kernel32", SetLastError = true, CharSet = CharSet.Auto)]
private static extern IntPtr LoadLibrary([MarshalAs(UnmanagedType.LPWStr)] string? lpFileName);
}

View File

@ -0,0 +1,16 @@
namespace Gpt4All;
public class DefaultPromptFormatter : IPromptFormatter
{
public string FormatPrompt(string prompt)
{
return $"""
### Instruction:
The prompt below is a question to answer, a task to complete, or a conversation
to respond to; decide which and write an appropriate response.
### Prompt:
{prompt}
### Response:
""";
}
}

View File

@ -0,0 +1,62 @@
using System.Diagnostics;
using Microsoft.Extensions.Logging.Abstractions;
using Microsoft.Extensions.Logging;
using Gpt4All.Bindings;
using Gpt4All.LibraryLoader;
using System.Runtime.InteropServices;
namespace Gpt4All;
public class Gpt4AllModelFactory : IGpt4AllModelFactory
{
private readonly ILoggerFactory _loggerFactory;
private readonly ILogger _logger;
private static bool bypassLoading;
private static string? libraryPath;
private static readonly Lazy<LoadResult> libraryLoaded = new(() =>
{
return NativeLibraryLoader.LoadNativeLibrary(Gpt4AllModelFactory.libraryPath, Gpt4AllModelFactory.bypassLoading);
}, true);
public Gpt4AllModelFactory(string? libraryPath = default, bool bypassLoading = true, ILoggerFactory? loggerFactory = null)
{
_loggerFactory = loggerFactory ?? NullLoggerFactory.Instance;
_logger = _loggerFactory.CreateLogger<Gpt4AllModelFactory>();
Gpt4AllModelFactory.libraryPath = libraryPath;
Gpt4AllModelFactory.bypassLoading = bypassLoading;
if (!libraryLoaded.Value.IsSuccess)
{
throw new Exception($"Failed to load native gpt4all library. Error: {libraryLoaded.Value.ErrorMessage}");
}
}
private Gpt4All CreateModel(string modelPath)
{
_logger.LogInformation("Creating model path={ModelPath}", modelPath);
IntPtr error;
var handle = NativeMethods.llmodel_model_create2(modelPath, "auto", out error);
if (error != IntPtr.Zero)
{
throw new Exception(Marshal.PtrToStringAnsi(error));
}
_logger.LogDebug("Model created handle=0x{ModelHandle:X8}", handle);
_logger.LogInformation("Model loading started");
var loadedSuccessfully = NativeMethods.llmodel_loadModel(handle, modelPath, 2048, 100);
_logger.LogInformation("Model loading completed success={ModelLoadSuccess}", loadedSuccessfully);
if (!loadedSuccessfully)
{
throw new Exception($"Failed to load model: '{modelPath}'");
}
var logger = _loggerFactory.CreateLogger<LLModel>();
var underlyingModel = LLModel.Create(handle, logger: logger);
Debug.Assert(underlyingModel.IsLoaded());
return new Gpt4All(underlyingModel, logger: logger);
}
public IGpt4AllModel LoadModel(string modelPath) => CreateModel(modelPath);
}

View File

@ -0,0 +1,10 @@
namespace Gpt4All;
public interface IGpt4AllModel : ITextPrediction, IDisposable
{
/// <summary>
/// The prompt formatter used to format the prompt before
/// feeding it to the model, if null no transformation is applied
/// </summary>
IPromptFormatter? PromptFormatter { get; set; }
}

View File

@ -0,0 +1,6 @@
namespace Gpt4All;
public interface IGpt4AllModelFactory
{
IGpt4AllModel LoadModel(string modelPath);
}

View File

@ -0,0 +1,14 @@
namespace Gpt4All;
/// <summary>
/// Formats a prompt
/// </summary>
public interface IPromptFormatter
{
/// <summary>
/// Format the provided prompt
/// </summary>
/// <param name="prompt">the input prompt</param>
/// <returns>The formatted prompt</returns>
string FormatPrompt(string prompt);
}

View File

@ -0,0 +1,6 @@
namespace Gpt4All;
public record ModelOptions
{
public int Threads { get; init; } = 4;
}

View File

@ -0,0 +1,31 @@
namespace Gpt4All;
/// <summary>
/// Interface for text prediction services
/// </summary>
public interface ITextPrediction
{
/// <summary>
/// Get prediction results for the prompt and provided options.
/// </summary>
/// <param name="text">The text to complete</param>
/// <param name="opts">The prediction settings</param>
/// <param name="cancellation">The <see cref="CancellationToken"/> for cancellation requests. The default is <see cref="CancellationToken.None"/>.</param>
/// <returns>The prediction result generated by the model</returns>
Task<ITextPredictionResult> GetPredictionAsync(
string text,
PredictRequestOptions opts,
CancellationToken cancellation = default);
/// <summary>
/// Get streaming prediction results for the prompt and provided options.
/// </summary>
/// <param name="text">The text to complete</param>
/// <param name="opts">The prediction settings</param>
/// <param name="cancellationToken">The <see cref="CancellationToken"/> for cancellation requests. The default is <see cref="CancellationToken.None"/>.</param>
/// <returns>The prediction result generated by the model</returns>
Task<ITextPredictionStreamingResult> GetStreamingPredictionAsync(
string text,
PredictRequestOptions opts,
CancellationToken cancellationToken = default);
}

View File

@ -0,0 +1,10 @@
namespace Gpt4All;
public interface ITextPredictionResult
{
bool Success { get; }
string? ErrorMessage { get; }
Task<string> GetPredictionAsync(CancellationToken cancellationToken = default);
}

View File

@ -0,0 +1,6 @@
namespace Gpt4All;
public interface ITextPredictionStreamingResult : ITextPredictionResult
{
IAsyncEnumerable<string> GetPredictionStreamingAsync(CancellationToken cancellationToken = default);
}

