Compare commits

..

No commits in common. "main" and "python-v1.0.11" have entirely different histories.

575 changed files with 34765 additions and 73423 deletions

View File

@ -1,22 +1,19 @@
version: 2.1 version: 2.1
setup: true setup: true
orbs: orbs:
path-filtering: circleci/path-filtering@1.3.0 path-filtering: circleci/path-filtering@0.0.1
workflows: workflows:
version: 2.1 version: 2.1
generate-config: generate-config:
jobs: jobs:
- path-filtering/filter: - path-filtering/filter:
filters:
tags:
only:
- /.*/
base-revision: main base-revision: main
config-path: .circleci/continue_config.yml config-path: .circleci/continue_config.yml
mapping: | mapping: |
.circleci/.* run-all-workflows true
gpt4all-backend/.* run-all-workflows true
gpt4all-bindings/python/.* run-python-workflow true gpt4all-bindings/python/.* run-python-workflow true
gpt4all-bindings/typescript/.* run-ts-workflow true gpt4all-bindings/typescript/.* run-ts-workflow true
gpt4all-bindings/csharp/.* run-csharp-workflow true
gpt4all-backend/.* run-chat-workflow true
gpt4all-chat/.* run-chat-workflow true gpt4all-chat/.* run-chat-workflow true
.* run-default-workflow true

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
import re
import sys
ID_REG = r"id: (.*)"
def main() -> None:
notary_log = sys.argv[1]
with open(notary_log, "r") as f:
notary_output = f.read()
id_m = re.search(ID_REG, notary_output)
if id_m:
print(id_m.group(1))
else:
raise RuntimeError("Unable to parse ID from notarization logs")
if __name__ == "__main__":
main()

View File

@ -1,3 +1,3 @@
[codespell] [codespell]
ignore-words-list = blong, afterall, assistent, crasher, requestor ignore-words-list = blong, belong, afterall, som
skip = ./.git,./gpt4all-chat/translations,*.pdf,*.svg,*.lock skip = .git,*.pdf,*.svg,*.lock

View File

@ -1,35 +0,0 @@
---
name: "\U0001F6E0 Bindings Bug Report"
about: A bug report for the GPT4All Bindings
labels: ["bindings", "bug-unconfirmed"]
---
<!-- Before creating a new issue, please make sure to take a few moments to check the issue tracker for existing issues about the bug. -->
### Bug Report
<!-- A clear and concise description of what the bug is. -->
### Example Code
<!-- Please provide a minimal code example that can be used to experience this issue. Delete this section if it does not apply. -->
### Steps to Reproduce
<!-- List the steps that should be taken to experience this issue. -->
1.
2.
3.
### Expected Behavior
<!-- In a few words, what did you expect to happen? -->
### Your Environment
- Bindings version (e.g. "Version" from `pip show gpt4all`):
- Operating System:
- Chat model used (if applicable):
<!-- You can freely edit this text, please remove all the lines you believe are unnecessary. -->

70
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@ -0,0 +1,70 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve GPT4All
labels: ["02 Bug Report"]
body:
- type: markdown
attributes:
value: >
Thank you for taking the time to file a bug report. Before creating a new
issue, please make sure to take a few moments to check the issue tracker
for existing issues about the bug.
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us.
placeholder: GPT4All version, platform, python version, etc...
validations:
required: true
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: "The problem arises when using:"
options:
- label: "The official example notebooks/scripts"
- label: "My own modified scripts"
- type: checkboxes
id: related-components
attributes:
label: Related Components
description: "Select the components related to the issue (if applicable):"
options:
- label: "backend"
- label: "bindings"
- label: "python-bindings"
- label: "chat-ui"
- label: "models"
- label: "circleci"
- label: "docker"
- label: "api"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a [code sample](https://stackoverflow.com/help/minimal-reproducible-example) that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Avoid screenshots when possible, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

View File

@ -1,31 +0,0 @@
---
name: "\U0001F4AC GPT4All Bug Report"
about: A bug report for GPT4All Chat
labels: ["chat", "bug-unconfirmed"]
---
<!-- Before creating a new issue, please make sure to take a few moments to check the issue tracker for existing issues about the bug. -->
### Bug Report
<!-- A clear and concise description of what the bug is. -->
### Steps to Reproduce
<!-- List the steps that should be taken to experience this issue. Provide any relevant information about your configuration, and describe anything that was unexpected. -->
1.
2.
3.
### Expected Behavior
<!-- In a few words, what did you expect to happen? -->
### Your Environment
- GPT4All version:
- Operating System:
- Chat model used (if applicable):
<!-- You can freely edit this text, please remove all the lines you believe are unnecessary. -->

View File

@ -1 +1,2 @@
version: 2.1 blank_issues_enabled: false
version: 2.1

View File

@ -1,9 +0,0 @@
---
name: "\U0001F4C4 Documentation"
about: An issue related to the GPT4All documentation
labels: ["documentation"]
---
### Documentation
<!-- Please describe the issue with the documentation as clearly as possible. -->

View File

@ -0,0 +1,19 @@
name: Documentation
description: Report an issue related to the GPT4All documentation.
title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>"
labels: [03 - Documentation]
body:
- type: textarea
attributes:
label: "Issue with current documentation:"
description: >
Please make sure to leave a reference to the document/code you're
referring to.
- type: textarea
attributes:
label: "Idea or request for content:"
description: >
Please describe as clearly as possible what topics you think are missing
from the current documentation.

View File

@ -1,10 +0,0 @@
---
name: "\U0001F680 Feature Request"
about: Submit a proposal/request for a new GPT4All feature
title: "[Feature] Feature request title..."
labels: ["enhancement"]
---
### Feature Request
<!-- A clear and concise description of the feature proposal. -->

View File

@ -0,0 +1,30 @@
name: "\U0001F680 Feature Request"
description: Submit a proposal/request for a new GPT4All feature
labels: ["02 Feature Request"]
body:
- type: textarea
id: feature-request
validations:
required: true
attributes:
label: Feature request
description: |
A clear and concise description of the feature proposal. Please provide links to any relevant GitHub repos, papers, or other resources if relevant.
- type: textarea
id: motivation
validations:
required: true
attributes:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution
validations:
required: true
attributes:
label: Your contribution
description: |
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/nomic-ai/gpt4all/blob/main/CONTRIBUTING.md)

View File

@ -1,32 +0,0 @@
---
name: "\U0001F41B Other Bug Report"
about: A bug in another component of GPT4All
labels: ["bug-unconfirmed"]
---
<!-- Before creating a new issue, please make sure to take a few moments to check the issue tracker for existing issues about the bug. -->
### Bug Report
<!-- A clear and concise description of what the bug is. -->
### Steps to Reproduce
<!-- List the steps that should be taken to experience this issue. Provide any relevant information about your configuration, and describe anything that was unexpected. If this bug involves original code, please provide a minimal version that can reproduce the issue. -->
1.
2.
3.
### Expected Behavior
<!-- In a few words, what did you expect to happen? -->
### Your Environment
- GPT4All version (if applicable):
- Operating System:
- Chat model used (if applicable):
<!-- You can freely edit this text, please remove all the lines you believe are unnecessary. -->

18
.github/ISSUE_TEMPLATE/other.yml vendored Normal file
View File

@ -0,0 +1,18 @@
name: Other Issue
description: Raise an issue that wouldn't be covered by the other templates.
title: "Issue: <Please write a comprehensive title after the 'Issue: ' prefix>"
labels: [04 - Other]
body:
- type: textarea
attributes:
label: "Issue you'd like to raise."
description: >
Please describe the issue you'd like to raise as clearly as possible.
Make sure to include any relevant links or references.
- type: textarea
attributes:
label: "Suggestion:"
description: >
Please outline a suggestion to improve the issue here.

View File

@ -14,6 +14,6 @@ jobs:
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v3
- name: Codespell - name: Codespell
uses: codespell-project/actions-codespell@v2 uses: codespell-project/actions-codespell@v2

7
.gitignore vendored
View File

@ -181,11 +181,6 @@ CMakeLists.txt.user
gpt4all-chat/models/* gpt4all-chat/models/*
build_* build_*
build-* build-*
cmake-build-*
/gpt4all-chat/tests/python/config.py
# IntelliJ # IntelliJ
.idea/ .idea/
# LLM models
*.gguf

30
.gitmodules vendored
View File

@ -1,25 +1,9 @@
[submodule "llama.cpp-230519"]
path = gpt4all-backend/llama.cpp-230519
url = https://github.com/ggerganov/llama.cpp.git
[submodule "llama.cpp-230511"]
path = gpt4all-backend/llama.cpp-230511
url = https://github.com/nomic-ai/llama.cpp
[submodule "llama.cpp-mainline"] [submodule "llama.cpp-mainline"]
path = gpt4all-backend/deps/llama.cpp-mainline path = gpt4all-backend/llama.cpp-mainline
url = https://github.com/nomic-ai/llama.cpp.git url = https://github.com/nomic-ai/llama.cpp.git
branch = master
[submodule "gpt4all-chat/usearch"]
path = gpt4all-chat/deps/usearch
url = https://github.com/nomic-ai/usearch.git
[submodule "gpt4all-chat/deps/SingleApplication"]
path = gpt4all-chat/deps/SingleApplication
url = https://github.com/nomic-ai/SingleApplication.git
[submodule "gpt4all-chat/deps/fmt"]
path = gpt4all-chat/deps/fmt
url = https://github.com/fmtlib/fmt.git
[submodule "gpt4all-chat/deps/DuckX"]
path = gpt4all-chat/deps/DuckX
url = https://github.com/nomic-ai/DuckX.git
[submodule "gpt4all-chat/deps/QXlsx"]
path = gpt4all-chat/deps/QXlsx
url = https://github.com/nomic-ai/QXlsx.git
[submodule "gpt4all-chat/deps/minja"]
path = gpt4all-chat/deps/minja
url = https://github.com/nomic-ai/minja.git
[submodule "gpt4all-chat/deps/json"]
path = gpt4all-chat/deps/json
url = https://github.com/nlohmann/json.git

30
LICENSE_SOM.txt Normal file
View File

@ -0,0 +1,30 @@
Software for Open Models License (SOM)
Version 1.0 dated August 30th, 2023
This license governs use of the accompanying Software. If you use the Software, you accept this license. If you do not accept the license, do not use the Software.
This license is intended to encourage open release of models created, modified, processed, or otherwise used via the Software under open licensing terms, and should be interpreted in light of that intent.
1. Definitions
The “Licensor” is the person or entity who is making the Software available under this license. “Software” is the software made available by Licensor under this license.
A “Model” is the output of a machine learning algorithm, and excludes the Software.
“Model Source Materials” must include the Model and model weights, and may include any input data, input data descriptions, documentation or training descriptions for the Model.
“Open Licensing Terms” means: (a) any open source license approved by the Open Source Initiative, or (b) any other terms that make the Model Source Materials publicly available free of charge, and allow recipients to use, modify and distribute the Model Source Materials. Terms described in (b) may include reasonable restrictions such as non-commercial or non-production limitations, or require use in compliance with law.
2. Grant of Rights. Subject to the conditions and limitations in section 3:
(A) Copyright Grant. Licensor grants you a non-exclusive, worldwide, royalty-free copyright license to copy, modify, and distribute the Software and any modifications of the Software you create under this license. The foregoing license includes without limitation the right to create, modify, and use Models using this Software.
(B) Patent Grant. Licensor grants you a non-exclusive, worldwide, royalty-free license, under any patents owned or controlled by Licensor, to make, have made, use, sell, offer for sale, import, or otherwise exploit the Software. No license is granted to patent rights that are not embodied in the operation of the Software in the form provided by Licensor.
3. Conditions and Limitations
(A) Model Licensing and Access. If you use the Software to create, modify, process, or otherwise use any Model, including usage to create inferences with a Model, whether or not you make the Model available to others, you must make that Model Source Materials publicly available under Open Licensing Terms.
(B) No Re-Licensing. If you redistribute the Software, or modifications to the Software made under the license granted above, you must make it available only under the terms of this license. You may offer additional terms such as warranties, maintenance and support, but You, and not Licensor, are responsible for performing such terms.
(C) No Trademark License. This license does not grant you rights to use the Licensors name, logo, or trademarks.
(D) If you assert in writing a claim against any person or entity alleging that the use of the Software infringes any patent, all of your licenses to the Software under Section 2 end automatically as of the date you asserted the claim.
(E) If you distribute any portion of the Software, you must retain all copyright, patent, trademark, and attribution notices that are present in the Software, and you must include a copy of this license.
(F) The Software is licensed “as-is.” You bear the entire risk of using it. Licensor gives You no express warranties, guarantees or conditions. You may have additional consumer rights under your local laws that this license cannot change. To the extent permitted under your local laws, the Licensor disclaims and excludes the implied warranties of merchantability, fitness for a particular purpose and non-infringement. To the extent this disclaimer is unlawful, you, and not Licensor, are responsible for any liability.

View File

@ -1,77 +0,0 @@
# MAINTAINERS
## Rules
* All content inside GPT4All shall have a documented maintainer
* If a maintainer decides to retire or resign a call for volunteers will go
out
* If no further maintainer can be found in a reasonable time frame, then the
content will be marked deprecated and removed in time
## Job
Maintainers will be...
1. Responsible for overseeing content under their stewardship
2. Responsible for triaging new issues, reviewing PRs, assigning priority
to tasks
3. Responsible for keeping content in sufficient quality in a timely fashion
## List
Adam Treat ([@manyoso](https://github.com/manyoso))<br/>
E-mail: adam@nomic.ai<br/>
Discord: `@gonzochess75`
- Overall project maintainer
- Chat UI
Jared Van Bortel ([@cebtenzzre](https://github.com/cebtenzzre))<br/>
E-mail: jared@nomic.ai<br/>
Discord: `@cebtenzzre`
- gpt4all-backend
- Python binding
- Python CLI app
Jacob Nguyen ([@jacoobes](https://github.com/jacoobes))<br/>
Discord: `@jacoobes`<br/>
E-mail: `jacoobes@sern.dev`
- TypeScript binding
Dominik ([@cosmic-snow](https://github.com/cosmic-snow))<br/>
E-mail: cosmic-snow@mailfence.com<br/>
Discord: `@cosmic__snow`
- Community documentation (GitHub Wiki)
Max Cembalest ([@mcembalest](https://github.com/mcembalest))<br/>
E-mail: max@nomic.ai<br/>
Discord: `@maxcembalest.`
- Official documentation (gpt4all-bindings/python/docs -> https://docs.gpt4all.io/)
Thiago Ramos ([@thiagojramos](https://github.com/thiagojramos))<br/>
E-mail: thiagojramos@outlook.com<br/>
- pt\_BR translation
不知火 Shiranui ([@supersonictw](https://github.com/supersonictw))<br/>
E-mail: supersonic@livemail.tw<br/>
Discord: `@supersonictw`
- zh\_TW translation
Jeremy Tayco ([@jstayco](https://github.com/jstayco))<br/>
E-mail: jstayco@protonmail.ch<br/>
Discord: `@vertana`
- es\_MX translation
Riccardo Giovanetti ([@Harvester62](https://github.com/Harvester62))<br/>
E-mail: riccardo.giovanetti@gmail.com<br/>
Discord: `@harvester62`
- it\_IT translation
Tim ([@Tim453](https://github.com/Tim453))<br/>
E-mail: tim453@mailbox.org<br/>
Discord: `@Tim453`
- Flatpak
Jack ([@wuodoo](https://github.com/wuodoo))<br/>
E-mail: 2296103047@qq.com<br/>
Discord: `@mikage`
- zh\_CN translation

139
README.md
View File

@ -1,117 +1,72 @@
<h1 align="center">GPT4All</h1> <h1 align="center">GPT4All</h1>
<p align="center">Open-source assistant-style large language models that run locally on your CPU</p>
<p align="center"> <p align="center">
Now with support for DeepSeek R1 Distillations <a href="https://gpt4all.io">GPT4All Website</a>
</p> </p>
<p align="center"> <p align="center">
<a href="https://www.nomic.ai/gpt4all">Website</a> &bull; <a href="https://docs.gpt4all.io">Documentation</a> &bull; <a href="https://discord.gg/mGZE39AS3e">Discord</a> &bull; <a href="https://www.youtube.com/watch?v=gQcZDXRVJok">YouTube Tutorial</a> <a href="https://docs.gpt4all.io">GPT4All Documentation</a>
</p> </p>
<p align="center"> <p align="center">
GPT4All runs large language models (LLMs) privately on everyday desktops & laptops. <a href="https://discord.gg/mGZE39AS3e">Discord</a>
</p>
<p align="center">
No API calls or GPUs required - you can just download the application and <a href="https://docs.gpt4all.io/gpt4all_desktop/quickstart.html#quickstart">get started</a>.
</p> </p>
<p align="center"> <p align="center">
Read about what's new in <a href="https://www.nomic.ai/blog/tag/gpt4all">our blog</a>. <a href="https://python.langchain.com/en/latest/modules/models/llms/integrations/gpt4all.html">🦜️🔗 Official Langchain Backend</a>
</p> </p>
<p align="center">
<a href="https://nomic.ai/gpt4all/#newsletter-form">Subscribe to the newsletter</a>
</p>
https://github.com/nomic-ai/gpt4all/assets/70534565/513a0f15-4964-4109-89e4-4f9a9011f311
<p align="center"> <p align="center">
GPT4All is made possible by our compute partner <a href="https://www.paperspace.com/">Paperspace</a>. GPT4All is made possible by our compute partner <a href="https://www.paperspace.com/">Paperspace</a>.
</p> </p>
## Download Links <p align="center">
<img width="600" height="365" src="https://user-images.githubusercontent.com/13879686/231876409-e3de1934-93bb-4b4b-9013-b491a969ebbc.gif">
<p>
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-win64.exe">
<img src="gpt4all-bindings/python/docs/assets/windows.png" style="height: 1em; width: auto" /> Windows Installer
</a> &mdash;
</p> </p>
<p> <p align="center">
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-win64-arm.exe"> Run on an M1 macOS Device (not sped up!)
<img src="gpt4all-bindings/python/docs/assets/windows.png" style="height: 1em; width: auto" /> Windows ARM Installer
</a> &mdash;
</p>
<p>
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-darwin.dmg">
<img src="gpt4all-bindings/python/docs/assets/mac.png" style="height: 1em; width: auto" /> macOS Installer
</a> &mdash;
</p>
<p>
&mdash; <a href="https://gpt4all.io/installers/gpt4all-installer-linux.run">
<img src="gpt4all-bindings/python/docs/assets/ubuntu.svg" style="height: 1em; width: auto" /> Ubuntu Installer
</a> &mdash;
</p>
<p>
The Windows and Linux builds require Intel Core i3 2nd Gen / AMD Bulldozer, or better.
</p>
<p>
The Windows ARM build supports Qualcomm Snapdragon and Microsoft SQ1/SQ2 processors.
</p>
<p>
The Linux build is x86-64 only (no ARM).
</p>
<p>
The macOS build requires Monterey 12.6 or newer. Best results with Apple Silicon M-series processors.
</p> </p>
See the full [System Requirements](gpt4all-chat/system_requirements.md) for more details. ## GPT4All: An ecosystem of open-source on-edge large language models.
GPT4All is an ecosystem to train and deploy **powerful** and **customized** large language models that run locally on consumer grade CPUs. Note that your CPU needs to support [AVX or AVX2 instructions](https://en.wikipedia.org/wiki/Advanced_Vector_Extensions).
<br/> Learn more in the [documentation](https://docs.gpt4all.io).
<br/>
<p>
<a href='https://flathub.org/apps/io.gpt4all.gpt4all'>
<img style="height: 2em; width: auto" alt='Get it on Flathub' src='https://flathub.org/api/badge'><br/>
Flathub (community maintained)
</a>
</p>
## Install GPT4All Python The goal is simple - be the best instruction tuned assistant-style language model that any person or enterprise can freely use, distribute and build on.
`gpt4all` gives you access to LLMs with our Python client around [`llama.cpp`](https://github.com/ggerganov/llama.cpp) implementations. A GPT4All model is a 3GB - 8GB file that you can download and plug into the GPT4All open-source ecosystem software. **Nomic AI** supports and maintains this software ecosystem to enforce quality and security alongside spearheading the effort to allow any person or enterprise to easily train and deploy their own on-edge large language models.
Nomic contributes to open source software like [`llama.cpp`](https://github.com/ggerganov/llama.cpp) to make LLMs accessible and efficient **for all**.
```bash
pip install gpt4all
```
```python
from gpt4all import GPT4All
model = GPT4All("Meta-Llama-3-8B-Instruct.Q4_0.gguf") # downloads / loads a 4.66GB LLM
with model.chat_session():
print(model.generate("How can I run LLMs efficiently on my laptop?", max_tokens=1024))
```
## Integrations ### Chat Client
Run any GPT4All model natively on your home desktop with the auto-updating desktop chat client. See <a href="https://gpt4all.io">GPT4All Website</a> for a full list of open-source models you can run with this powerful desktop application.
:parrot::link: [Langchain](https://python.langchain.com/v0.2/docs/integrations/providers/gpt4all/) Direct Installer Links:
:card_file_box: [Weaviate Vector Database](https://github.com/weaviate/weaviate) - [module docs](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-gpt4all)
:telescope: [OpenLIT (OTel-native Monitoring)](https://github.com/openlit/openlit) - [Docs](https://docs.openlit.io/latest/integrations/gpt4all)
## Release History * [macOS](https://gpt4all.io/installers/gpt4all-installer-darwin.dmg)
- **July 2nd, 2024**: V3.0.0 Release
- Fresh redesign of the chat application UI
- Improved user workflow for LocalDocs
- Expanded access to more model architectures
- **October 19th, 2023**: GGUF Support Launches with Support for:
- Mistral 7b base model, an updated model gallery on our website, several new local code models including Rift Coder v1.5
- [Nomic Vulkan](https://blog.nomic.ai/posts/gpt4all-gpu-inference-with-vulkan) support for Q4\_0 and Q4\_1 quantizations in GGUF.
- Offline build support for running old versions of the GPT4All Local LLM Chat Client.
- **September 18th, 2023**: [Nomic Vulkan](https://blog.nomic.ai/posts/gpt4all-gpu-inference-with-vulkan) launches supporting local LLM inference on NVIDIA and AMD GPUs.
- **July 2023**: Stable support for LocalDocs, a feature that allows you to privately and locally chat with your data.
- **June 28th, 2023**: [Docker-based API server] launches allowing inference of local LLMs from an OpenAI-compatible HTTP endpoint.
[Docker-based API server]: https://github.com/nomic-ai/gpt4all/tree/cef74c2be20f5b697055d5b8b506861c7b997fab/gpt4all-api * [Windows](https://gpt4all.io/installers/gpt4all-installer-win64.exe)
* [Ubuntu](https://gpt4all.io/installers/gpt4all-installer-linux.run)
Find the most up-to-date information on the [GPT4All Website](https://gpt4all.io/)
### Chat Client building and running
* Follow the visual instructions on the chat client [build_and_run](gpt4all-chat/build_and_run.md) page
### Bindings
* <a href="https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/python/README.md">:snake: Official Python Bindings</a> [![Downloads](https://static.pepy.tech/badge/gpt4all/week)](https://pepy.tech/project/gpt4all)
* <a href="https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/typescript">:computer: Official Typescript Bindings</a>
* <a href="https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/golang">:computer: Official GoLang Bindings</a>
* <a href="https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/csharp">:computer: Official C# Bindings</a>
* <a href="https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/java">:computer: Official Java Bindings</a>
### Integrations
* 🗃️ [Weaviate Vector Database](https://github.com/weaviate/weaviate) - [module docs](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-gpt4all)
## Contributing ## Contributing
GPT4All welcomes contributions, involvement, and discussion from the open source community! GPT4All welcomes contributions, involvement, and discussion from the open source community!
@ -121,6 +76,20 @@ Check project discord, with project owners, or through existing issues/PRs to av
Please make sure to tag all of the above with relevant project identifiers or your contribution could potentially get lost. Please make sure to tag all of the above with relevant project identifiers or your contribution could potentially get lost.
Example tags: `backend`, `bindings`, `python-bindings`, `documentation`, etc. Example tags: `backend`, `bindings`, `python-bindings`, `documentation`, etc.
## Technical Reports
<p align="center">
<a href="https://gpt4all.io/reports/GPT4All_Technical_Report_3.pdf">:green_book: Technical Report 3: GPT4All Snoozy and Groovy </a>
</p>
<p align="center">
<a href="https://static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf">:green_book: Technical Report 2: GPT4All-J </a>
</p>
<p align="center">
<a href="https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All_Technical_Report.pdf">:green_book: Technical Report 1: GPT4All</a>
</p>
## Citation ## Citation
If you utilize this repository, models or data in a downstream project, please consider citing it with: If you utilize this repository, models or data in a downstream project, please consider citing it with:

View File

@ -1,41 +0,0 @@
function(gpt4all_add_warning_options target)
if (MSVC)
return()
endif()
target_compile_options("${target}" PRIVATE
# base options
-Wall
-Wextra
# extra options
-Wcast-align
-Wextra-semi
-Wformat=2
-Wmissing-include-dirs
-Wsuggest-override
-Wvla
# errors
-Werror=format-security
-Werror=init-self
-Werror=pointer-arith
-Werror=undef
# disabled warnings
-Wno-sign-compare
-Wno-unused-parameter
)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
target_compile_options("${target}" PRIVATE
-Wduplicated-branches
-Wduplicated-cond
-Wlogical-op
-Wno-reorder
-Wno-null-dereference
)
elseif (CMAKE_CXX_COMPILER_ID MATCHES "^(Apple)?Clang$")
target_compile_options("${target}" PRIVATE
-Wunreachable-code-break
-Wunreachable-code-return
-Werror=pointer-integer-compare
-Wno-reorder-ctor
)
endif()
endfunction()

112
gpt4all-api/.gitignore vendored Normal file
View File

@ -0,0 +1,112 @@
# Byte-compiled / optimized / DLL files
__pycache__/
app/__pycache__/
gpt4all_api/__pycache__/
gpt4all_api/app/api_v1/__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# VS Code
.vscode/
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
*.lock
*.cache

7
gpt4all-api/.isort.cfg Normal file
View File

@ -0,0 +1,7 @@
[settings]
known_third_party=geopy,nltk,np,numpy,pandas,pysbd,fire,torch
line_length=120
include_trailing_comma=True
multi_line_output=3
use_parentheses=True

13
gpt4all-api/LICENSE Normal file
View File

@ -0,0 +1,13 @@
Copyright 2023 Nomic, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

87
gpt4all-api/README.md Normal file
View File

@ -0,0 +1,87 @@
# GPT4All REST API
This directory contains the source code to run and build docker images that run a FastAPI app
for serving inference from GPT4All models. The API matches the OpenAI API spec.
## Tutorial
The following tutorial assumes that you have checked out this repo and cd'd into it.
### Starting the app
First change your working directory to `gpt4all/gpt4all-api`.
Now you can build the FastAPI docker image. You only have to do this on initial build or when you add new dependencies to the requirements.txt file:
```bash
DOCKER_BUILDKIT=1 docker build -t gpt4all_api --progress plain -f gpt4all_api/Dockerfile.buildkit .
```
Then, start the backend with:
```bash
docker compose up --build
```
This will run both the API and locally hosted GPU inference server. If you want to run the API without the GPU inference server, you can run:
```bash
docker compose up --build gpt4all_api
```
To run the API with the GPU inference server, you will need to include environment variables (like the `MODEL_ID`). Edit the `.env` file and run
```bash
docker compose --env-file .env up --build
```
#### Spinning up your app
Run `docker compose up` to spin up the backend. Monitor the logs for errors in-case you forgot to set an environment variable above.
#### Development
Run
```bash
docker compose up --build
```
and edit files in the `api` directory. The api will hot-reload on changes.
You can run the unit tests with
```bash
make test
```
#### Viewing API documentation
Once the FastAPI ap is started you can access its documentation and test the search endpoint by going to:
```
localhost:80/docs
```
This documentation should match the OpenAI OpenAPI spec located at https://github.com/openai/openai-openapi/blob/master/openapi.yaml
#### Running inference
```python
import openai
openai.api_base = "http://localhost:4891/v1"
openai.api_key = "not needed for a local LLM"
def test_completion():
model = "gpt4all-j-v1.3-groovy"
prompt = "Who is Michael Jordan?"
response = openai.Completion.create(
model=model,
prompt=prompt,
max_tokens=50,
temperature=0.28,
top_p=0.95,
n=1,
echo=True,
stream=False
)
assert len(response['choices'][0]['text']) > len(prompt)
print(response)
```

View File

@ -0,0 +1,24 @@
version: "3.8"
services:
gpt4all_gpu:
image: ghcr.io/huggingface/text-generation-inference:0.9.3
container_name: gpt4all_gpu
restart: always #restart on error (usually code compilation from save during bad state)
environment:
- HUGGING_FACE_HUB_TOKEN=token
- USE_FLASH_ATTENTION=false
- MODEL_ID=''
- NUM_SHARD=1
command: --model-id $MODEL_ID --num-shard $NUM_SHARD
volumes:
- ./:/data
ports:
- "8080:80"
shm_size: 1g
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]

View File

@ -0,0 +1,19 @@
version: "3.8"
services:
gpt4all_api:
image: gpt4all_api
container_name: gpt4all_api
restart: always #restart on error (usually code compilation from save during bad state)
ports:
- "4891:4891"
environment:
- APP_ENVIRONMENT=dev
- WEB_CONCURRENCY=2
- LOGLEVEL=debug
- PORT=4891
- model=ggml-mpt-7b-chat.bin
- inference_mode=cpu
volumes:
- './gpt4all_api/app:/app'
command: ["/start-reload.sh"]

View File

@ -0,0 +1,23 @@
# syntax=docker/dockerfile:1.0.0-experimental
FROM tiangolo/uvicorn-gunicorn:python3.11
ARG MODEL_BIN=ggml-mpt-7b-chat.bin
# Put first so anytime this file changes other cached layers are invalidated.
COPY gpt4all_api/requirements.txt /requirements.txt
RUN pip install --upgrade pip
# Run various pip install commands with ssh keys from host machine.
RUN --mount=type=ssh pip install -r /requirements.txt && \
rm -Rf /root/.cache && rm -Rf /tmp/pip-install*
# Finally, copy app and client.
COPY gpt4all_api/app /app
RUN mkdir -p /models
# Include the following line to bake a model into the image and not have to download it on API start.
RUN wget -q --show-progress=off https://gpt4all.io/models/${MODEL_BIN} -P /models \
&& md5sum /models/${MODEL_BIN}

View File

@ -0,0 +1 @@
# FastAPI app for serving GPT4All models

View File

@ -0,0 +1,9 @@
from api_v1.routes import chat, completions, engines, health
from fastapi import APIRouter
router = APIRouter()
router.include_router(chat.router)
router.include_router(completions.router)
router.include_router(engines.router)
router.include_router(health.router)

View File

@ -0,0 +1,29 @@
import logging
from api_v1.settings import settings
from fastapi import HTTPException
from fastapi.responses import JSONResponse
from starlette.requests import Request
log = logging.getLogger(__name__)
startup_msg_fmt = """
Starting up GPT4All API
"""
async def on_http_error(request: Request, exc: HTTPException):
return JSONResponse({'detail': exc.detail}, status_code=exc.status_code)
async def on_startup(app):
startup_msg = startup_msg_fmt.format(settings=settings)
log.info(startup_msg)
def startup_event_handler(app):
async def start_app() -> None:
await on_startup(app)
return start_app