View File

@ -0,0 +1,32 @@
namespace Gpt4All;
public record PredictRequestOptions
{
public nuint LogitsSize { get; init; } = 0;
public nuint TokensSize { get; init; } = 0;
public int PastConversationTokensNum { get; init; } = 0;
public int ContextSize { get; init; } = 1024;
public int TokensToPredict { get; init; } = 128;
public int TopK { get; init; } = 40;
public float TopP { get; init; } = 0.9f;
public float MinP { get; init; } = 0.0f;
public float Temperature { get; init; } = 0.1f;
public int Batches { get; init; } = 8;
public float RepeatPenalty { get; init; } = 1.2f;
public int RepeatLastN { get; init; } = 10;
public float ContextErase { get; init; } = 0.5f;
public static readonly PredictRequestOptions Defaults = new();
}

View File

@ -0,0 +1,27 @@
using System.Text;
namespace Gpt4All;
public record TextPredictionResult : ITextPredictionResult
{
private readonly StringBuilder _result;
public bool Success { get; internal set; } = true;
public string? ErrorMessage { get; internal set; }
internal TextPredictionResult()
{
_result = new StringBuilder();
}
internal void Append(string token)
{
_result.Append(token);
}
public Task<string> GetPredictionAsync(CancellationToken cancellationToken = default)
{
return Task.FromResult(_result.ToString());
}
}

View File

@ -0,0 +1,49 @@
using System.Text;
using System.Threading.Channels;
namespace Gpt4All;
public record TextPredictionStreamingResult : ITextPredictionStreamingResult
{
private readonly Channel<string> _channel;
public bool Success { get; internal set; } = true;
public string? ErrorMessage { get; internal set; }
public Task Completion => _channel.Reader.Completion;
internal TextPredictionStreamingResult()
{
_channel = Channel.CreateUnbounded<string>();
}
internal bool Append(string token)
{
return _channel.Writer.TryWrite(token);
}
internal void Complete()
{
_channel.Writer.Complete();
}
public async Task<string> GetPredictionAsync(CancellationToken cancellationToken = default)
{
var sb = new StringBuilder();
var tokens = GetPredictionStreamingAsync(cancellationToken).ConfigureAwait(false);
await foreach (var token in tokens)
{
sb.Append(token);
}
return sb.ToString();
}
public IAsyncEnumerable<string> GetPredictionStreamingAsync(CancellationToken cancellationToken = default)
{
return _channel.Reader.ReadAllAsync(cancellationToken);
}
}

View File

@ -0,0 +1 @@
ClangSharpPInvokeGenerator @(Get-Content .\GenLLModelBindings.rsp)

View File

@ -0,0 +1,124 @@
# C# GPT4All
This package contains a set of C# bindings around the `llmodel` C-API.
## Documentation
TBD
## Installation
Windows and Linux builds are available on NuGet: https://www.nuget.org/packages/Gpt4All
macOS is WIP due to code signing issues, contributions are welcome.
## Project Structure
```
gpt4all-bindings/
└── csharp
   ├── Gpt4All // .NET Bindigs
   ├── Gpt4All.Samples // Sample project
├── build_win-msvc.ps1 // Native build scripts
├── build_win-mingw.ps1
├── build_linux.sh
└── runtimes // [POST-BUILD] Platform-specific native libraries
├── win-x64
├── ...
└── linux-x64
```
## Prerequisites
On Windows and Linux, building GPT4All requires the complete Vulkan SDK. You may download it from here: https://vulkan.lunarg.com/sdk/home
macOS users do not need Vulkan, as GPT4All will use Metal instead.
## Local Build Instructions
> **Note**
> Tested On:
> - Windows 11 22H + VS2022 (CE) x64
> - Linux Ubuntu x64
> - Linux Ubuntu (WSL2) x64
1. Setup the repository
2. Build the native libraries for the platform of choice (see below)
3. Build the C# Bindings (NET6+ SDK is required)
```
git clone --recurse-submodules https://github.com/nomic-ai/gpt4all
cd gpt4all/gpt4all-bindings/csharp
```
### Linux
1. Setup build environment and install NET6+ SDK with the appropriate procedure for your distribution
```
sudo apt-get update
sudo apt-get install -y cmake build-essential
chmod +x ./build_linux.sh
```
2. `./build_linux.sh`
3. The native libraries should be present at `.\native\linux-x64`
### Windows - MinGW64
#### Additional requirements
- [MinGW64](https://www.mingw-w64.org/)
- CMAKE
1. Setup
```
choco install mingw
$env:Path += ";C:\ProgramData\mingw64\mingw64\bin"
choco install -y cmake --installargs 'ADD_CMAKE_TO_PATH=System'
```
2. Run the `./build_win-mingw.ps1` build script
3. The native libraries should be present at `.\native\win-x64`
### Windows - MSVC
#### Additional requirements
- Visual Studio 2022
1. Open a terminal using the `x64 Native Tools Command Prompt for VS 2022` (`vcvars64.bat`)
2. Run the `./build_win-msvc.ps1` build script
3. `libllmodel.dll` and `libllama.dll` should be present at `.\native\win-x64`
> **Warning**
> If the build fails with: '**error C7555: use of designated initializers requires at least '/std:c++20'**'
>
> Modify `cd gpt4all/gpt4all-backends/CMakeLists.txt` adding `CXX_STANDARD_20` to `llmodel` properties.
> ```cmake
> set_target_properties(llmodel PROPERTIES
> VERSION ${PROJECT_VERSION}
> CXX_STANDARD 20 # <---- ADD THIS -----------------------
> SOVERSION ${PROJECT_VERSION_MAJOR})
> ```
## C# Bindings Build Instructions
Build the `Gpt4All` (or `Gpt4All.Samples`) projects from within VisualStudio.
### Try the bindings
```csharp
using Gpt4All;
// load the model
var modelFactory = new ModelFactory();
using var model = modelFactory.LoadModel("./path/to/ggml-gpt4all-j-v1.3-groovy.bin");
var input = "Name 3 Colors";
// request a prediction
var result = await model.GetStreamingPredictionAsync(
input,
PredictRequestOptions.Defaults);
// asynchronously print the tokens as soon as they are produces by the model
await foreach(var token in result.GetPredictionStreamingAsync())
{
Console.Write(token);
}
```
Output:
```
gptj_model_load: loading model from 'ggml-gpt4all-j-v1.3-groovy.bin' - please wait ...
gptj_model_load: n_vocab = 50400
[...TRUNCATED...]
gptj_model_load: ggml ctx size = 5401.45 MB
gptj_model_load: kv self size = 896.00 MB
gptj_model_load: ................................... done
gptj_model_load: model size = 3609.38 MB / num tensors = 285
Black, Blue and White
```