View File

@ -0,0 +1,61 @@
import logging
import time
from typing import Dict, List
from api_v1.settings import settings
from fastapi import APIRouter, Depends, Response, Security, status
from pydantic import BaseModel, Field
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
### This should follow https://github.com/openai/openai-openapi/blob/master/openapi.yaml
class ChatCompletionMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str = Field(..., description='The model to generate a completion from.')
messages: List[ChatCompletionMessage] = Field(..., description='The model to generate a completion from.')
class ChatCompletionChoice(BaseModel):
message: ChatCompletionMessage
index: int
finish_reason: str
class ChatCompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str
object: str = 'text_completion'
created: int
model: str
choices: List[ChatCompletionChoice]
usage: ChatCompletionUsage
router = APIRouter(prefix="/chat", tags=["Completions Endpoints"])
@router.post("/completions", response_model=ChatCompletionResponse)
async def chat_completion(request: ChatCompletionRequest):
'''
Completes a GPT4All model response.
'''
return ChatCompletionResponse(
id='asdf',
created=time.time(),
model=request.model,
choices=[{}],
usage={'prompt_tokens': 0, 'completion_tokens': 0, 'total_tokens': 0},
)

View File

@ -0,0 +1,215 @@
import json
from typing import List, Dict, Iterable, AsyncIterable
import logging
import time
from typing import Dict, List, Union, Optional
from uuid import uuid4
import aiohttp
import asyncio
from api_v1.settings import settings
from fastapi import APIRouter, Depends, Response, Security, status, HTTPException
from fastapi.responses import StreamingResponse
from gpt4all import GPT4All
from pydantic import BaseModel, Field
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
### This should follow https://github.com/openai/openai-openapi/blob/master/openapi.yaml
class CompletionRequest(BaseModel):
model: str = Field(settings.model, description='The model to generate a completion from.')
prompt: Union[List[str], str] = Field(..., description='The prompt to begin completing from.')
max_tokens: int = Field(None, description='Max tokens to generate')
temperature: float = Field(settings.temp, description='Model temperature')
top_p: Optional[float] = Field(settings.top_p, description='top_p')
top_k: Optional[int] = Field(settings.top_k, description='top_k')
n: int = Field(1, description='How many completions to generate for each prompt')
stream: bool = Field(False, description='Stream responses')
repeat_penalty: float = Field(settings.repeat_penalty, description='Repeat penalty')
class CompletionChoice(BaseModel):
text: str
index: int
logprobs: float
finish_reason: str
class CompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class CompletionResponse(BaseModel):
id: str
object: str = 'text_completion'
created: int
model: str
choices: List[CompletionChoice]
usage: CompletionUsage
class CompletionStreamResponse(BaseModel):
id: str
object: str = 'text_completion'
created: int
model: str
choices: List[CompletionChoice]
router = APIRouter(prefix="/completions", tags=["Completion Endpoints"])
def stream_completion(output: Iterable, base_response: CompletionStreamResponse):
"""
Streams a GPT4All output to the client.
Args:
output: The output of GPT4All.generate(), which is an iterable of tokens.
base_response: The base response object, which is cloned and modified for each token.
Returns:
A Generator of CompletionStreamResponse objects, which are serialized to JSON Event Stream format.
"""
for token in output:
chunk = base_response.copy()
chunk.choices = [dict(CompletionChoice(
text=token,
index=0,
logprobs=-1,
finish_reason=''
))]
yield f"data: {json.dumps(dict(chunk))}\n\n"
async def gpu_infer(payload, header):
async with aiohttp.ClientSession() as session:
try:
async with session.post(
settings.hf_inference_server_host, headers=header, data=json.dumps(payload)
) as response:
resp = await response.json()
return resp
except aiohttp.ClientError as e:
# Handle client-side errors (e.g., connection error, invalid URL)
logger.error(f"Client error: {e}")
except aiohttp.ServerError as e:
# Handle server-side errors (e.g., internal server error)
logger.error(f"Server error: {e}")
except json.JSONDecodeError as e:
# Handle JSON decoding errors
logger.error(f"JSON decoding error: {e}")
except Exception as e:
# Handle other unexpected exceptions
logger.error(f"Unexpected error: {e}")
@router.post("/", response_model=CompletionResponse)
async def completions(request: CompletionRequest):
'''
Completes a GPT4All model response.
'''
if settings.inference_mode == "gpu":
params = request.dict(exclude={'model', 'prompt', 'max_tokens', 'n'})
params["max_new_tokens"] = request.max_tokens
params["num_return_sequences"] = request.n
header = {"Content-Type": "application/json"}
if isinstance(request.prompt, list):
tasks = []
for prompt in request.prompt:
payload = {"parameters": params}
payload["inputs"] = prompt
task = gpu_infer(payload, header)
tasks.append(task)
results = await asyncio.gather(*tasks)
choices = []
for response in results:
scores = response["scores"] if "scores" in response else -1.0
choices.append(
dict(
CompletionChoice(
text=response["generated_text"], index=0, logprobs=scores, finish_reason='stop'
)
)
)
return CompletionResponse(
id=str(uuid4()),
created=time.time(),
model=request.model,
choices=choices,
usage={'prompt_tokens': 0, 'completion_tokens': 0, 'total_tokens': 0},
)
else:
payload = {"parameters": params}
# If streaming, we need to return a StreamingResponse
payload["inputs"] = request.prompt
resp = await gpu_infer(payload, header)
output = resp["generated_text"]
# this returns all logprobs
scores = resp["scores"] if "scores" in resp else -1.0
return CompletionResponse(
id=str(uuid4()),
created=time.time(),
model=request.model,
choices=[dict(CompletionChoice(text=output, index=0, logprobs=scores, finish_reason='stop'))],
usage={'prompt_tokens': 0, 'completion_tokens': 0, 'total_tokens': 0},
)
else:
if request.model != settings.model:
raise HTTPException(status_code=400,
detail=f"The GPT4All inference server is booted to only infer: `{settings.model}`")
if isinstance(request.prompt, list):
if len(request.prompt) > 1:
raise HTTPException(status_code=400, detail="Can only infer one inference per request in CPU mode.")
else:
request.prompt = request.prompt[0]
model = GPT4All(model_name=settings.model, model_path=settings.gpt4all_path)
output = model.generate(prompt=request.prompt,
max_tokens=request.max_tokens,
streaming=request.stream,
top_k=request.top_k,
top_p=request.top_p,
temp=request.temperature,
)
# If streaming, we need to return a StreamingResponse
if request.stream:
base_chunk = CompletionStreamResponse(
id=str(uuid4()),
created=time.time(),
model=request.model,
choices=[]
)
return StreamingResponse((response for response in stream_completion(output, base_chunk)),
media_type="text/event-stream")
else:
return CompletionResponse(
id=str(uuid4()),
created=time.time(),
model=request.model,
choices=[dict(CompletionChoice(
text=output,
index=0,
logprobs=-1,
finish_reason='stop'
))],
usage={
'prompt_tokens': 0, # TODO how to compute this?
'completion_tokens': 0,
'total_tokens': 0
}
)

View File

@ -0,0 +1,65 @@
from typing import List, Union
from fastapi import APIRouter
from api_v1.settings import settings
from gpt4all import Embed4All
from pydantic import BaseModel, Field
### This should follow https://github.com/openai/openai-openapi/blob/master/openapi.yaml
class EmbeddingRequest(BaseModel):
model: str = Field(
settings.model, description="The model to generate an embedding from."
)
input: Union[str, List[str], List[int], List[List[int]]] = Field(
..., description="Input text to embed, encoded as a string or array of tokens."
)
class EmbeddingUsage(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
class Embedding(BaseModel):
index: int = 0
object: str = "embedding"
embedding: List[float]
class EmbeddingResponse(BaseModel):
object: str = "list"
model: str
data: List[Embedding]
usage: EmbeddingUsage
router = APIRouter(prefix="/embeddings", tags=["Embedding Endpoints"])
embedder = Embed4All()
def get_embedding(data: EmbeddingRequest) -> EmbeddingResponse:
"""
Calculates the embedding for the given input using a specified model.
Args:
data (EmbeddingRequest): An EmbeddingRequest object containing the input data
and model name.
Returns:
EmbeddingResponse: An EmbeddingResponse object encapsulating the calculated embedding,
usage info, and the model name.
"""
embedding = embedder.embed(data.input)
return EmbeddingResponse(
data=[Embedding(embedding=embedding)], usage=EmbeddingUsage(), model=data.model
)
@router.post("/", response_model=EmbeddingResponse)
def embeddings(data: EmbeddingRequest):
"""
Creates a GPT4All embedding
"""
return get_embedding(data)

View File

@ -0,0 +1,40 @@
import logging
from typing import Dict, List
from api_v1.settings import settings
from fastapi import APIRouter, Depends, Response, Security, status
from pydantic import BaseModel, Field
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
### This should follow https://github.com/openai/openai-openapi/blob/master/openapi.yaml
class ListEnginesResponse(BaseModel):
data: List[Dict] = Field(..., description="All available models.")
class EngineResponse(BaseModel):
data: List[Dict] = Field(..., description="All available models.")
router = APIRouter(prefix="/engines", tags=["Search Endpoints"])
@router.get("/", response_model=ListEnginesResponse)
async def list_engines():
'''
List all available GPT4All models from
https://raw.githubusercontent.com/nomic-ai/gpt4all/main/gpt4all-chat/metadata/models.json
'''
raise NotImplementedError()
return ListEnginesResponse(data=[])
@router.get("/{engine_id}", response_model=EngineResponse)
async def retrieve_engine(engine_id: str):
''' '''
raise NotImplementedError()
return EngineResponse()

View File

@ -0,0 +1,13 @@
import logging
from fastapi import APIRouter
from fastapi.responses import JSONResponse
log = logging.getLogger(__name__)
router = APIRouter(prefix="/health", tags=["Health"])
@router.get('/', response_class=JSONResponse)
async def health_check():
"""Runs a health check on this instance of the API."""
return JSONResponse({'status': 'ok'}, headers={'Access-Control-Allow-Origin': '*'})

View File

@ -0,0 +1,19 @@
from pydantic import BaseSettings
class Settings(BaseSettings):
app_environment = 'dev'
model: str = 'ggml-mpt-7b-chat.bin'
gpt4all_path: str = '/models'
inference_mode: str = "cpu"
hf_inference_server_host: str = "http://gpt4all_gpu:80/generate"
sentry_dns: str = None
temp: float = 0.18
top_p: float = 1.0
top_k: int = 50
repeat_penalty: float = 1.18
settings = Settings()

View File

@ -0,0 +1,3 @@
desc = 'GPT4All API'
endpoint_paths = {'health': '/health'}

View File

@ -0,0 +1,84 @@
import logging
import os
import docs
from api_v1 import events
from api_v1.api import router as v1_router
from api_v1.settings import settings
from fastapi import FastAPI, HTTPException, Request
from fastapi.logger import logger as fastapi_logger
from starlette.middleware.cors import CORSMiddleware
logger = logging.getLogger(__name__)
app = FastAPI(title='GPT4All API', description=docs.desc)
# CORS Configuration (in-case you want to deploy)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["GET", "POST", "OPTIONS"],
allow_headers=["*"],
)
logger.info('Adding v1 endpoints..')
# add v1
app.include_router(v1_router, prefix='/v1')
app.add_event_handler('startup', events.startup_event_handler(app))
app.add_exception_handler(HTTPException, events.on_http_error)
@app.on_event("startup")
async def startup():
global model
if settings.inference_mode == "cpu":
logger.info(f"Downloading/fetching model: {os.path.join(settings.gpt4all_path, settings.model)}")
from gpt4all import GPT4All
model = GPT4All(model_name=settings.model, model_path=settings.gpt4all_path)
logger.info(f"GPT4All API is ready to infer from {settings.model} on CPU.")
else:
# is it possible to do this once the server is up?
## TODO block until HF inference server is up.
logger.info(f"GPT4All API is ready to infer from {settings.model} on CPU.")
@app.on_event("shutdown")
async def shutdown():
logger.info("Shutting down API")
if settings.sentry_dns is not None:
import sentry_sdk
def traces_sampler(sampling_context):
if 'health' in sampling_context['transaction_context']['name']:
return False
sentry_sdk.init(
dsn=settings.sentry_dns, traces_sample_rate=0.1, traces_sampler=traces_sampler, send_default_pii=False
)
# This is needed to get logs to show up in the app
if "gunicorn" in os.environ.get("SERVER_SOFTWARE", ""):
gunicorn_error_logger = logging.getLogger("gunicorn.error")
gunicorn_logger = logging.getLogger("gunicorn")
root_logger = logging.getLogger()
fastapi_logger.setLevel(gunicorn_logger.level)
fastapi_logger.handlers = gunicorn_error_logger.handlers
root_logger.setLevel(gunicorn_logger.level)
uvicorn_logger = logging.getLogger("uvicorn.access")
uvicorn_logger.handlers = gunicorn_error_logger.handlers
else:
# https://github.com/tiangolo/fastapi/issues/2019
LOG_FORMAT2 = (
"[%(asctime)s %(process)d:%(threadName)s] %(name)s - %(levelname)s - %(message)s | %(filename)s:%(lineno)d"
)
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT2)

View File

@ -0,0 +1,59 @@
"""
Use the OpenAI python API to test gpt4all models.
"""
from typing import List, get_args
import openai
openai.api_base = "http://localhost:4891/v1"
openai.api_key = "not needed for a local LLM"
def test_completion():
model = "ggml-mpt-7b-chat.bin"
prompt = "Who is Michael Jordan?"
response = openai.Completion.create(
model=model, prompt=prompt, max_tokens=50, temperature=0.28, top_p=0.95, n=1, echo=True, stream=False
)
assert len(response['choices'][0]['text']) > len(prompt)
def test_streaming_completion():
model = "ggml-mpt-7b-chat.bin"
prompt = "Who is Michael Jordan?"
tokens = []
for resp in openai.Completion.create(
model=model,
prompt=prompt,
max_tokens=50,
temperature=0.28,
top_p=0.95,
n=1,
echo=True,
stream=True):
tokens.append(resp.choices[0].text)
assert (len(tokens) > 0)
assert (len("".join(tokens)) > len(prompt))
def test_batched_completion():
model = "ggml-mpt-7b-chat.bin"
prompt = "Who is Michael Jordan?"
response = openai.Completion.create(
model=model, prompt=[prompt] * 3, max_tokens=50, temperature=0.28, top_p=0.95, n=1, echo=True, stream=False
)
assert len(response['choices'][0]['text']) > len(prompt)
assert len(response['choices']) == 3
def test_embedding():
model = "ggml-all-MiniLM-L6-v2-f16.bin"
prompt = "Who is Michael Jordan?"
response = openai.Embedding.create(model=model, input=prompt)
output = response["data"][0]["embedding"]
args = get_args(List[float])
assert response["model"] == model
assert isinstance(output, list)
assert all(isinstance(x, args) for x in output)

View File

@ -0,0 +1,12 @@
aiohttp>=3.6.2
aiofiles
pydantic>=1.4.0,<2.0.0
requests>=2.24.0
ujson>=2.0.2
fastapi>=0.95.0
Jinja2>=3.0
gpt4all>=1.0.0
pytest
openai
black
isort

46
gpt4all-api/makefile Normal file
View File

@ -0,0 +1,46 @@
ROOT_DIR:=$(shell dirname $(realpath $(lastword $(MAKEFILE_LIST))))
APP_NAME:=gpt4all_api
PYTHON:=python3.8
SHELL := /bin/bash
all: dependencies
fresh: clean dependencies
testenv: clean_testenv test_build
docker compose -f docker-compose.yaml up --build
testenv_gpu: clean_testenv test_build
docker compose -f docker-compose.yaml -f docker-compose.gpu.yaml up --build
testenv_d: clean_testenv test_build
docker compose up --build -d
test:
docker compose exec $(APP_NAME) pytest -svv --disable-warnings -p no:cacheprovider /app/tests
test_build:
DOCKER_BUILDKIT=1 docker build -t $(APP_NAME) --progress plain -f $(APP_NAME)/Dockerfile.buildkit .
clean_testenv:
docker compose down -v
fresh_testenv: clean_testenv testenv
venv:
if [ ! -d $(ROOT_DIR)/env ]; then $(PYTHON) -m venv $(ROOT_DIR)/env; fi
dependencies: venv
source $(ROOT_DIR)/env/bin/activate; $(PYTHON) -m pip install -r $(ROOT_DIR)/$(APP_NAME)/requirements.txt
clean: clean_testenv
# Remove existing environment
rm -rf $(ROOT_DIR)/env;
rm -rf $(ROOT_DIR)/$(APP_NAME)/*.pyc;
black:
source $(ROOT_DIR)/env/bin/activate; black -l 120 -S --target-version py38 $(APP_NAME)
isort:
source $(ROOT_DIR)/env/bin/activate; isort --ignore-whitespace --atomic -w 120 $(APP_NAME)

View File

@ -1,27 +1,16 @@
cmake_minimum_required(VERSION 3.23) # for FILE_SET cmake_minimum_required(VERSION 3.16)
include(../common/common.cmake)
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON) set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON) set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (APPLE) if(APPLE)
option(BUILD_UNIVERSAL "Build a Universal binary on macOS" ON) option(BUILD_UNIVERSAL "Build a Universal binary on macOS" ON)
else() if(BUILD_UNIVERSAL)
option(LLMODEL_KOMPUTE "llmodel: use Kompute" ON)
option(LLMODEL_VULKAN "llmodel: use Vulkan" OFF)
option(LLMODEL_CUDA "llmodel: use CUDA" ON)
option(LLMODEL_ROCM "llmodel: use ROCm" OFF)
endif()
if (APPLE)
if (BUILD_UNIVERSAL)
# Build a Universal binary on macOS # Build a Universal binary on macOS
# This requires that the found Qt library is compiled as Universal binaries. # This requires that the found Qt library is compiled as Universal binaries.
set(CMAKE_OSX_ARCHITECTURES "arm64;x86_64" CACHE STRING "" FORCE) set(CMAKE_OSX_ARCHITECTURES "arm64;x86_64" CACHE STRING "" FORCE)
else() else()
# Build for the host architecture on macOS # Build for the host architecture on macOS
if (NOT CMAKE_OSX_ARCHITECTURES) if(NOT CMAKE_OSX_ARCHITECTURES)
set(CMAKE_OSX_ARCHITECTURES "${CMAKE_HOST_SYSTEM_PROCESSOR}" CACHE STRING "" FORCE) set(CMAKE_OSX_ARCHITECTURES "${CMAKE_HOST_SYSTEM_PROCESSOR}" CACHE STRING "" FORCE)
endif() endif()
endif() endif()
@ -31,12 +20,12 @@ endif()
include_directories("${CMAKE_CURRENT_BINARY_DIR}") include_directories("${CMAKE_CURRENT_BINARY_DIR}")
set(LLMODEL_VERSION_MAJOR 0) set(LLMODEL_VERSION_MAJOR 0)
set(LLMODEL_VERSION_MINOR 5) set(LLMODEL_VERSION_MINOR 4)
set(LLMODEL_VERSION_PATCH 0) set(LLMODEL_VERSION_PATCH 0)
set(LLMODEL_VERSION "${LLMODEL_VERSION_MAJOR}.${LLMODEL_VERSION_MINOR}.${LLMODEL_VERSION_PATCH}") set(LLMODEL_VERSION "${LLMODEL_VERSION_MAJOR}.${LLMODEL_VERSION_MINOR}.${LLMODEL_VERSION_PATCH}")
project(llmodel VERSION ${LLMODEL_VERSION} LANGUAGES CXX C) project(llmodel VERSION ${LLMODEL_VERSION} LANGUAGES CXX C)
set(CMAKE_CXX_STANDARD 23) set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}) set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
set(BUILD_SHARED_LIBS ON) set(BUILD_SHARED_LIBS ON)
@ -50,88 +39,40 @@ else()
message(STATUS "Interprocedural optimization support detected") message(STATUS "Interprocedural optimization support detected")
endif() endif()
set(DIRECTORY deps/llama.cpp-mainline) if(NOT APPLE)
set(LLAMA_KOMPUTE YES)
endif()
include(llama.cpp.cmake) include(llama.cpp.cmake)
set(BUILD_VARIANTS) set(BUILD_VARIANTS default avxonly)
if (APPLE) if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
list(APPEND BUILD_VARIANTS metal) set(BUILD_VARIANTS ${BUILD_VARIANTS} metal)
endif() endif()
if (LLMODEL_KOMPUTE)
list(APPEND BUILD_VARIANTS kompute kompute-avxonly)
else()
list(PREPEND BUILD_VARIANTS cpu cpu-avxonly)
endif()
if (LLMODEL_VULKAN)
list(APPEND BUILD_VARIANTS vulkan vulkan-avxonly)
endif()
if (LLMODEL_CUDA)
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
# Defaults must be set before enable_language(CUDA). set(CMAKE_VERBOSE_MAKEFILE ON)
# Keep this in sync with the arch list in ggml/src/CMakeLists.txt (plus 5.0 for non-F16 branch).
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# 52 == lowest CUDA 12 standard
# 60 == f16 CUDA intrinsics
# 61 == integer CUDA intrinsics
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75") # needed for f16 CUDA intrinsics
else()
set(CMAKE_CUDA_ARCHITECTURES "50;52;61;70;75") # lowest CUDA 12 standard + lowest for integer intrinsics
#set(CMAKE_CUDA_ARCHITECTURES "OFF") # use this to compile much faster, but only F16 models work
endif()
endif()
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
include(CheckLanguage)
check_language(CUDA)
if (NOT CMAKE_CUDA_COMPILER)
message(WARNING "CUDA Toolkit not found. To build without CUDA, use -DLLMODEL_CUDA=OFF.")
endif()
enable_language(CUDA)
list(APPEND BUILD_VARIANTS cuda cuda-avxonly)
endif()
if (LLMODEL_ROCM)
enable_language(HIP)
list(APPEND BUILD_VARIANTS rocm rocm-avxonly)
endif()
# Go through each build variant # Go through each build variant
foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS) foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
# Determine flags # Determine flags
if (BUILD_VARIANT MATCHES avxonly) if (BUILD_VARIANT STREQUAL avxonly)
set(GPT4ALL_ALLOW_NON_AVX OFF) set(GPT4ALL_ALLOW_NON_AVX NO)
else() else()
set(GPT4ALL_ALLOW_NON_AVX ON) set(GPT4ALL_ALLOW_NON_AVX YES)
endif() endif()
set(GGML_AVX2 ${GPT4ALL_ALLOW_NON_AVX}) set(LLAMA_AVX2 ${GPT4ALL_ALLOW_NON_AVX})
set(GGML_F16C ${GPT4ALL_ALLOW_NON_AVX}) set(LLAMA_F16C ${GPT4ALL_ALLOW_NON_AVX})
set(GGML_FMA ${GPT4ALL_ALLOW_NON_AVX}) set(LLAMA_FMA ${GPT4ALL_ALLOW_NON_AVX})
set(GGML_METAL OFF) if (BUILD_VARIANT STREQUAL metal)
set(GGML_KOMPUTE OFF) set(LLAMA_METAL YES)
set(GGML_VULKAN OFF) else()
set(GGML_CUDA OFF) set(LLAMA_METAL NO)
set(GGML_ROCM OFF)
if (BUILD_VARIANT MATCHES metal)
set(GGML_METAL ON)
elseif (BUILD_VARIANT MATCHES kompute)
set(GGML_KOMPUTE ON)
elseif (BUILD_VARIANT MATCHES vulkan)
set(GGML_VULKAN ON)
elseif (BUILD_VARIANT MATCHES cuda)
set(GGML_CUDA ON)
elseif (BUILD_VARIANT MATCHES rocm)
set(GGML_HIPBLAS ON)
endif() endif()
# Include GGML # Include GGML
include_ggml(-mainline-${BUILD_VARIANT}) set(LLAMA_K_QUANTS YES)
include_ggml(llama.cpp-mainline -mainline-${BUILD_VARIANT} ON)
if (BUILD_VARIANT MATCHES metal)
set(GGML_METALLIB "${GGML_METALLIB}" PARENT_SCOPE)
endif()
# Function for preparing individual implementations # Function for preparing individual implementations
function(prepare_target TARGET_NAME BASE_LIB) function(prepare_target TARGET_NAME BASE_LIB)
@ -151,35 +92,49 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
# Add each individual implementations # Add each individual implementations
add_library(llamamodel-mainline-${BUILD_VARIANT} SHARED add_library(llamamodel-mainline-${BUILD_VARIANT} SHARED
src/llamamodel.cpp src/llmodel_shared.cpp) llamamodel.cpp llmodel_shared.cpp)
gpt4all_add_warning_options(llamamodel-mainline-${BUILD_VARIANT})
target_compile_definitions(llamamodel-mainline-${BUILD_VARIANT} PRIVATE target_compile_definitions(llamamodel-mainline-${BUILD_VARIANT} PRIVATE
LLAMA_VERSIONS=>=3 LLAMA_DATE=999999) LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
target_include_directories(llamamodel-mainline-${BUILD_VARIANT} PRIVATE
src include/gpt4all-backend
)
prepare_target(llamamodel-mainline llama-mainline) prepare_target(llamamodel-mainline llama-mainline)
if (NOT PROJECT_IS_TOP_LEVEL AND BUILD_VARIANT STREQUAL cuda) add_library(replit-mainline-${BUILD_VARIANT} SHARED
set(CUDAToolkit_BIN_DIR ${CUDAToolkit_BIN_DIR} PARENT_SCOPE) replit.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
target_compile_definitions(replit-mainline-${BUILD_VARIANT} PRIVATE LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
prepare_target(replit-mainline llama-mainline)
if (NOT LLAMA_METAL)
# FIXME: These need to be forward ported to latest ggml
# add_library(gptj-${BUILD_VARIANT} SHARED
# gptj.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
# prepare_target(gptj ggml-230511)
add_library(falcon-${BUILD_VARIANT} SHARED
falcon.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
target_compile_definitions(falcon-${BUILD_VARIANT} PRIVATE LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
prepare_target(falcon llama-mainline)
# FIXME: These need to be forward ported to latest ggml
# add_library(mpt-${BUILD_VARIANT} SHARED
# mpt.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
# prepare_target(mpt ggml-230511)
add_library(bert-${BUILD_VARIANT} SHARED
bert.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
target_compile_definitions(bert-${BUILD_VARIANT} PRIVATE LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
prepare_target(bert llama-mainline)
add_library(starcoder-${BUILD_VARIANT} SHARED
starcoder.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
target_compile_definitions(starcoder-${BUILD_VARIANT} PRIVATE LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
prepare_target(starcoder llama-mainline)
endif() endif()
endforeach() endforeach()
add_library(llmodel add_library(llmodel
src/dlhandle.cpp llmodel.h llmodel.cpp llmodel_shared.cpp
src/llmodel.cpp llmodel_c.h llmodel_c.cpp
src/llmodel_c.cpp dlhandle.h
src/llmodel_shared.cpp
)
gpt4all_add_warning_options(llmodel)
target_sources(llmodel PUBLIC
FILE_SET public_headers TYPE HEADERS BASE_DIRS include
FILES include/gpt4all-backend/llmodel.h
include/gpt4all-backend/llmodel_c.h
include/gpt4all-backend/sysinfo.h
) )
target_compile_definitions(llmodel PRIVATE LIB_FILE_EXT="${CMAKE_SHARED_LIBRARY_SUFFIX}") target_compile_definitions(llmodel PRIVATE LIB_FILE_EXT="${CMAKE_SHARED_LIBRARY_SUFFIX}")
target_include_directories(llmodel PRIVATE src include/gpt4all-backend)
set_target_properties(llmodel PROPERTIES set_target_properties(llmodel PROPERTIES
VERSION ${PROJECT_VERSION} VERSION ${PROJECT_VERSION}

View File

@ -27,7 +27,7 @@ Unfortunately, no for three reasons:
# What is being done to make them more compatible? # What is being done to make them more compatible?
A few things. Number one, we are maintaining compatibility with our current model zoo by way of the submodule pinning. However, we are also exploring how we can update to newer versions of llama.cpp without breaking our current models. This might involve an additional magic header check or it could possibly involve keeping the currently pinned submodule and also adding a new submodule with later changes and differentiating them with namespaces or some other manner. Investigations continue. A few things. Number one, we are maintaining compatibility with our current model zoo by way of the submodule pinning. However, we are also exploring how we can update to newer versions of llama.cpp without breaking our current models. This might involve an additional magic header check or it could possibly involve keeping the currently pinned submodule and also adding a new submodule with later changes and differienting them with namespaces or some other manner. Investigations continue.
# What about GPU inference? # What about GPU inference?

1053
gpt4all-backend/bert.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,44 @@
#ifndef BERT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of bert.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define BERT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef BERT_H
#define BERT_H
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include "llmodel.h"
struct BertPrivate;
class Bert : public LLModel {
public:
Bert();
~Bert();
bool supportsEmbedding() const override { return true; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
std::vector<float> embedding(const std::string &text) override;
private:
std::unique_ptr<BertPrivate> d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
Token sampleToken(PromptContext &ctx) const override;
std::string tokenToString(Token) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token>& endTokens() const override;
};
#endif // BERT_H

@ -1 +0,0 @@
Subproject commit 11f734c3b0334dbae4823b4a7467764e447fc6d6

104
gpt4all-backend/dlhandle.h Normal file
View File

@ -0,0 +1,104 @@
#ifndef DLHANDLE_H
#define DLHANDLE_H
#ifndef _WIN32
#include <string>
#include <stdexcept>
#include <utility>
#include <dlfcn.h>
class Dlhandle {
void *chandle;
public:
class Exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
Dlhandle() : chandle(nullptr) {}
Dlhandle(const std::string& fpath, int flags = RTLD_LAZY | RTLD_LOCAL) {
chandle = dlopen(fpath.c_str(), flags);
if (!chandle) {
throw Exception("dlopen(\""+fpath+"\"): "+dlerror());
}
}
Dlhandle(const Dlhandle& o) = delete;
Dlhandle(Dlhandle&& o) : chandle(o.chandle) {
o.chandle = nullptr;
}
~Dlhandle() {
if (chandle) dlclose(chandle);
}
auto operator =(Dlhandle&& o) {
chandle = std::exchange(o.chandle, nullptr);
}
bool is_valid() const {
return chandle != nullptr;
}
operator bool() const {
return is_valid();
}
template<typename T>
T* get(const std::string& fname) const {
auto fres = reinterpret_cast<T*>(dlsym(chandle, fname.c_str()));
return (dlerror()==NULL)?fres:nullptr;
}
auto get_fnc(const std::string& fname) const {
return get<void*(...)>(fname);
}
};
#else
#include <string>
#include <exception>
#include <stdexcept>
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <libloaderapi.h>
class Dlhandle {
HMODULE chandle;
public:
class Exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
Dlhandle() : chandle(nullptr) {}
Dlhandle(const std::string& fpath) {
chandle = LoadLibraryExA(fpath.c_str(), NULL, LOAD_LIBRARY_SEARCH_DEFAULT_DIRS | LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR);
if (!chandle) {
throw Exception("dlopen(\""+fpath+"\"): Error");
}
}
Dlhandle(const Dlhandle& o) = delete;
Dlhandle(Dlhandle&& o) : chandle(o.chandle) {
o.chandle = nullptr;
}
~Dlhandle() {
if (chandle) FreeLibrary(chandle);
}
bool is_valid() const {
return chandle != nullptr;
}
template<typename T>
T* get(const std::string& fname) const {
return reinterpret_cast<T*>(GetProcAddress(chandle, fname.c_str()));
}
auto get_fnc(const std::string& fname) const {
return get<void*(...)>(fname);
}
};
#endif
#endif // DLHANDLE_H