View File

@ -0,0 +1,10 @@
#!/bin/sh
mkdir -p runtimes
rm -rf runtimes/linux-x64
mkdir -p runtimes/linux-x64/native
mkdir runtimes/linux-x64/build
cmake -S ../../gpt4all-backend -B runtimes/linux-x64/build
cmake --build runtimes/linux-x64/build --parallel --config Release
cp runtimes/linux-x64/build/libllmodel.so runtimes/linux-x64/native/libllmodel.so
cp runtimes/linux-x64/build/libgptj*.so runtimes/linux-x64/native/
cp runtimes/linux-x64/build/libllama*.so runtimes/linux-x64/native/

View File

@ -0,0 +1,16 @@
$ROOT_DIR = '.\runtimes\win-x64'
$BUILD_DIR = '.\runtimes\win-x64\build\mingw'
$LIBS_DIR = '.\runtimes\win-x64\native'
# cleanup env
Remove-Item -Force -Recurse $ROOT_DIR -ErrorAction SilentlyContinue | Out-Null
mkdir $BUILD_DIR | Out-Null
mkdir $LIBS_DIR | Out-Null
# build
cmake -G "MinGW Makefiles" -S ..\..\gpt4all-backend -B $BUILD_DIR
cmake --build $BUILD_DIR --parallel --config Release
# copy native dlls
cp "C:\ProgramData\mingw64\mingw64\bin\*dll" $LIBS_DIR
cp "$BUILD_DIR\bin\*.dll" $LIBS_DIR

View File

@ -0,0 +1,6 @@
Remove-Item -Force -Recurse .\runtimes\win-x64\msvc -ErrorAction SilentlyContinue
mkdir .\runtimes\win-x64\msvc\build | Out-Null
cmake -G "Visual Studio 17 2022" -A X64 -S ..\..\gpt4all-backend -B .\runtimes\win-x64\msvc\build
cmake --build .\runtimes\win-x64\msvc\build --parallel --config Release
cp .\runtimes\win-x64\msvc\build\bin\Release\*.dll .\runtimes\win-x64
mv .\runtimes\win-x64\llmodel.dll .\runtimes\win-x64\libllmodel.dll

View File

@ -0,0 +1 @@
# GPT4All C# API

View File

@ -0,0 +1,163 @@
INCLUDE_PATH := $(abspath ./)
LIBRARY_PATH := $(abspath ./)
CMAKEFLAGS=
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
ifndef UNAME_P
UNAME_P := $(shell uname -p)
endif
ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1)
# Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin)
ifneq ($(UNAME_P),arm)
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
ifeq ($(SYSCTL_M),1)
# UNAME_P := arm
# UNAME_M := arm64
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
endif
endif
endif
#
# Compile flags
#
# keep standard at C11 and C++11
CFLAGS = -I. -I../../gpt4all-backend/llama.cpp -I../../gpt4all-backend -I -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I../../gpt4all-backend/llama.cpp -I../../gpt4all-backend -O3 -DNDEBUG -std=c++17 -fPIC
LDFLAGS =
# warnings
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wno-unused-function
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
# OS specific
# TODO: support Windows
ifeq ($(UNAME_S),Linux)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Darwin)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),FreeBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),NetBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),OpenBSD)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
ifeq ($(UNAME_S),Haiku)
CFLAGS += -pthread
CXXFLAGS += -pthread
endif
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
# Use all CPU extensions that are available:
CFLAGS += -march=native -mtune=native
CXXFLAGS += -march=native -mtune=native
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
CFLAGS += -mcpu=power9
CXXFLAGS += -mcpu=power9
endif
# Require c++23's std::byteswap for big-endian support.
ifeq ($(UNAME_M),ppc64)
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
endif
endif
ifndef LLAMA_NO_ACCELERATE
# Mac M1 - include Accelerate framework.
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_ACCELERATE
LDFLAGS += -framework Accelerate
endif
endif
ifdef LLAMA_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
LDFLAGS += -lopenblas
endif
ifdef LLAMA_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, 2, 3
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
endif
#
# Print build information
#
$(info I go-gpt4all build info: )
$(info I UNAME_S: $(UNAME_S))
$(info I UNAME_P: $(UNAME_P))
$(info I UNAME_M: $(UNAME_M))
$(info I CFLAGS: $(CFLAGS))
$(info I CXXFLAGS: $(CXXFLAGS))
$(info I LDFLAGS: $(LDFLAGS))
$(info I CMAKEFLAGS: $(CMAKEFLAGS))
$(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )
llmodel.o:
[ -e buildllm ] || mkdir buildllm
cd buildllm && cmake ../../../gpt4all-backend/ $(CMAKEFLAGS) && make
cd buildllm && cp -rf CMakeFiles/llmodel.dir/llmodel_c.cpp.o ../llmodel_c.o
cd buildllm && cp -rf CMakeFiles/llmodel.dir/llmodel.cpp.o ../llmodel.o
clean:
rm -f *.o
rm -f *.a
rm -rf buildllm
rm -rf example/main
binding.o: binding.cpp binding.h
$(CXX) $(CXXFLAGS) binding.cpp -o binding.o -c $(LDFLAGS)
libgpt4all.a: binding.o llmodel.o
ar src libgpt4all.a llmodel.o binding.o
test: libgpt4all.a
@C_INCLUDE_PATH=${INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} go test -v ./...
example/main: libgpt4all.a
C_INCLUDE_PATH=$(INCLUDE_PATH) LIBRARY_PATH=$(INCLUDE_PATH) go build -o example/main ./example/

View File

@ -0,0 +1,59 @@
# GPT4All Golang bindings
The golang bindings have been tested on:
- MacOS
- Linux
### Usage
```
import (
"github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
func main() {
// Load the model
model, err := gpt4all.New("model.bin", gpt4all.SetModelType(gpt4all.GPTJType))
if err != nil {
panic(err)
}
defer model.Free()
model.SetTokenCallback(func(s string) bool {
fmt.Print(s)
return true
})
_, err = model.Predict("Here are 4 steps to create a website:", "", "", gpt4all.SetTemperature(0.1))
if err != nil {
panic(err)
}
}
```
## Building
In order to use the bindings you will need to build `libgpt4all.a`:
```
git clone --recurse-submodules https://github.com/nomic-ai/gpt4all
cd gpt4all/gpt4all-bindings/golang
make libgpt4all.a
```
To use the bindings in your own software:
- Import `github.com/nomic-ai/gpt4all/gpt4all-bindings/golang`;
- Compile `libgpt4all.a` (you can use `make libgpt4all.a` in the bindings/go directory);
- Link your go binary by setting the environment variables `C_INCLUDE_PATH` and `LIBRARY_PATH` to point to the `binding.h` file directory and `libgpt4all.a` file directory respectively.
- Note: you need to have *.so/*.dynlib/*.dll files of the implementation nearby the binary produced by the binding in order to make this to work
## Testing
To run tests, run `make test`:
```
git clone https://github.com/nomic-ai/gpt4all
cd gpt4all/gpt4all-bindings/golang
make test
```

View File

@ -0,0 +1,107 @@
#include "../../gpt4all-backend/llmodel_c.h"
#include "../../gpt4all-backend/llmodel.h"
#include "../../gpt4all-backend/llmodel_c.cpp"
#include "binding.h"
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <unistd.h>
void* load_model(const char *fname, int n_threads) {
// load the model
const char *new_error;
auto model = llmodel_model_create2(fname, "auto", &new_error);
if (model == nullptr) {
fprintf(stderr, "%s: error '%s'\n", __func__, new_error);
return nullptr;
}
if (!llmodel_loadModel(model, fname, 2048, 100)) {
llmodel_model_destroy(model);
return nullptr;
}
llmodel_setThreadCount(model, n_threads);
return model;
}
std::string res = "";
void * mm;
void model_prompt(const char *prompt, const char *prompt_template, int special, const char *fake_reply,
void *m, char* result, int repeat_last_n, float repeat_penalty, int n_ctx, int tokens,
int top_k, float top_p, float min_p, float temp, int n_batch,float ctx_erase)
{
llmodel_model* model = (llmodel_model*) m;
// std::string res = "";
auto lambda_prompt = [](int token_id) {
return true;
};
mm=model;
res="";
auto lambda_response = [](int token_id, const char *responsechars) {
res.append((char*)responsechars);
return !!getTokenCallback(mm, (char*)responsechars);
};
auto lambda_recalculate = [](bool is_recalculating) {
// You can handle recalculation requests here if needed
return is_recalculating;
};
llmodel_prompt_context* prompt_context = new llmodel_prompt_context{
.logits = NULL,
.logits_size = 0,
.tokens = NULL,
.tokens_size = 0,
.n_past = 0,
.n_ctx = 1024,
.n_predict = 50,
.top_k = 10,
.top_p = 0.9,
.min_p = 0.0,
.temp = 1.0,
.n_batch = 1,
.repeat_penalty = 1.2,
.repeat_last_n = 10,
.context_erase = 0.5
};
prompt_context->n_predict = tokens;
prompt_context->repeat_last_n = repeat_last_n;
prompt_context->repeat_penalty = repeat_penalty;
prompt_context->n_ctx = n_ctx;
prompt_context->top_k = top_k;
prompt_context->context_erase = ctx_erase;
prompt_context->top_p = top_p;
prompt_context->min_p = min_p;
prompt_context->temp = temp;
prompt_context->n_batch = n_batch;
llmodel_prompt(model, prompt, prompt_template,
lambda_prompt,
lambda_response,
lambda_recalculate,
prompt_context, special, fake_reply);
strcpy(result, res.c_str());
free(prompt_context);
}
void free_model(void *state_ptr) {
llmodel_model* ctx = (llmodel_model*) state_ptr;
llmodel_model_destroy(*ctx);
}

View File

@ -0,0 +1,19 @@
#ifdef __cplusplus
extern "C" {
#endif
#include <stdbool.h>
void* load_model(const char *fname, int n_threads);
void model_prompt(const char *prompt, const char *prompt_template, int special, const char *fake_reply,
void *m, char* result, int repeat_last_n, float repeat_penalty, int n_ctx, int tokens,
int top_k, float top_p, float min_p, float temp, int n_batch,float ctx_erase);
void free_model(void *state_ptr);
extern unsigned char getTokenCallback(void *, char *);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,82 @@
package main
import (
"bufio"
"flag"
"fmt"
"io"
"os"
"runtime"
"strings"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
var (
threads = 4
tokens = 128
)
func main() {
var model string
flags := flag.NewFlagSet(os.Args[0], flag.ExitOnError)
flags.StringVar(&model, "m", "./models/7B/ggml-model-q4_0.bin", "path to q4_0.bin model file to load")
flags.IntVar(&threads, "t", runtime.NumCPU(), "number of threads to use during computation")
flags.IntVar(&tokens, "n", 512, "number of tokens to predict")
err := flags.Parse(os.Args[1:])
if err != nil {
fmt.Printf("Parsing program arguments failed: %s", err)
os.Exit(1)
}
l, err := gpt4all.New(model, gpt4all.SetThreads(threads))
if err != nil {
fmt.Println("Loading the model failed:", err.Error())
os.Exit(1)
}
fmt.Printf("Model loaded successfully.\n")
l.SetTokenCallback(func(token string) bool {
fmt.Print(token)
return true
})
reader := bufio.NewReader(os.Stdin)
for {
text := readMultiLineInput(reader)
_, err := l.Predict(text, "", "", gpt4all.SetTokens(tokens), gpt4all.SetTopK(90), gpt4all.SetTopP(0.86))
if err != nil {
panic(err)
}
fmt.Printf("\n\n")
}
}
// readMultiLineInput reads input until an empty line is entered.
func readMultiLineInput(reader *bufio.Reader) string {
var lines []string
fmt.Print(">>> ")
for {
line, err := reader.ReadString('\n')
if err != nil {
if err == io.EOF {
os.Exit(0)
}
fmt.Printf("Reading the prompt failed: %s", err)
os.Exit(1)
}
if len(strings.TrimSpace(line)) == 0 {
break
}
lines = append(lines, line)
}
text := strings.Join(lines, "")
return text
}