985
gpt4all-backend/falcon.cpp Normal file
View File

@ -0,0 +1,985 @@
#include "ggml.h"
#define FALCON_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "falcon_impl.h"
#include "llama.h"
#include "llama-util.h"
#include "utils.h"
#include "llmodel_shared.h"
#include <cassert>
#include <cinttypes>
#include <iostream>
#include <sstream>
namespace {
const char *modelType_ = "Falcon";
}
// commented out 40B support as it presently would require forking ggml/llama.cpp
// can re-add once mainline ggml supports it
#define FALCON_MAGIC 0x67676a74
// default hparams (Falcon 7B)
struct falcon_hparams {
int32_t n_vocab = 65024;
int32_t n_embd = 4544;
int32_t n_head = 71;
int32_t n_head_kv = 1;
int32_t n_layer = 32;
int32_t falcon_version = 7; // 7 for Falcon-7B, 40 for Falcon-40B
int32_t ftype = 1;
int32_t n_ctx = 2048;
};
struct falcon_layer {
// normalization
struct ggml_tensor* input_layernorm;
struct ggml_tensor* input_layernorm_b;
//struct ggml_tensor* attention_norm; // Falcon-40B only
//struct ggml_tensor* attention_norm_b; // Falcon-40B only
// attention
struct ggml_tensor* query_key_value;
struct ggml_tensor* wo;
// ff
struct ggml_tensor* ffn_up;
struct ggml_tensor* ffn_down;
};
struct falcon_model {
falcon_hparams hparams;
struct ggml_tensor* tok_embeddings;
struct ggml_tensor* output_norm;
struct ggml_tensor* output_norm_b;
struct ggml_tensor* lm_head;
std::vector<falcon_layer> layers;
// key + value memory
llm_kv_cache kv_self;
struct ggml_context* ctx;
std::map<std::string, struct ggml_tensor*> tensors;
llm_buffer eval_buf;
llm_buffer work_buf;
llm_buffer scr0_buf;
llm_buffer scr1_buf;
};
static bool kv_cache_init(
const struct falcon_hparams & hparams,
struct llm_kv_cache & cache,
ggml_type wtype,
int n_ctx) {
const int n_embd = hparams.n_embd;
const int dim_head = n_embd / hparams.n_head;
const int dim_kv = dim_head * hparams.n_head_kv;
const int n_layer = hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*n_ctx;
const int64_t n_elements = dim_kv * n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB);
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
return true;
}
// load the model's weights from a file
bool falcon_model_load(const std::string & fname, falcon_model & model, gpt_vocab & vocab, size_t *mem_req) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
if (mem_req) {
*mem_req = 0;
}
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != FALCON_MAGIC) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
uint32_t format_version;
fin.read((char *) &format_version, sizeof(format_version));
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_head_kv, sizeof(hparams.n_head_kv));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.falcon_version, sizeof(hparams.falcon_version));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
if (hparams.falcon_version != 7) { // && hparams.falcon_version != 40) {
fprintf(stderr, "%s: invalid model file '%s' (bad Falcon version: %d)\n", __func__, fname.c_str(), hparams.falcon_version);
return false;
}
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_head_kv = %d\n", __func__, hparams.n_head_kv);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
uint32_t dummy;
fin.read((char *) &dummy, sizeof(dummy));
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto& hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_head = hparams.n_head;
const int n_head_kv = hparams.n_head_kv;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_ff = 4 * model.hparams.n_embd;
const int n_vocab = hparams.n_vocab;
const int head_dim = hparams.n_embd / hparams.n_head;
ctx_size += ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_vocab; // tok_embeddings
ctx_size += ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd; // output_norm
ctx_size += ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd; // output_norm_b
ctx_size += ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_vocab; // lm_head
// if (hparams.version == 40) { // Falcon-40B
// ctx_size += n_layer * ggml_sizeof_tensor_1d(GGML_TYPE_F32, n_embd); // attention_norm
// ctx_size += n_layer * ggml_sizeof_tensor_1d(GGML_TYPE_F32, n_embd); // attention_norm_b
// }
ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd); // input_layernorm
ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(GGML_TYPE_F32) * n_embd); // input_layernorm_b
ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * (n_head_kv * 2 + n_head) * head_dim); // query_key_value
ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_embd); // wo
ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_embd * n_ff); // ffn_up
ctx_size += n_layer * (ggml_tensor_overhead() + ggml_type_sizef(wtype) * n_ff * n_embd); // ffn_down
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
if (mem_req) {
const int n_embd = model.hparams.n_embd;
const int dim_head = n_embd / model.hparams.n_head;
const int dim_kv = dim_head * model.hparams.n_head_kv;
const int n_layer = model.hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*model.hparams.n_ctx;
const int64_t n_elements = dim_kv * n_mem;
size_t kv_cache_size = 2u*n_elements*ggml_type_size(wtype) + 2_MiB;
*mem_req = ctx_size + kv_cache_size;
return false;
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.no_alloc = false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto& hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_head = hparams.n_head;
const int n_head_kv = hparams.n_head_kv;
const int n_layer = hparams.n_layer;
const int n_ff = 4 * model.hparams.n_embd;
const int n_vocab = hparams.n_vocab;
const int head_dim = hparams.n_embd / hparams.n_head;
model.layers.resize(n_layer);
model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model.tensors["transformer.word_embeddings.weight"] =
model.tok_embeddings;
model.tensors["transformer.ln_f.weight"] = model.output_norm;
model.tensors["transformer.ln_f.bias"] = model.output_norm_b;
model.tensors["lm_head.weight"] = model.lm_head;
for (int i = 0; i < n_layer; ++i) {
auto& layer = model.layers[i];
layer.input_layernorm =
ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.input_layernorm_b =
ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// if (hparams.version == 40) { // for Falcon-40B only
// layer.attention_norm =
// ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// layer.attention_norm_b =
// ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// }
// query_key_value shape for config.multi_query == True:
layer.query_key_value = ggml_new_tensor_2d(
ctx, wtype, n_embd, (n_head_kv * 2 + n_head) * head_dim);
layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.ffn_up = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
layer.ffn_down = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
// map by name
// if (hparams.version == 40) {
// // Falcon-40B:
// model.tensors["transformer.h." + std::to_string(i) +
// ".ln_mlp.weight"] = layer.input_layernorm;
// model.tensors["transformer.h." + std::to_string(i) +
// ".ln_mlp.bias"] = layer.input_layernorm_b;
// model.tensors["transformer.h." + std::to_string(i) +
// ".ln_attn.weight"] = layer.attention_norm;
// model.tensors["transformer.h." + std::to_string(i) +
// ".ln_attn.bias"] = layer.attention_norm_b;
// } else {
// Falcon-7B:
model.tensors["transformer.h." + std::to_string(i) +
".input_layernorm.weight"] = layer.input_layernorm;
model.tensors["transformer.h." + std::to_string(i) +
".input_layernorm.bias"] = layer.input_layernorm_b;
//}
model.tensors["transformer.h." + std::to_string(i) +
".self_attention.query_key_value.weight"] =
layer.query_key_value;
model.tensors["transformer.h." + std::to_string(i) +
".self_attention.dense.weight"] = layer.wo;
model.tensors["transformer.h." + std::to_string(i) +
".mlp.dense_h_to_4h.weight"] = layer.ffn_up;
model.tensors["transformer.h." + std::to_string(i) +
".mlp.dense_4h_to_h.weight"] = layer.ffn_down;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head_kv = hparams.n_head_kv;
const int head_dim = hparams.n_embd / hparams.n_head;
const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = head_dim*n_mem;
if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F32, model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
ggml_free(ctx);
return false;
}
const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v);
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
fin.seekg(-static_cast<ptrdiff_t>(fin.tellg()) & 31, std::ios_base::cur);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, %5d], expected [%5d, %5d]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
fin.close();
model.eval_buf.resize(1280u * 1024 * 1024);
model.scr0_buf.resize(256u * 1024 * 1024);
model.scr1_buf.resize(256u * 1024 * 1024);
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool falcon_eval(
falcon_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_head_kv = hparams.n_head_kv;
const int n_vocab = hparams.n_vocab;
const int version = hparams.falcon_version;
const size_t head_dim = n_embd / n_head;
struct ggml_init_params eval_ctx_params = {
.mem_size = model.eval_buf.size,
.mem_buffer = model.eval_buf.addr,
.no_alloc = false,
};
struct ggml_context * ctx0 = ggml_init(eval_ctx_params);
struct ggml_cgraph gf = {};
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
// wte
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
struct ggml_tensor* repeat_dummy = ggml_new_tensor_3d(ctx0, inpL->type, head_dim, N + n_past, n_head);
ggml_type wtype = GGML_TYPE_F32;
const int sizeof_wtype = ggml_type_sizef(wtype);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
struct ggml_tensor * layernorm_output;
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
// self-attention
{
layernorm_output = ggml_norm(ctx0, inpL);
layernorm_output = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].input_layernorm, layernorm_output),
layernorm_output),
ggml_repeat(ctx0, model.layers[il].input_layernorm_b, layernorm_output));
// if (version == 40) { // Falcon-40B only
// cur = ggml_norm(ctx0, inpL);
// cur = ggml_add(ctx0,
// ggml_mul(ctx0,
// ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
// cur),
// ggml_repeat(ctx0, model.layers[il].attention_norm_b, cur));
// }
// else {
cur = layernorm_output;
// }
// compute QKV
cur = ggml_mul_mat(ctx0, model.layers[il].query_key_value, cur);
// Note that the strides for Kcur, Vcur are set up so that the
// resulting views are misaligned with the tensor's storage
// (by applying the K/V offset we shift the tensor's original
// view to stick out behind the viewed QKV tensor's allocated
// memory, so to say). This is ok because no actual accesses
// happen to that out-of-range memory, but it can require some
// trickery when trying to accurately dump these views for
// debugging.
struct ggml_tensor * Qcur = ggml_view_3d(
ctx0, cur, head_dim, n_head, N,
head_dim * sizeof_wtype,
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
0);
struct ggml_tensor * Kcur = ggml_view_3d(
ctx0, cur, head_dim, n_head_kv, N,
head_dim * sizeof_wtype,
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
head_dim * n_head * sizeof_wtype);
struct ggml_tensor * Vcur = ggml_view_3d(
ctx0, cur, head_dim, n_head_kv, N,
head_dim * sizeof_wtype,
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
head_dim * (n_head + n_head_kv) * sizeof_wtype);
// using mode = 2 for neox mode
Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, head_dim, 2, n_ctx);
Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, head_dim, 2, n_ctx);
// store key and value to memory
{
struct ggml_tensor* k = ggml_view_1d(
ctx0, model.kv_self.k, N * n_head_kv * head_dim,
(ggml_element_size(model.kv_self.k) * n_head_kv * head_dim) *
(il * n_ctx + n_past));
struct ggml_tensor* v = ggml_view_1d(
ctx0, model.kv_self.v, N * n_head_kv * head_dim,
(ggml_element_size(model.kv_self.v) * n_head_kv * head_dim) *
(il * n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * K = ggml_permute(
ctx0,
ggml_view_3d(
ctx0,
model.kv_self.k,
head_dim, n_head_kv, n_past + N,
head_dim * sizeof_wtype,
head_dim * n_head_kv * sizeof_wtype,
il * n_ctx * ggml_element_size(model.kv_self.k) * n_head_kv * head_dim),
0, 2, 1, 3);
// K * Q
// changed from repeat2 back to repeat, will not support 40B!
K = ggml_cont(ctx0, ggml_repeat(ctx0, K, repeat_dummy));
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale_inplace(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(head_dim)))
);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor* V = ggml_permute(
ctx0,
ggml_view_3d(
ctx0,
model.kv_self.v,
head_dim, n_head_kv, n_past + N,
head_dim * sizeof_wtype,
head_dim * n_head_kv * sizeof_wtype,
il * n_ctx * ggml_element_size(model.kv_self.v) * n_head_kv * head_dim),
0, 2, 1, 3);
// changed from repeat2 back to repeat, will not support 40B!
V = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_repeat(ctx0, V, repeat_dummy)));
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
}
}
ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, });
struct ggml_tensor* inpFF = layernorm_output;
struct ggml_tensor* attn_out = ggml_cpy(
ctx0, cur, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
{
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up, inpFF);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
}
cur = ggml_add(ctx0, cur, attn_out);
cur = ggml_add(ctx0, cur, inpL);
// input for next layer
inpL = cur;
}
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.output_norm, inpL),
inpL),
ggml_repeat(ctx0, model.output_norm_b, inpL));
}
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
// lm_head
{
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
//inpL = ggml_add(ctx0,
// ggml_repeat(ctx0, model.lmh_b, inpL),
// inpL);
}
// logits -> probs
//inpL = ggml_soft_max_inplace(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute_g4a(model.work_buf, &gf, n_threads);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
#define MAX_RNG_STATE 64*1024
size_t falcon_get_state_size(const falcon_model &model) {
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = MAX_RNG_STATE;
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = model.kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
return s_total;
}
size_t falcon_copy_state_data(const falcon_model &model, const std::mt19937 &rng, uint8_t *dest)
{
uint8_t * out = dest;
// copy rng
{
std::stringstream rng_ss;
rng_ss << rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[MAX_RNG_STATE];
memset(&rng_buf[0], 0, MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
memcpy(out, &rng_buf[0], MAX_RNG_STATE); out += MAX_RNG_STATE;
}
// copy kv cache
{
const size_t kv_size = model.kv_self.buf.size;
const int kv_ntok = model.kv_self.n;
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
if (kv_size) {
memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size;
}
}
const size_t written = out - dest;
assert(written == falcon_get_state_size(model));
fflush(stdout);
return written;
}
size_t falcon_set_state_data(falcon_model *model, std::mt19937 *rng, const uint8_t *src)
{
const uint8_t * in = src;
// set rng
{
size_t rng_size;
char rng_buf[MAX_RNG_STATE];
memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
memcpy(&rng_buf[0], in, MAX_RNG_STATE); in += MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> *rng;
assert(rng_ss.fail() == false);
}
// set kv cache
{
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
if (kv_size) {
assert(model->kv_self.buf.size == kv_size);
void * k_data = model->kv_self.k->data; // remember data pointers
void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size;
model->kv_self.k->data = k_data; // restore correct data pointers
model->kv_self.v->data = v_data;
}
model->kv_self.n = kv_ntok;
}
const size_t nread = in - src;
assert(nread == falcon_get_state_size(*model));
fflush(stdout);
return nread;
}
struct FalconPrivate {
const std::string modelPath;
bool modelLoaded;
gpt_vocab vocab;
falcon_model *model = nullptr;
int64_t n_threads = 0;
size_t mem_per_token = 0;
std::mt19937 rng;
};
Falcon::Falcon() : d_ptr(new FalconPrivate) {
d_ptr->model = new falcon_model;
d_ptr->model->ctx = nullptr;
d_ptr->modelLoaded = false;
}
Falcon::~Falcon() {
if(d_ptr->model->ctx) {
ggml_free(d_ptr->model->ctx);
d_ptr->model->ctx = nullptr;
}
delete d_ptr->model;
}
bool Falcon::loadModel(const std::string &modelPath)
{
std::mt19937 rng(time(NULL));
d_ptr->rng = rng;
// load the model
if (!falcon_model_load(modelPath, *d_ptr->model, d_ptr->vocab, nullptr)) {
std::cerr << "FALCON ERROR: failed to load model from " << modelPath;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
fflush(stdout);
return true;
}
bool Falcon::isModelLoaded() const
{
return d_ptr -> modelLoaded;
}
size_t Falcon::requiredMem(const std::string &modelPath)
{
falcon_model dummy_model;
gpt_vocab dummy_vocab;
size_t mem_req;
auto fin = std::ifstream(modelPath, std::ios::binary);
falcon_model_load(modelPath, dummy_model, dummy_vocab, &mem_req);
return mem_req;
}
size_t Falcon::stateSize() const
{
return falcon_get_state_size(*d_ptr->model);
}
size_t Falcon::saveState(uint8_t *dest) const
{
return falcon_copy_state_data(*d_ptr->model, d_ptr->rng, dest);
}
size_t Falcon::restoreState(const uint8_t *src)
{
return falcon_set_state_data(d_ptr->model, &d_ptr->rng, src);
}
void Falcon::setThreadCount(int32_t n_threads)
{
d_ptr->n_threads = n_threads;
}
int32_t Falcon::threadCount() const
{
return d_ptr->n_threads;
}
std::vector<LLModel::Token> Falcon::tokenize(PromptContext &, const std::string &str) const
{
return ::gpt_tokenize(d_ptr->vocab, str);
}
LLModel::Token Falcon::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks,
promptCtx.logits,
promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty,
d_ptr->rng);
}
std::string Falcon::tokenToString(Token id) const
{
return d_ptr->vocab.id_to_token[id];
}
bool Falcon::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
// determine the required inference memory per token:
static bool initialized = false;
if (!initialized) {
falcon_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits,
d_ptr->mem_per_token);
initialized = true;
}
return falcon_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token);
}
int32_t Falcon::contextLength() const
{
return d_ptr->model->hparams.n_ctx;
}
const std::vector<LLModel::Token> &Falcon::endTokens() const
{
static const std::vector<LLModel::Token> out = { 11 };
return out;
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(std::istream& f) {
uint32_t magic = 0;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
uint32_t version = 0;
f.read(reinterpret_cast<char*>(&version), sizeof(version));
if (magic != FALCON_MAGIC) {
return false;
}
falcon_hparams hparams;
f.read(reinterpret_cast<char*>(&hparams), sizeof(hparams));
// we're matching the file format of existing pre-converted models
// compatible with ctransformers llama.cpp based format, which also
// unfortunately shares its magic number what llama uses, so we now
// differentiate by n_vocab
// give some wiggle room over the max to allow for finetunes that expand the
// vocabulary
if (!(hparams.n_vocab >= 65024 && hparams.n_vocab <= 65100)) {
return false;
}
if (hparams.falcon_version != 7) {
return false;
}
return true;
}
DLL_EXPORT LLModel *construct() {
return new Falcon;
}
}