View File

@ -0,0 +1,20 @@
module github.com/nomic-ai/gpt4all/gpt4all-bindings/golang
go 1.19
require (
github.com/onsi/ginkgo/v2 v2.9.4
github.com/onsi/gomega v1.27.6
)
require (
github.com/go-logr/logr v1.2.4 // indirect
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 // indirect
github.com/google/go-cmp v0.5.9 // indirect
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 // indirect
golang.org/x/net v0.9.0 // indirect
golang.org/x/sys v0.7.0 // indirect
golang.org/x/text v0.9.0 // indirect
golang.org/x/tools v0.8.0 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
)

View File

@ -0,0 +1,40 @@
github.com/chzyer/logex v1.1.10/go.mod h1:+Ywpsq7O8HXn0nuIou7OrIPyXbp3wmkHB+jjWRnGsAI=
github.com/chzyer/readline v0.0.0-20180603132655-2972be24d48e/go.mod h1:nSuG5e5PlCu98SY8svDHJxuZscDgtXS6KTTbou5AhLI=
github.com/chzyer/test v0.0.0-20180213035817-a1ea475d72b1/go.mod h1:Q3SI9o4m/ZMnBNeIyt5eFwwo7qiLfzFZmjNmxjkiQlU=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/go-logr/logr v1.2.4 h1:g01GSCwiDw2xSZfjJ2/T9M+S6pFdcNtFYsp+Y43HYDQ=
github.com/go-logr/logr v1.2.4/go.mod h1:jdQByPbusPIv2/zmleS9BjJVeZ6kBagPoEUsqbVz/1A=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572 h1:tfuBGBXKqDEevZMzYi5KSi8KkcZtzBcTgAUUtapy0OI=
github.com/go-task/slim-sprig v0.0.0-20230315185526-52ccab3ef572/go.mod h1:9Pwr4B2jHnOSGXyyzV8ROjYa2ojvAY6HCGYYfMoC3Ls=
github.com/golang/protobuf v1.5.3 h1:KhyjKVUg7Usr/dYsdSqoFveMYd5ko72D+zANwlG1mmg=
github.com/google/go-cmp v0.5.9 h1:O2Tfq5qg4qc4AmwVlvv0oLiVAGB7enBSJ2x2DqQFi38=
github.com/google/go-cmp v0.5.9/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38 h1:yAJXTCF9TqKcTiHJAE8dj7HMvPfh66eeA2JYW7eFpSE=
github.com/google/pprof v0.0.0-20210407192527-94a9f03dee38/go.mod h1:kpwsk12EmLew5upagYY7GY0pfYCcupk39gWOCRROcvE=
github.com/ianlancetaylor/demangle v0.0.0-20200824232613-28f6c0f3b639/go.mod h1:aSSvb/t6k1mPoxDqO4vJh6VOCGPwU4O0C2/Eqndh1Sc=
github.com/onsi/ginkgo/v2 v2.9.4 h1:xR7vG4IXt5RWx6FfIjyAtsoMAtnc3C/rFXBBd2AjZwE=
github.com/onsi/ginkgo/v2 v2.9.4/go.mod h1:gCQYp2Q+kSoIj7ykSVb9nskRSsR6PUj4AiLywzIhbKM=
github.com/onsi/gomega v1.27.6 h1:ENqfyGeS5AX/rlXDd/ETokDz93u0YufY1Pgxuy/PvWE=
github.com/onsi/gomega v1.27.6/go.mod h1:PIQNjfQwkP3aQAH7lf7j87O/5FiNr+ZR8+ipb+qQlhg=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/testify v1.6.1 h1:hDPOHmpOpP40lSULcqw7IrRb/u7w6RpDC9399XyoNd0=
github.com/stretchr/testify v1.6.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
golang.org/x/net v0.9.0 h1:aWJ/m6xSmxWBx+V0XRHTlrYrPG56jKsLdTFmsSsCzOM=
golang.org/x/net v0.9.0/go.mod h1:d48xBJpPfHeWQsugry2m+kC02ZBRGRgulfHnEXEuWns=
golang.org/x/sys v0.0.0-20191204072324-ce4227a45e2e/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.7.0 h1:3jlCCIQZPdOYu1h8BkNvLz8Kgwtae2cagcG/VamtZRU=
golang.org/x/sys v0.7.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/text v0.9.0 h1:2sjJmO8cDvYveuX97RDLsxlyUxLl+GHoLxBiRdHllBE=
golang.org/x/text v0.9.0/go.mod h1:e1OnstbJyHTd6l/uOt8jFFHp6TRDWZR/bV3emEE/zU8=
golang.org/x/tools v0.8.0 h1:vSDcovVPld282ceKgDimkRSC8kpaH1dgyc9UMzlt84Y=
golang.org/x/tools v0.8.0/go.mod h1:JxBZ99ISMI5ViVkT1tr6tdNmXeTrcpVSD3vZ1RsRdN4=
google.golang.org/protobuf v1.28.0 h1:w43yiav+6bVFTBQFZX0r7ipe9JQ1QsbMgHwbBziscLw=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405 h1:yhCVgyC4o1eVCa2tZl7eS0r+SDo693bJlVdllGtEeKM=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=

View File

@ -0,0 +1,112 @@
package gpt4all
// #cgo CFLAGS: -I${SRCDIR}../../gpt4all-backend/ -I${SRCDIR}../../gpt4all-backend/llama.cpp -I./
// #cgo CXXFLAGS: -std=c++17 -I${SRCDIR}../../gpt4all-backend/ -I${SRCDIR}../../gpt4all-backend/llama.cpp -I./
// #cgo darwin LDFLAGS: -framework Accelerate
// #cgo darwin CXXFLAGS: -std=c++17
// #cgo LDFLAGS: -lgpt4all -lm -lstdc++ -ldl
// void* load_model(const char *fname, int n_threads);
// void model_prompt( const char *prompt, const char *prompt_template, int special, const char *fake_reply, void *m, char* result, int repeat_last_n, float repeat_penalty, int n_ctx, int tokens, int top_k,
// float top_p, float min_p, float temp, int n_batch,float ctx_erase);
// void free_model(void *state_ptr);
// extern unsigned char getTokenCallback(void *, char *);
// void llmodel_set_implementation_search_path(const char *path);
import "C"
import (
"fmt"
"runtime"
"strings"
"sync"
"unsafe"
)
// The following code is https://github.com/go-skynet/go-llama.cpp with small adaptations
type Model struct {
state unsafe.Pointer
}
func New(model string, opts ...ModelOption) (*Model, error) {
ops := NewModelOptions(opts...)
if ops.LibrarySearchPath != "" {
C.llmodel_set_implementation_search_path(C.CString(ops.LibrarySearchPath))
}
state := C.load_model(C.CString(model), C.int(ops.Threads))
if state == nil {
return nil, fmt.Errorf("failed loading model")
}
gpt := &Model{state: state}
// set a finalizer to remove any callbacks when the struct is reclaimed by the garbage collector.
runtime.SetFinalizer(gpt, func(g *Model) {
setTokenCallback(g.state, nil)
})
return gpt, nil
}
func (l *Model) Predict(text, template, fakeReplyText string, opts ...PredictOption) (string, error) {
po := NewPredictOptions(opts...)
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
templateInput := C.CString(template)
fakeReplyInput := C.CString(fakeReplyText)
out := make([]byte, po.Tokens)
C.model_prompt(input, templateInput, C.int(po.Special), fakeReplyInput, l.state, (*C.char)(unsafe.Pointer(&out[0])),
C.int(po.RepeatLastN), C.float(po.RepeatPenalty), C.int(po.ContextSize), C.int(po.Tokens),
C.int(po.TopK), C.float(po.TopP), C.float(po.MinP), C.float(po.Temperature), C.int(po.Batch),
C.float(po.ContextErase))
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
res = strings.TrimPrefix(res, " ")
res = strings.TrimPrefix(res, text)
res = strings.TrimPrefix(res, "\n")
res = strings.TrimSuffix(res, "<|endoftext|>")
return res, nil
}
func (l *Model) Free() {
C.free_model(l.state)
}
func (l *Model) SetTokenCallback(callback func(token string) bool) {
setTokenCallback(l.state, callback)
}
var (
m sync.Mutex
callbacks = map[uintptr]func(string) bool{}
)
//export getTokenCallback
func getTokenCallback(statePtr unsafe.Pointer, token *C.char) bool {
m.Lock()
defer m.Unlock()
if callback, ok := callbacks[uintptr(statePtr)]; ok {
return callback(C.GoString(token))
}
return true
}
// setCallback can be used to register a token callback for LLama. Pass in a nil callback to
// remove the callback.
func setTokenCallback(statePtr unsafe.Pointer, callback func(string) bool) {
m.Lock()
defer m.Unlock()
if callback == nil {
delete(callbacks, uintptr(statePtr))
} else {
callbacks[uintptr(statePtr)] = callback
}
}

View File

@ -0,0 +1,13 @@
package gpt4all_test
import (
"testing"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
func TestGPT(t *testing.T) {
RegisterFailHandler(Fail)
RunSpecs(t, "go-gpt4all-j test suite")
}

View File

@ -0,0 +1,17 @@
package gpt4all_test
import (
. "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("LLama binding", func() {
Context("Declaration", func() {
It("fails with no model", func() {
model, err := New("not-existing")
Expect(err).To(HaveOccurred())
Expect(model).To(BeNil())
})
})
})

View File

@ -0,0 +1,138 @@
package gpt4all
type PredictOptions struct {
ContextSize, RepeatLastN, Tokens, TopK, Batch, Special int
TopP, MinP, Temperature, ContextErase, RepeatPenalty float64
}
type PredictOption func(p *PredictOptions)
var DefaultOptions PredictOptions = PredictOptions{
Tokens: 200,
TopK: 10,
TopP: 0.90,
MinP: 0.0,
Temperature: 0.96,
Batch: 1,
Special: 0,
ContextErase: 0.55,
ContextSize: 1024,
RepeatLastN: 10,
RepeatPenalty: 1.2,
}
var DefaultModelOptions ModelOptions = ModelOptions{
Threads: 4,
}
type ModelOptions struct {
Threads int
LibrarySearchPath string
}
type ModelOption func(p *ModelOptions)
// SetTokens sets the number of tokens to generate.
func SetTokens(tokens int) PredictOption {
return func(p *PredictOptions) {
p.Tokens = tokens
}
}
// SetTopK sets the value for top-K sampling.
func SetTopK(topk int) PredictOption {
return func(p *PredictOptions) {
p.TopK = topk
}
}
// SetTopP sets the value for nucleus sampling.
func SetTopP(topp float64) PredictOption {
return func(p *PredictOptions) {
p.TopP = topp
}
}
// SetMinP sets the value for min p sampling
func SetMinP(minp float64) PredictOption {
return func(p *PredictOptions) {
p.MinP = minp
}
}
// SetRepeatPenalty sets the repeat penalty.
func SetRepeatPenalty(ce float64) PredictOption {
return func(p *PredictOptions) {
p.RepeatPenalty = ce
}
}
// SetRepeatLastN sets the RepeatLastN.
func SetRepeatLastN(ce int) PredictOption {
return func(p *PredictOptions) {
p.RepeatLastN = ce
}
}
// SetContextErase sets the context erase %.
func SetContextErase(ce float64) PredictOption {
return func(p *PredictOptions) {
p.ContextErase = ce
}
}
// SetTemperature sets the temperature value for text generation.
func SetTemperature(temp float64) PredictOption {
return func(p *PredictOptions) {
p.Temperature = temp
}
}
// SetBatch sets the batch size.
func SetBatch(size int) PredictOption {
return func(p *PredictOptions) {
p.Batch = size
}
}
// SetSpecial is true if special tokens in the prompt should be processed, false otherwise.
func SetSpecial(special bool) PredictOption {
return func(p *PredictOptions) {
if special {
p.Special = 1
} else {
p.Special = 0
}
}
}
// Create a new PredictOptions object with the given options.
func NewPredictOptions(opts ...PredictOption) PredictOptions {
p := DefaultOptions
for _, opt := range opts {
opt(&p)
}
return p
}
// SetThreads sets the number of threads to use for text generation.
func SetThreads(c int) ModelOption {
return func(p *ModelOptions) {
p.Threads = c
}
}
// SetLibrarySearchPath sets the dynamic libraries used by gpt4all for the various ggml implementations.
func SetLibrarySearchPath(t string) ModelOption {
return func(p *ModelOptions) {
p.LibrarySearchPath = t
}
}
// Create a new PredictOptions object with the given options.
func NewModelOptions(opts ...ModelOption) ModelOptions {
p := DefaultModelOptions
for _, opt := range opts {
opt(&p)
}
return p
}