View File

@ -0,0 +1,42 @@
#ifndef FALCON_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of falcon.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define FALCON_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef FALCON_H
#define FALCON_H
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include "llmodel.h"
struct FalconPrivate;
class Falcon : public LLModel {
public:
Falcon();
~Falcon();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
private:
std::unique_ptr<FalconPrivate> d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
Token sampleToken(PromptContext &ctx) const override;
std::string tokenToString(Token) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token>& endTokens() const override;
};
#endif // Falcon_H

975
gpt4all-backend/gptj.cpp Normal file
View File

@ -0,0 +1,975 @@
#define GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "gptj_impl.h"
#include "utils.h"
#include "llmodel_shared.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <sstream>
#include <unordered_set>
#include <ggml.h>
namespace {
const char *modelType_ = "GPT-J";
}
// default hparams (GPT-J 6B)
struct gptj_hparams {
int32_t n_vocab = 50400;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 16;
int32_t n_layer = 28;
int32_t n_rot = 64;
int32_t f16 = 1;
};
struct gptj_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
// attention
struct ggml_tensor * c_attn_q_proj_w;
struct ggml_tensor * c_attn_k_proj_w;
struct ggml_tensor * c_attn_v_proj_w;
struct ggml_tensor * c_attn_proj_w;
// ff
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct gptj_model {
gptj_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * lmh_g; // language model head
struct ggml_tensor * lmh_b; // language model bias
std::vector<gptj_layer> layers;
// key + value memory
struct llm_kv_cache kv_self;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
llm_buffer eval_buf;
llm_buffer scr0_buf;
llm_buffer scr1_buf;
~gptj_model() {
if (ctx) {
ggml_free(ctx);
}
}
};
static bool kv_cache_init(
const struct gptj_hparams & hparams,
struct llm_kv_cache & cache,
ggml_type wtype,
int n_ctx) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB);
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
return true;
}
// load the model's weights from a stream
bool gptj_model_load(const std::string &fname, std::istream &fin, gptj_model & model, gpt_vocab & vocab, size_t * mem_req = nullptr) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
if(mem_req != nullptr) {
*mem_req = 0;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
printf("%s: f16 = %d\n", __func__, hparams.f16);
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
return false;
}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT;
switch (model.hparams.f16) {
case 0: wtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break;
case 2: wtype = GGML_TYPE_Q4_0; break;
case 3: wtype = GGML_TYPE_Q4_1; break;
case 5: wtype = GGML_TYPE_Q4_2; break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname.c_str(), model.hparams.f16);
return false;
}
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte
ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g
ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_q_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_k_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_v_proj_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += (5 + 10*n_layer)*256; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
if (mem_req != nullptr) {
*mem_req += ctx_size;
const int n_embd = model.hparams.n_embd;
const int n_layer = model.hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*model.hparams.n_ctx;
const int64_t n_elements = n_embd*n_mem;
*mem_req += (2u*n_elements*ggml_type_size(wtype) + 2_MiB);
return false;
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.no_alloc = false
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
// map by name
model.tensors["transformer.wte.weight"] = model.wte;
model.tensors["transformer.ln_f.weight"] = model.ln_f_g;
model.tensors["transformer.ln_f.bias"] = model.ln_f_b;
model.tensors["lm_head.weight"] = model.lmh_g;
model.tensors["lm_head.bias"] = model.lmh_b;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g;
model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b;
model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w;
model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
ggml_free(ctx);
return false;
}
const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v);
printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%" PRId64 ", %" PRId64 "], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
return false;
}
if (0) {
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
size_t bpe = 0;
switch (ftype) {
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
default:
{
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
return false;
}
};
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
model.scr0_buf.resize(256u * 1024 * 1024);
model.scr1_buf.resize(256u * 1024 * 1024);
return true;
}
// load the model's weights from a file path
bool gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab & vocab) {
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
bool loaded = gptj_model_load(fname, fin, model, vocab);
fin.close();
return loaded;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
// The GPT-J model requires about 16MB of memory per input token.
//
bool gptj_eval(
gptj_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_rot;
const size_t init_buf_size = 1024_MiB;
if (!model.eval_buf.addr || model.eval_buf.size < init_buf_size)
model.eval_buf.resize(init_buf_size);
if (mem_per_token > 0 && mem_per_token*N > model.eval_buf.size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.eval_buf.size, buf_size_new);
// reallocate
model.eval_buf.resize(buf_size_new);
if (model.eval_buf.addr == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.eval_buf.size);
return false;
}
}
struct ggml_init_params params = {
.mem_size = model.eval_buf.size,
.mem_buffer = model.eval_buf.addr,
.no_alloc = false
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
// wte
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
// norm
{
cur = ggml_norm(ctx0, inpL);
// cur = ln_1_g*cur + ln_1_b
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
struct ggml_tensor * inpSA = cur;
// self-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur);
// store key and value to memory
{
struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_self.v, N*n_embd, (ggml_element_size(model.kv_self.v)*n_embd)*(il*n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_rope(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
n_past, n_rot, 0),
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_rope(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
n_past, n_rot, 1),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.kv_self.v->type, n_past + N, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
}
struct ggml_tensor * inpFF = cur;
ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, });
// feed-forward network
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
{
// note here we pass inpSA instead of cur
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
inpSA);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
cur);
}
// self-attention + FF
cur = ggml_add(ctx0, cur, inpFF);
// input for next layer
inpL = ggml_add(ctx0, cur, inpL);
}
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL + ln_f_b
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.ln_f_g, inpL),
inpL),
ggml_repeat(ctx0, model.ln_f_b, inpL));
}
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
// lm_head
{
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
inpL = ggml_add(ctx0,
ggml_repeat(ctx0, model.lmh_b, inpL),
inpL);
}
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute (ctx0, &gf);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
#define GPTJ_MAX_RNG_STATE 64*1024
size_t gptj_get_state_size(const gptj_model &model)
{
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = GPTJ_MAX_RNG_STATE;
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = model.kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
fflush(stdout);
return s_total;
}
size_t gptj_copy_state_data(const gptj_model &model, const std::mt19937 &rng, uint8_t *dest)
{
uint8_t * out = dest;
fflush(stdout);
// copy rng
{
std::stringstream rng_ss;
rng_ss << rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[GPTJ_MAX_RNG_STATE];
memset(&rng_buf[0], 0, GPTJ_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
memcpy(out, &rng_buf[0], GPTJ_MAX_RNG_STATE); out += GPTJ_MAX_RNG_STATE;
}
// copy kv cache
{
const size_t kv_size = model.kv_self.buf.size;
const int kv_ntok = model.kv_self.n;
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
if (kv_size) {
memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size;
}
}
const size_t written = out - dest;
assert(written == gptj_get_state_size(model));
fflush(stdout);
return written;
}
size_t gptj_set_state_data(gptj_model *model, std::mt19937 *rng, const uint8_t *src)
{
const uint8_t * in = src;
// set rng
{
size_t rng_size;
char rng_buf[GPTJ_MAX_RNG_STATE];
memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
memcpy(&rng_buf[0], in, GPTJ_MAX_RNG_STATE); in += GPTJ_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> *rng;
assert(rng_ss.fail() == false);
}
// set kv cache
{
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
if (kv_size) {
assert(model->kv_self.buf.size == kv_size);
void * k_data = model->kv_self.k->data; // remember data pointers
void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size;
model->kv_self.k->data = k_data; // restore correct data pointers
model->kv_self.v->data = v_data;
}
model->kv_self.n = kv_ntok;
}
const size_t nread = in - src;
assert(nread == gptj_get_state_size(*model));
fflush(stdout);
return nread;
}
struct GPTJPrivate {
const std::string modelPath;
bool modelLoaded;
gpt_vocab vocab;
gptj_model *model = nullptr;
int64_t n_threads = 0;
size_t mem_per_token = 0;
std::mt19937 rng;
};
GPTJ::GPTJ()
: d_ptr(new GPTJPrivate) {
d_ptr->model = new gptj_model;
d_ptr->model->ctx = nullptr;
d_ptr->modelLoaded = false;
}
size_t GPTJ::requiredMem(const std::string &modelPath) {
gptj_model dummy_model;
gpt_vocab dummy_vocab;
size_t mem_req;
auto fin = std::ifstream(modelPath, std::ios::binary);
gptj_model_load(modelPath, fin, dummy_model, dummy_vocab, &mem_req);
return mem_req;
}
bool GPTJ::loadModel(const std::string &modelPath) {
std::mt19937 rng(time(NULL));
d_ptr->rng = rng;
auto fin = std::ifstream(modelPath, std::ios::binary);
// load the model
if (!gptj_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab)) {
std::cerr << "GPT-J ERROR: failed to load model from " << modelPath;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
fflush(stdout);
return true;
}
void GPTJ::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t GPTJ::threadCount() const
{
return d_ptr->n_threads;
}
GPTJ::~GPTJ()
{
delete d_ptr->model;
}
bool GPTJ::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t GPTJ::stateSize() const
{
return gptj_get_state_size(*d_ptr->model);
}
size_t GPTJ::saveState(uint8_t *dest) const
{
return gptj_copy_state_data(*d_ptr->model, d_ptr->rng, dest);
}
size_t GPTJ::restoreState(const uint8_t *src)
{
return gptj_set_state_data(d_ptr->model, &d_ptr->rng, src);
}
std::vector<LLModel::Token> GPTJ::tokenize(PromptContext &, const std::string &str) const
{
return ::gpt_tokenize(d_ptr->vocab, str);
}
LLModel::Token GPTJ::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks,
promptCtx.logits,
promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty,
d_ptr->rng);
}
std::string GPTJ::tokenToString(Token id) const
{
return d_ptr->vocab.id_to_token[id];
}
bool GPTJ::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
// determine the required inference memory per token:
static bool initialized = false;
if (!initialized) {
gptj_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits,
d_ptr->mem_per_token);
initialized = true;
}
return gptj_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token);
}
int32_t GPTJ::contextLength() const
{
return d_ptr->model->hparams.n_ctx;
}
const std::vector<LLModel::Token> &GPTJ::endTokens() const
{
static const std::vector<LLModel::Token> fres = {50256};
return fres;
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(std::istream& f) {
uint32_t magic = 0;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
gptj_hparams hparams;
f.read(reinterpret_cast<char*>(&hparams), sizeof(hparams));
if (!(hparams.n_vocab >= 50300 && hparams.n_vocab <= 50400)) {
return false; // not a gptj.
}
return magic == 0x67676d6c;
}
DLL_EXPORT LLModel *construct() {
return new GPTJ;
}
}

View File

View File

@ -0,0 +1,41 @@
#ifndef GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of gptj.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef GPTJ_H
#define GPTJ_H
#include <string>
#include <functional>
#include <vector>
#include "llmodel.h"
struct GPTJPrivate;
class GPTJ : public LLModel {
public:
GPTJ();
~GPTJ();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
private:
GPTJPrivate *d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
Token sampleToken(PromptContext &ctx) const override;
std::string tokenToString(Token) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token>& endTokens() const override;
};
#endif // GPTJ_H

View File

@ -1,273 +0,0 @@
#ifndef LLMODEL_H
#define LLMODEL_H
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <expected>
#include <functional>
#include <optional>
#include <span>
#include <stdexcept>
#include <string>
#include <string_view>
#include <unordered_map>
#include <utility>
#include <vector>
class Dlhandle;
using namespace std::string_literals;
#define LLMODEL_MAX_PROMPT_BATCH 128
class LLModel {
public:
using Token = int32_t;
using PromptCallback = std::function<bool(std::span<const Token> batch, bool cached)>;
using ResponseCallback = std::function<bool(Token token, std::string_view piece)>;
using EmbedCancelCallback = bool(unsigned *batchSizes, unsigned nBatch, const char *backend);
using ProgressCallback = std::function<bool(float progress)>;
class BadArchError: public std::runtime_error {
public:
BadArchError(std::string arch)
: runtime_error("Unsupported model architecture: " + arch)
, m_arch(std::move(arch))
{}
const std::string &arch() const noexcept { return m_arch; }
private:
std::string m_arch;
};
class MissingImplementationError: public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
class UnsupportedModelError: public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
struct GPUDevice {
const char *backend;
int index;
int type;
size_t heapSize;
std::string name;
std::string vendor;
GPUDevice(const char *backend, int index, int type, size_t heapSize, std::string name, std::string vendor):
backend(backend), index(index), type(type), heapSize(heapSize), name(std::move(name)),
vendor(std::move(vendor)) {}
std::string selectionName() const
{
assert(backend == "cuda"s || backend == "kompute"s);
return backendName() + ": " + name;
}
std::string backendName() const { return backendIdToName(backend); }
static std::string backendIdToName(const std::string &backend) { return s_backendNames.at(backend); }
static std::string updateSelectionName(const std::string &name) {
if (name == "Auto" || name == "CPU" || name == "Metal")
return name;
auto it = std::find_if(s_backendNames.begin(), s_backendNames.end(), [&name](const auto &entry) {
return name.starts_with(entry.second + ": ");
});
if (it != s_backendNames.end())
return name;
return "Vulkan: " + name; // previously, there were only Vulkan devices
}
private:
static inline const std::unordered_map<std::string, std::string> s_backendNames {
{"cpu", "CPU"}, {"metal", "Metal"}, {"cuda", "CUDA"}, {"kompute", "Vulkan"},
};
};
class Implementation {
public:
Implementation(const Implementation &) = delete;
Implementation(Implementation &&);
~Implementation();
std::string_view modelType() const { return m_modelType; }
std::string_view buildVariant() const { return m_buildVariant; }
static LLModel *construct(const std::string &modelPath, const std::string &backend = "auto", int n_ctx = 2048);
static std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired = 0);
static int32_t maxContextLength(const std::string &modelPath);
static int32_t layerCount(const std::string &modelPath);
static bool isEmbeddingModel(const std::string &modelPath);
static auto chatTemplate(const char *modelPath) -> std::expected<std::string, std::string>;
static void setImplementationsSearchPath(const std::string &path);
static const std::string &implementationsSearchPath();
static bool hasSupportedCPU();
// 0 for no, 1 for yes, -1 for non-x86_64
static int cpuSupportsAVX2();
private:
Implementation(Dlhandle &&);
static const std::vector<Implementation> &implementationList();
static const Implementation *implementation(const char *fname, const std::string &buildVariant);
static LLModel *constructGlobalLlama(const std::optional<std::string> &backend = std::nullopt);
char *(*m_getFileArch)(const char *fname);
bool (*m_isArchSupported)(const char *arch);
LLModel *(*m_construct)();
std::string_view m_modelType;
std::string_view m_buildVariant;
Dlhandle *m_dlhandle;
};
struct PromptContext {
int32_t n_predict = 200;
int32_t top_k = 40;
float top_p = 0.9f;
float min_p = 0.0f;
float temp = 0.9f;
int32_t n_batch = 9;
float repeat_penalty = 1.10f;
int32_t repeat_last_n = 64; // last n tokens to penalize
float contextErase = 0.5f; // percent of context to erase if we exceed the context window
};
explicit LLModel() {}
virtual ~LLModel() {}
virtual bool supportsEmbedding() const = 0;
virtual bool supportsCompletion() const = 0;
virtual bool loadModel(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual bool isModelBlacklisted(const std::string &modelPath) const { (void)modelPath; return false; }
virtual bool isEmbeddingModel(const std::string &modelPath) const { (void)modelPath; return false; }
virtual bool isModelLoaded() const = 0;
virtual size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual size_t stateSize() const = 0;
virtual size_t saveState(std::span<uint8_t> stateOut, std::vector<Token> &inputTokensOut) const = 0;
virtual size_t restoreState(std::span<const uint8_t> state, std::span<const Token> inputTokens) = 0;
// This method requires the model to return true from supportsCompletion otherwise it will throw
// an error
virtual void prompt(std::string_view prompt,
const PromptCallback &promptCallback,
const ResponseCallback &responseCallback,
const PromptContext &ctx);
virtual int32_t countPromptTokens(std::string_view prompt) const;
virtual size_t embeddingSize() const {
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}
// user-specified prefix
virtual void embed(const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix,
int dimensionality = -1, size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false,
EmbedCancelCallback *cancelCb = nullptr);
// automatic prefix
virtual void embed(const std::vector<std::string> &texts, float *embeddings, bool isRetrieval,
int dimensionality = -1, size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false);
virtual void setThreadCount(int32_t n_threads) { (void)n_threads; }
virtual int32_t threadCount() const { return 1; }
const Implementation &implementation() const {
return *m_implementation;
}
virtual std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired) const {
(void)memoryRequired;
return {};
}
virtual bool initializeGPUDevice(size_t memoryRequired, const std::string &name) const {
(void)memoryRequired;
(void)name;
return false;
}
virtual bool initializeGPUDevice(int device, std::string *unavail_reason = nullptr) const {
(void)device;
if (unavail_reason) {
*unavail_reason = "model has no GPU support";
}
return false;
}
virtual bool usingGPUDevice() const { return false; }
virtual const char *backendName() const { return "cpu"; }
virtual const char *gpuDeviceName() const { return nullptr; }
void setProgressCallback(ProgressCallback callback) { m_progressCallback = callback; }
virtual int32_t contextLength() const = 0;
virtual auto specialTokens() -> std::unordered_map<std::string, std::string> const = 0;
protected:
// These are pure virtual because subclasses need to implement as the default implementation of
// 'prompt' above calls these functions
virtual std::vector<Token> tokenize(std::string_view str) const = 0;
virtual bool isSpecialToken(Token id) const = 0;
virtual std::string tokenToString(Token id) const = 0;
virtual void initSampler(const PromptContext &ctx) = 0;
virtual Token sampleToken() const = 0;
virtual bool evalTokens(int32_t nPast, std::span<const Token> tokens) const = 0;
virtual void shiftContext(const PromptContext &promptCtx, int32_t *nPast) = 0;
virtual int32_t inputLength() const = 0;
virtual int32_t computeModelInputPosition(std::span<const Token> input) const = 0;
virtual void setModelInputPosition(int32_t pos) = 0;
virtual void appendInputToken(Token tok) = 0;
virtual std::span<const Token> inputTokens() const = 0;
virtual const std::vector<Token> &endTokens() const = 0;
virtual bool shouldAddBOS() const = 0;
virtual int32_t maxContextLength(std::string const &modelPath) const
{
(void)modelPath;
return -1;
}
virtual int32_t layerCount(std::string const &modelPath) const
{
(void)modelPath;
return -1;
}
virtual auto chatTemplate(const char *modelPath) const -> std::expected<std::string, std::string>
{
(void)modelPath;
return std::unexpected("not implemented");
}
const Implementation *m_implementation = nullptr;
ProgressCallback m_progressCallback;
static bool staticProgressCallback(float progress, void* ctx)
{
LLModel* model = static_cast<LLModel*>(ctx);
if (model && model->m_progressCallback)
return model->m_progressCallback(progress);
return true;
}
// prefill context with prompt
auto decodePrompt(const PromptCallback &promptCallback,
const PromptContext &promptCtx,
std::vector<Token> embd_inp)
-> std::optional<int32_t>;
// generate a response
void generateResponse(const ResponseCallback &responseCallback,
const PromptContext &promptCtx,
int32_t nPast);
friend class LLMImplementation;
};
#endif // LLMODEL_H

@ -0,0 +1 @@
Subproject commit f826aac617e1c5847ecb5115f75433aff82f759a

@ -0,0 +1 @@
Subproject commit 5ea43392731040b454c293123839b90e159cbb99

@ -0,0 +1 @@
Subproject commit 9bee309a7c8db77ca53fab49c2d896d486905617

File diff suppressed because it is too large Load Diff

View File

View File

@ -0,0 +1,397 @@
#define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "llamamodel_impl.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <random>
#include <thread>
#include <unordered_set>
#include <llama.h>
#include <ggml.h>
#ifdef GGML_USE_KOMPUTE
#include "ggml-vulkan.h"
#endif
namespace {
const char *modelType_ = "LLaMA";
}
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
#if LLAMA_DATE <= 230511
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
#endif
#if LLAMA_DATE >= 230519
// sampling parameters
float tfs_z = 1.0f; // 1.0 = disabled
float typical_p = 1.0f; // 1.0 = disabled
#endif
std::string prompt = "";
bool memory_f16 = true; // use f16 instead of f32 for memory kv
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
};
#if LLAMA_DATE >= 230519
static int llama_sample_top_p_top_k(
llama_context *ctx,
const llama_token *last_n_tokens_data,
int last_n_tokens_size,
int top_k,
float top_p,
float temp,
float repeat_penalty) {
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Populate initial list of all candidates
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (int token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Sample repeat penalty
llama_sample_repetition_penalty(nullptr, &candidates_p, last_n_tokens_data, last_n_tokens_size, repeat_penalty);
// Temperature sampling
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, 1.0f, 1);
llama_sample_typical(ctx, &candidates_p, 1.0f, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
return llama_sample_token(ctx, &candidates_p);
}
#endif
struct LLamaPrivate {
const std::string modelPath;
bool modelLoaded;
llama_context *ctx = nullptr;
llama_context_params params;
int64_t n_threads = 0;
};
LLamaModel::LLamaModel()
: d_ptr(new LLamaPrivate) {
d_ptr->modelLoaded = false;
}
// default hparams (LLaMA 7B)
struct llama_file_hparams {
uint32_t n_vocab = 32000;
uint32_t n_embd = 4096;
uint32_t n_mult = 256;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
};
size_t LLamaModel::requiredMem(const std::string &modelPath) {
auto fin = std::ifstream(modelPath, std::ios::binary);
fin.seekg(0, std::ios_base::end);
size_t filesize = fin.tellg();
fin.seekg(0, std::ios_base::beg);
uint32_t magic = 0;
fin.read(reinterpret_cast<char*>(&magic), sizeof(magic));
if (magic != 0x67676a74) return 0;
uint32_t version = 0;
fin.read(reinterpret_cast<char*>(&version), sizeof(version));
llama_file_hparams hparams;
fin.read(reinterpret_cast<char*>(&hparams.n_vocab), sizeof(hparams.n_vocab));
fin.read(reinterpret_cast<char*>(&hparams.n_embd), sizeof(hparams.n_embd));
fin.read(reinterpret_cast<char*>(&hparams.n_head), sizeof(hparams.n_head));
fin.read(reinterpret_cast<char*>(&hparams.n_layer), sizeof(hparams.n_layer));
fin.read(reinterpret_cast<char*>(&hparams.n_rot), sizeof(hparams.n_rot));
fin.read(reinterpret_cast<char*>(&hparams.ftype), sizeof(hparams.ftype));
const size_t n_ctx = 2048;
const size_t kvcache_element_size = 2; // fp16
const size_t est_kvcache_size = hparams.n_embd * hparams.n_layer * 2u * n_ctx * kvcache_element_size;
return filesize + est_kvcache_size;
}
bool LLamaModel::loadModel(const std::string &modelPath)
{
// load the model
d_ptr->params = llama_context_default_params();
gpt_params params;
d_ptr->params.n_ctx = 2048;
d_ptr->params.seed = params.seed;
d_ptr->params.f16_kv = params.memory_f16;
d_ptr->params.use_mmap = params.use_mmap;
#if defined (__APPLE__)
d_ptr->params.use_mlock = true;
#else
d_ptr->params.use_mlock = params.use_mlock;
#endif
#if LLAMA_DATE <= 230511
d_ptr->params.n_parts = params.n_parts;
#endif
#ifdef GGML_USE_METAL
std::cerr << "llama.cpp: using Metal" << std::endl;
// metal always runs the whole model if n_gpu_layers is not 0, at least
// currently
d_ptr->params.n_gpu_layers = 1;
#endif
#ifdef GGML_USE_KOMPUTE
if (ggml_vk_has_device()) {
// vulkan always runs the whole model if n_gpu_layers is not 0, at least
// currently
d_ptr->params.n_gpu_layers = 1;
}
#endif
d_ptr->ctx = llama_init_from_file(modelPath.c_str(), d_ptr->params);
if (!d_ptr->ctx) {
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
#ifdef GGML_USE_KOMPUTE
if (ggml_vk_has_device()) {
std::cerr << "llama.cpp: using Vulkan on " << ggml_vk_current_device().name << std::endl;
}
#endif
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
fflush(stderr);
return true;
}
void LLamaModel::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t LLamaModel::threadCount() const {
return d_ptr->n_threads;
}
LLamaModel::~LLamaModel()
{
if(d_ptr->ctx) {
llama_free(d_ptr->ctx);
}
}
bool LLamaModel::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t LLamaModel::stateSize() const
{
return llama_get_state_size(d_ptr->ctx);
}
size_t LLamaModel::saveState(uint8_t *dest) const
{
return llama_copy_state_data(d_ptr->ctx, dest);
}
size_t LLamaModel::restoreState(const uint8_t *src)
{
// const_cast is required, see: https://github.com/ggerganov/llama.cpp/pull/1540
return llama_set_state_data(d_ptr->ctx, const_cast<uint8_t*>(src));
}
std::vector<LLModel::Token> LLamaModel::tokenize(PromptContext &ctx, const std::string &str) const
{
const bool useBOS = ctx.n_past == 0 && (ctx.tokens.empty() || ctx.tokens.front() != llama_token_bos());
std::vector<LLModel::Token> fres(str.size()+4);
auto fres_len = llama_tokenize(d_ptr->ctx, str.c_str(), fres.data(), fres.size(), useBOS);
fres.resize(fres_len);
return fres;
}
std::string LLamaModel::tokenToString(Token id) const
{
return llama_token_to_str(d_ptr->ctx, id);
}
LLModel::Token LLamaModel::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return llama_sample_top_p_top_k(d_ptr->ctx,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty);
}
bool LLamaModel::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
// When we recalculate context we could have erased the original BOS token... we need to replace it
const bool useBOS = ctx.n_past == 0 && (ctx.tokens.empty() || ctx.tokens.front() != llama_token_bos());
if (useBOS) {
std::vector<int32_t> myTokens;
myTokens.push_back(llama_token_bos());
myTokens.insert(myTokens.end(), tokens.begin(), tokens.end());
ctx.n_past += 1;
return llama_eval(d_ptr->ctx, myTokens.data(), myTokens.size(), ctx.n_past, d_ptr->n_threads) == 0;
} else
return llama_eval(d_ptr->ctx, tokens.data(), tokens.size(), ctx.n_past, d_ptr->n_threads) == 0;
}
int32_t LLamaModel::contextLength() const
{
return llama_n_ctx(d_ptr->ctx);
}
const std::vector<LLModel::Token> &LLamaModel::endTokens() const
{
static const std::vector<LLModel::Token> fres = {llama_token_eos()};
return fres;
}
#if defined(GGML_USE_KOMPUTE)
#include "ggml-vulkan.h"
#endif
std::vector<LLModel::GPUDevice> LLamaModel::availableGPUDevices(size_t memoryRequired)
{
#if defined(GGML_USE_KOMPUTE)
std::vector<ggml_vk_device> vkDevices = ggml_vk_available_devices(memoryRequired);
std::vector<LLModel::GPUDevice> devices;
for(const auto& vkDevice : vkDevices) {
LLModel::GPUDevice device;
device.index = vkDevice.index;
device.type = vkDevice.type;
device.heapSize = vkDevice.heapSize;
device.name = vkDevice.name;
device.vendor = vkDevice.vendor;
devices.push_back(device);
}
return devices;
#else
return std::vector<LLModel::GPUDevice>();
#endif
}
bool LLamaModel::initializeGPUDevice(size_t memoryRequired, const std::string& device)
{
#if defined(GGML_USE_KOMPUTE)
return ggml_vk_init_device(memoryRequired, device);
#else
return false;
#endif
}
bool LLamaModel::initializeGPUDevice(const LLModel::GPUDevice &device)
{
#if defined(GGML_USE_KOMPUTE)
ggml_vk_device vkDevice;
vkDevice.index = device.index;
vkDevice.type = device.type;
vkDevice.heapSize = device.heapSize;
vkDevice.name = device.name;
vkDevice.vendor = device.vendor;
return ggml_vk_init_device(vkDevice);
#else
return false;
#endif
}
bool LLamaModel::initializeGPUDevice(int device)
{
#if defined(GGML_USE_KOMPUTE)
return ggml_vk_init_device(device);
#else
return false;
#endif
}
bool LLamaModel::hasGPUDevice()
{
#if defined(GGML_USE_KOMPUTE)
return ggml_vk_has_device();
#else
return false;
#endif
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(std::istream& f) {
// Check magic
uint32_t magic = 0;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
if (magic != 0x67676a74) return false;
// Check version
uint32_t version = 0;
f.read(reinterpret_cast<char*>(&version), sizeof(version));
if (!(version LLAMA_VERSIONS)) {
return false;
}
llama_file_hparams hparams;
f.read(reinterpret_cast<char*>(&hparams), sizeof(hparams));
if (!(hparams.n_vocab >= 32000 && hparams.n_vocab <= 32100)) {
return false; // not a llama.
}
#ifdef GGML_USE_METAL
// Check quant supported on metal
// skip fields
switch(hparams.ftype) {
// currently supported on Metal https://github.com/ggerganov/llama.cpp/blob/ae9663f1887513e152839e91f61c513075a19422/ggml-metal.m#L51-L55
case LLAMA_FTYPE_MOSTLY_F16:
case LLAMA_FTYPE_MOSTLY_Q2_K:
case LLAMA_FTYPE_MOSTLY_Q4_0:
case LLAMA_FTYPE_MOSTLY_Q6_K:
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
case LLAMA_FTYPE_MOSTLY_Q4_K_M:
return true;
default: // unsupported quant-type for Metal
return false;
}
#endif
return true;
}
DLL_EXPORT LLModel *construct() {
return new LLamaModel;
}
}