5
gpt4all-bindings/java/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
# Make sure native directory never gets commited to git for the project.
/src/main/resources/native
# IntelliJ project file
*.iml

View File

@ -0,0 +1,80 @@
# Java Bindings Developer documents.
This document is meant to anyone looking to build the Java bindings from source, test a build locally and perform a release.
## Building locally
Maven is the build tool used by the project. Maven version of 3.8 or higher is recommended. Make sure the **mvn**
is available on the command path.
The project builds to Java version 11 target so make sure that a JDK at version 11 or newer is installed.
### Setting up location of native shared libraries
The property **native.libs.location** in pom.xml may need to be set:
```
<properties>
...
<native.libs.location>C:\Users\felix\dev\gpt4all_java_bins\release_1_1_3_Jun22_2023</native.libs.location>
</properties>
```
All the native shared libraries bundled with the Java binding jar will be copied from this location.
The directory structure is **native/linux**, **native/macos**, **native/windows**. These directories are copied
into the **src/main/resources** folder during the build process.
For the purposes of local testing, none of these directories have to be present or just one OS type may be present.
If none of the native libraries are present in **native.libs.location** the shared libraries will be searched for
in location path set by **LLModel.LIBRARY_SEARCH_PATH** static variable in Java source code that is using the bindings.
Alternately you can copy the shared libraries into the **src/resources/native/linux** before
you build, but note **src/main/resources/native** is on the .gitignore, so it will not be committed to sources.
### Building
To package the bindings jar run:
```
mvn package
```
This will build two jars. One has only the Java bindings and the other is a fat jar that will have required dependencies included as well.
To package and install the Java bindings to your local maven repository run:
```
mvn install
```
### Using in a sample application
You can check out a sample project that uses the java bindings here:
https://github.com/felix-zaslavskiy/gpt4all-java-bindings-sample.git
1. First, update the dependency of java bindings to whatever you have installed in local repository such as **1.1.4-SNAPSHOT**
2. Second, update **Main.java** and set **baseModelPath** to the correct location of model weight files.
3. To make a runnable jar run:
```
mvn package
```
A fat jar is also created which is easy to run from command line:
```
java -jar target/gpt4all-java-bindings-sample-1.0-SNAPSHOT-jar-with-dependencies.jar
```
### Publish a public release.
For publishing a new version to maven central repository requires password and signing keys which F.Z. currently maintains, so
he is responsible for making a public release.
The procedure is as follows:
For a snapshot release
Run:
```
mvn deploy -P signing-profile
```
For a non-snapshot release
Run:
```
mvn clean deploy -P signing-profile,release
```

View File

@ -0,0 +1,126 @@
# Java bindings
Java bindings let you load a gpt4all library into your Java application and execute text
generation using an intuitive and easy to use API. No GPU is required because gpt4all executes on the CPU.
The gpt4all models are quantized to easily fit into system RAM and use about 4 to 7GB of system RAM.
## Getting Started
You can add Java bindings into your Java project by adding the following dependency to your project:
**Maven**
```
<dependency>
<groupId>com.hexadevlabs</groupId>
<artifactId>gpt4all-java-binding</artifactId>
<version>1.1.5</version>
</dependency>
```
**Gradle**
```
implementation 'com.hexadevlabs:gpt4all-java-binding:1.1.5'
```
To add the library dependency for another build system see [Maven Central Java bindings](https://central.sonatype.com/artifact/com.hexadevlabs/gpt4all-java-binding/).
To download model binary weights file use a URL such as [`https://gpt4all.io/models/gguf/gpt4all-13b-snoozy-q4_0.gguf`](https://gpt4all.io/models/gguf/gpt4all-13b-snoozy-q4_0.gguf).
For information about other models available see the [model file list](https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-chat#manual-download-of-models).
### Sample code
```java
public class Example {
public static void main(String[] args) {
String prompt = "### Human:\nWhat is the meaning of life\n### Assistant:";
// Replace the hardcoded path with the actual path where your model file resides
String modelFilePath = "C:\\Users\\felix\\AppData\\Local\\nomic.ai\\GPT4All\\ggml-gpt4all-j-v1.3-groovy.bin";
try (LLModel model = new LLModel(Path.of(modelFilePath))) {
// May generate up to 4096 tokens but generally stops early
LLModel.GenerationConfig config = LLModel.config()
.withNPredict(4096).build();
// Will also stream to standard output
String fullGeneration = model.generate(prompt, config, true);
} catch (Exception e) {
// Exceptions generally may happen if the model file fails to load
// for a number of reasons such as a file not found.
// It is possible that Java may not be able to dynamically load the native shared library or
// the llmodel shared library may not be able to dynamically load the backend
// implementation for the model file you provided.
//
// Once the LLModel class is successfully loaded into memory the text generation calls
// generally should not throw exceptions.
e.printStackTrace(); // Printing here but in a production system you may want to take some action.
}
}
}
```
For a Maven-based sample project that uses this library see this [sample project](https://github.com/felix-zaslavskiy/gpt4all-java-bindings-sample)
### Additional considerations
#### Logger warnings
The Java bindings library may produce a warning if you don't have a SLF4J binding included in your project:
```
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
```
The Java bindings only use logging for informational
purposes, so a logger is not essential to correctly use the library. You can ignore this warning if you don't have SLF4J bindings
in your project.
To add a simple logger using a Maven dependency you may use:
```
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.36</version>
</dependency>
```
#### Loading your native libraries
1. the Java bindings package JAR comes bundled with a native library files for Windows, macOS and Linux. These library files are
copied to a temporary directory and loaded at runtime. For advanced users who may want to package shared libraries into Docker containers
or want to use a custom build of the shared libraries and ignore the once bundled with the Java package they have option
to load libraries from your local directory by setting a static property to the location of library files.
There are no guarantees of compatibility if used in such a way so be careful if you really want to do it.
For example:
```java
class Example {
public static void main(String[] args) {
// gpt4all native shared libraries location
LLModel.LIBRARY_SEARCH_PATH = "C:\\Users\\felix\\gpt4all\\lib\\";
// ... use the library normally
}
}
```
2. Not every AVX-only shared library is bundled with the JAR right now to reduce size. Only libgptj-avx is included.
If you are running into issues please let us know using the [gpt4all project issue tracker](https://github.com/nomic-ai/gpt4all/issues).
3. For Windows the native library included in jar depends on specific Microsoft C and C++ (MSVC) runtime libraries which may not be installed on your system.
If this is the case you can easily download and install the latest x64 Microsoft Visual C++ Redistributable package from https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
4. When running Java in a Docker container it is advised to use eclipse-temurin:17-jre parent image. Alpine based parent images don't work due to the native library dependencies.
## Version history
1. Version **1.1.2**:
- Java bindings is compatible with gpt4ll version 2.4.6
- Initial stable release with the initial feature set
2. Version **1.1.3**:
- Java bindings is compatible with gpt4all version 2.4.8
- Add static GPT4ALL_VERSION to signify gpt4all version of the bindings
- Add PromptIsTooLongException for prompts that are longer than context size.
- Replit model support to include Metal Mac hardware support.
3. Version **1.1.4**:
- Java bindings is compatible with gpt4all version 2.4.11
- Falcon model support included.
4. Version **1.1.5**:
- Add a check for model file readability before loading model.

View File

@ -0,0 +1,6 @@
## Needed
1. Integrate with circleci build pipeline like the C# binding.
## These are just ideas
1. Better Chat completions function.
2. Chat completion that returns result in OpenAI compatible format.

View File

@ -0,0 +1,216 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.hexadevlabs</groupId>
<artifactId>gpt4all-java-binding</artifactId>
<version>1.1.5</version>
<packaging>jar</packaging>
<properties>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<native.libs.location>C:\Users\felix\dev\gpt4all_java_bins\release_1_1_4_July8_2023</native.libs.location>
</properties>
<name>${project.groupId}:${project.artifactId}</name>
<description>Java bindings for GPT4ALL LLM</description>
<url>https://github.com/nomic-ai/gpt4all</url>
<licenses>
<license>
<name>The Apache License, Version 2.0</name>
<url>https://github.com/nomic-ai/gpt4all/blob/main/LICENSE.txt</url>
</license>
</licenses>
<developers>
<developer>
<name>Felix Zaslavskiy</name>
<email>felixz@hexadevlabs.com</email>
<organizationUrl>https://github.com/felix-zaslavskiy/</organizationUrl>
</developer>
</developers>
<scm>
<connection>scm:git:git://github.com/nomic-ai/gpt4all.git</connection>
<developerConnection>scm:git:ssh://github.com/nomic-ai/gpt4all.git</developerConnection>
<url>https://github.com/nomic-ai/gpt4all/tree/main</url>
</scm>
<dependencies>
<dependency>
<groupId>com.github.jnr</groupId>
<artifactId>jnr-ffi</artifactId>
<version>2.2.13</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.36</version>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.9.2</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-junit-jupiter</artifactId>
<version>5.4.0</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<version>5.4.0</version>
<scope>test</scope>
</dependency>
</dependencies>
<distributionManagement>
<snapshotRepository>
<id>ossrh</id>
<url>https://s01.oss.sonatype.org/content/repositories/snapshots</url>
</snapshotRepository>
<repository>
<id>ossrh</id>
<url>https://s01.oss.sonatype.org/service/local/staging/deploy/maven2/</url>
</repository>
</distributionManagement>
<build>
<resources>
<resource>
<directory>src/main/resources</directory>
</resource>
<resource>
<directory>${project.build.directory}/generated-resources</directory>
</resource>
</resources>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<forkCount>0</forkCount>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId>
<version>3.3.1</version>
<executions>
<execution>
<id>copy-resources</id>
<!-- Here the phase you need -->
<phase>validate</phase>
<goals>
<goal>copy-resources</goal>
</goals>
<configuration>
<outputDirectory>${project.build.directory}/generated-resources</outputDirectory>
<resources>
<resource>
<directory>${native.libs.location}</directory>
</resource>
</resources>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.sonatype.plugins</groupId>
<artifactId>nexus-staging-maven-plugin</artifactId>
<version>1.6.13</version>
<extensions>true</extensions>
<configuration>
<serverId>ossrh</serverId>
<nexusUrl>https://s01.oss.sonatype.org/</nexusUrl>
<autoReleaseAfterClose>true</autoReleaseAfterClose>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<version>2.2.1</version>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar-no-fork</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>3.5.0</version>
<executions>
<execution>
<id>attach-javadocs</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.6.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
<profiles>
<profile>
<id>signing-profile</id>
<!-- activation conditions here, if any -->
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<version>3.1.0</version>
<executions>
<execution>
<id>sign-artifacts</id>
<phase>verify</phase>
<goals>
<goal>sign</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>
</project>

Some files were not shown because too many files have changed in this diff Show More