View File

@ -0,0 +1,46 @@
#ifndef LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of llamamodel.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef LLAMAMODEL_H
#define LLAMAMODEL_H
#include <string>
#include <functional>
#include <vector>
#include "llmodel.h"
struct LLamaPrivate;
class LLamaModel : public LLModel {
public:
LLamaModel();
~LLamaModel();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired) override;
bool initializeGPUDevice(size_t memoryRequired, const std::string& device) override;
bool initializeGPUDevice(const GPUDevice &device) override;
bool initializeGPUDevice(int device) override;
bool hasGPUDevice() override;
private:
LLamaPrivate *d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
std::string tokenToString(Token) const override;
Token sampleToken(PromptContext& ctx) const override;
bool evalTokens(PromptContext& ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token>& endTokens() const override;
};
#endif // LLAMAMODEL_H

181
gpt4all-backend/llmodel.cpp Normal file
View File

@ -0,0 +1,181 @@
#include "llmodel.h"
#include "dlhandle.h"
#include "sysinfo.h"
#include <iostream>
#include <string>
#include <vector>
#include <fstream>
#include <filesystem>
#include <cassert>
#include <cstdlib>
#include <sstream>
#ifdef _MSC_VER
#include <intrin.h>
#endif
std::string s_implementations_search_path = ".";
static bool has_at_least_minimal_hardware() {
#if defined(__x86_64__) || defined(_M_X64)
#ifndef _MSC_VER
return __builtin_cpu_supports("avx");
#else
int cpuInfo[4];
__cpuid(cpuInfo, 1);
return cpuInfo[2] & (1 << 28);
#endif
#else
return true; // Don't know how to handle non-x86_64
#endif
}
static bool requires_avxonly() {
#if defined(__x86_64__) || defined(_M_X64)
#ifndef _MSC_VER
return !__builtin_cpu_supports("avx2");
#else
int cpuInfo[4];
__cpuidex(cpuInfo, 7, 0);
return !(cpuInfo[1] & (1 << 5));
#endif
#else
return false; // Don't know how to handle non-x86_64
#endif
}
LLModel::Implementation::Implementation(Dlhandle &&dlhandle_)
: m_dlhandle(new Dlhandle(std::move(dlhandle_))) {
auto get_model_type = m_dlhandle->get<const char *()>("get_model_type");
assert(get_model_type);
m_modelType = get_model_type();
auto get_build_variant = m_dlhandle->get<const char *()>("get_build_variant");
assert(get_build_variant);
m_buildVariant = get_build_variant();
m_magicMatch = m_dlhandle->get<bool(std::ifstream&)>("magic_match");
assert(m_magicMatch);
m_construct = m_dlhandle->get<LLModel *()>("construct");
assert(m_construct);
}
LLModel::Implementation::Implementation(Implementation &&o)
: m_magicMatch(o.m_magicMatch)
, m_construct(o.m_construct)
, m_modelType(o.m_modelType)
, m_buildVariant(o.m_buildVariant)
, m_dlhandle(o.m_dlhandle) {
o.m_dlhandle = nullptr;
}
LLModel::Implementation::~Implementation() {
if (m_dlhandle) delete m_dlhandle;
}
bool LLModel::Implementation::isImplementation(const Dlhandle &dl) {
return dl.get<bool(uint32_t)>("is_g4a_backend_model_implementation");
}
const std::vector<LLModel::Implementation> &LLModel::Implementation::implementationList() {
// NOTE: allocated on heap so we leak intentionally on exit so we have a chance to clean up the
// individual models without the cleanup of the static list interfering
static auto* libs = new std::vector<Implementation>([] () {
std::vector<Implementation> fres;
auto search_in_directory = [&](const std::string& paths) {
std::stringstream ss(paths);
std::string path;
// Split the paths string by the delimiter and process each path.
while (std::getline(ss, path, ';')) {
std::filesystem::path fs_path(path);
// Iterate over all libraries
for (const auto& f : std::filesystem::directory_iterator(fs_path)) {
const std::filesystem::path& p = f.path();
if (p.extension() != LIB_FILE_EXT) continue;
// Add to list if model implementation
try {
Dlhandle dl(p.string());
if (!Implementation::isImplementation(dl)) {
continue;
}
fres.emplace_back(Implementation(std::move(dl)));
} catch (...) {}
}
}
};
search_in_directory(s_implementations_search_path);
return fres;
}());
// Return static result
return *libs;
}
const LLModel::Implementation* LLModel::Implementation::implementation(std::ifstream& f, const std::string& buildVariant) {
for (const auto& i : implementationList()) {
f.seekg(0);
if (!i.m_magicMatch(f)) continue;
if (buildVariant != i.m_buildVariant) continue;
return &i;
}
return nullptr;
}
LLModel *LLModel::Implementation::construct(const std::string &modelPath, std::string buildVariant) {
if (!has_at_least_minimal_hardware())
return nullptr;
// Read magic
std::ifstream f(modelPath, std::ios::binary);
if (!f) return nullptr;
// Get correct implementation
const Implementation* impl = nullptr;
#if defined(__APPLE__) && defined(__arm64__) // FIXME: See if metal works for intel macs
if (buildVariant == "auto") {
size_t total_mem = getSystemTotalRAMInBytes();
impl = implementation(f, "metal");
if(impl) {
LLModel* metalimpl = impl->m_construct();
metalimpl->m_implementation = impl;
size_t req_mem = metalimpl->requiredMem(modelPath);
float req_to_total = (float) req_mem / (float) total_mem;
// on a 16GB M2 Mac a 13B q4_0 (0.52) works for me but a 13B q4_K_M (0.55) does not
if (req_to_total >= 0.53) {
delete metalimpl;
impl = nullptr;
} else {
return metalimpl;
}
}
}
#endif
if (!impl) {
//TODO: Auto-detect CUDA/OpenCL
if (buildVariant == "auto") {
if (requires_avxonly()) {
buildVariant = "avxonly";
} else {
buildVariant = "default";
}
}
impl = implementation(f, buildVariant);
if (!impl) return nullptr;
}
f.close();
// Construct and return llmodel implementation
auto fres = impl->m_construct();
fres->m_implementation = impl;
return fres;
}
void LLModel::Implementation::setImplementationsSearchPath(const std::string& path) {
s_implementations_search_path = path;
}
const std::string& LLModel::Implementation::implementationsSearchPath() {
return s_implementations_search_path;
}

124
gpt4all-backend/llmodel.h Normal file
View File

@ -0,0 +1,124 @@
#ifndef LLMODEL_H
#define LLMODEL_H
#include <string>
#include <functional>
#include <vector>
#include <string_view>
#include <fstream>
#include <cstdint>
#include <limits>
#define LLMODEL_MAX_PROMPT_BATCH 128
class Dlhandle;
class LLModel {
public:
using Token = int32_t;
class Implementation {
public:
Implementation(Dlhandle&&);
Implementation(const Implementation&) = delete;
Implementation(Implementation&&);
~Implementation();
std::string_view modelType() const { return m_modelType; }
std::string_view buildVariant() const { return m_buildVariant; }
static bool isImplementation(const Dlhandle&);
static const std::vector<Implementation>& implementationList();
static const Implementation *implementation(std::ifstream& f, const std::string& buildVariant);
static LLModel *construct(const std::string &modelPath, std::string buildVariant = "auto");
static void setImplementationsSearchPath(const std::string& path);
static const std::string& implementationsSearchPath();
private:
bool (*m_magicMatch)(std::ifstream& f);
LLModel *(*m_construct)();
private:
std::string_view m_modelType;
std::string_view m_buildVariant;
Dlhandle *m_dlhandle;
};
struct PromptContext {
std::vector<float> logits; // logits of current context
std::vector<int32_t> tokens; // current tokens in the context window
int32_t n_past = 0; // number of tokens in past conversation
int32_t n_ctx = 0; // number of tokens possible in context window
int32_t n_predict = 200;
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t n_batch = 9;
float repeat_penalty = 1.10f;
int32_t repeat_last_n = 64; // last n tokens to penalize
float contextErase = 0.75f; // percent of context to erase if we exceed the context
// window
};
struct GPUDevice {
int index = 0;
int type = 0;
size_t heapSize = 0;
std::string name;
std::string vendor;
};
explicit LLModel() {}
virtual ~LLModel() {}
virtual bool supportsEmbedding() const = 0;
virtual bool supportsCompletion() const = 0;
virtual bool loadModel(const std::string &modelPath) = 0;
virtual bool isModelLoaded() const = 0;
virtual size_t requiredMem(const std::string &modelPath) = 0;
virtual size_t stateSize() const { return 0; }
virtual size_t saveState(uint8_t */*dest*/) const { return 0; }
virtual size_t restoreState(const uint8_t */*src*/) { return 0; }
// This method requires the model to return true from supportsCompletion otherwise it will throw
// an error
virtual void prompt(const std::string &prompt,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &ctx);
virtual std::vector<float> embedding(const std::string &text);
virtual void setThreadCount(int32_t /*n_threads*/) {}
virtual int32_t threadCount() const { return 1; }
const Implementation& implementation() const {
return *m_implementation;
}
virtual std::vector<GPUDevice> availableGPUDevices(size_t /*memoryRequired*/) { return std::vector<GPUDevice>(); }
virtual bool initializeGPUDevice(size_t /*memoryRequired*/, const std::string& /*device*/) { return false; }
virtual bool initializeGPUDevice(const GPUDevice &/*device*/) { return false; }
virtual bool initializeGPUDevice(int /*device*/) { return false; }
virtual bool hasGPUDevice() { return false; }
protected:
// These are pure virtual because subclasses need to implement as the default implementation of
// 'prompt' above calls these functions
virtual std::vector<Token> tokenize(PromptContext &, const std::string&) const = 0;
virtual std::string tokenToString(Token) const = 0;
virtual Token sampleToken(PromptContext &ctx) const = 0;
virtual bool evalTokens(PromptContext &/*ctx*/, const std::vector<int32_t>& /*tokens*/) const = 0;
virtual int32_t contextLength() const = 0;
virtual const std::vector<Token>& endTokens() const = 0;
// This is a helper function called from the default implementation of 'prompt' but it can be
// shared by all base classes so it isn't virtual
void recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate);
const Implementation *m_implementation = nullptr;
private:
friend class LLMImplementation;
};
#endif // LLMODEL_H

View File

@ -0,0 +1,265 @@
#include "llmodel_c.h"
#include "llmodel.h"
#include <cstring>
#include <cerrno>
#include <utility>
struct LLModelWrapper {
LLModel *llModel = nullptr;
LLModel::PromptContext promptContext;
~LLModelWrapper() { delete llModel; }
};
thread_local static std::string last_error_message;
llmodel_model llmodel_model_create(const char *model_path) {
auto fres = llmodel_model_create2(model_path, "auto", nullptr);
if (!fres) {
fprintf(stderr, "Invalid model file\n");
}
return fres;
}
llmodel_model llmodel_model_create2(const char *model_path, const char *build_variant, llmodel_error *error) {
auto wrapper = new LLModelWrapper;
int error_code = 0;
try {
wrapper->llModel = LLModel::Implementation::construct(model_path, build_variant);
} catch (const std::exception& e) {
error_code = EINVAL;
last_error_message = e.what();
}
if (!wrapper->llModel) {
delete std::exchange(wrapper, nullptr);
// Get errno and error message if none
if (error_code == 0) {
if (errno != 0) {
error_code = errno;
last_error_message = std::strerror(error_code);
} else {
error_code = ENOTSUP;
last_error_message = "Model format not supported (no matching implementation found)";
}
}
// Set error argument
if (error) {
error->message = last_error_message.c_str();
error->code = error_code;
}
}
return reinterpret_cast<llmodel_model*>(wrapper);
}
void llmodel_model_destroy(llmodel_model model) {
delete reinterpret_cast<LLModelWrapper*>(model);
}
size_t llmodel_required_mem(llmodel_model model, const char *model_path)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->requiredMem(model_path);
}
bool llmodel_loadModel(llmodel_model model, const char *model_path)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->loadModel(model_path);
}
bool llmodel_isModelLoaded(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->isModelLoaded();
}
uint64_t llmodel_get_state_size(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->stateSize();
}
uint64_t llmodel_save_state_data(llmodel_model model, uint8_t *dest)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->saveState(dest);
}
uint64_t llmodel_restore_state_data(llmodel_model model, const uint8_t *src)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->restoreState(src);
}
// Wrapper functions for the C callbacks
bool prompt_wrapper(int32_t token_id, void *user_data) {
llmodel_prompt_callback callback = reinterpret_cast<llmodel_prompt_callback>(user_data);
return callback(token_id);
}
bool response_wrapper(int32_t token_id, const std::string &response, void *user_data) {
llmodel_response_callback callback = reinterpret_cast<llmodel_response_callback>(user_data);
return callback(token_id, response.c_str());
}
bool recalculate_wrapper(bool is_recalculating, void *user_data) {
llmodel_recalculate_callback callback = reinterpret_cast<llmodel_recalculate_callback>(user_data);
return callback(is_recalculating);
}
void llmodel_prompt(llmodel_model model, const char *prompt,
llmodel_prompt_callback prompt_callback,
llmodel_response_callback response_callback,
llmodel_recalculate_callback recalculate_callback,
llmodel_prompt_context *ctx)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
// Create std::function wrappers that call the C function pointers
std::function<bool(int32_t)> prompt_func =
std::bind(&prompt_wrapper, std::placeholders::_1, reinterpret_cast<void*>(prompt_callback));
std::function<bool(int32_t, const std::string&)> response_func =
std::bind(&response_wrapper, std::placeholders::_1, std::placeholders::_2, reinterpret_cast<void*>(response_callback));
std::function<bool(bool)> recalc_func =
std::bind(&recalculate_wrapper, std::placeholders::_1, reinterpret_cast<void*>(recalculate_callback));
if (size_t(ctx->n_past) < wrapper->promptContext.tokens.size())
wrapper->promptContext.tokens.resize(ctx->n_past);
// Copy the C prompt context
wrapper->promptContext.n_past = ctx->n_past;
wrapper->promptContext.n_ctx = ctx->n_ctx;
wrapper->promptContext.n_predict = ctx->n_predict;
wrapper->promptContext.top_k = ctx->top_k;
wrapper->promptContext.top_p = ctx->top_p;
wrapper->promptContext.temp = ctx->temp;
wrapper->promptContext.n_batch = ctx->n_batch;
wrapper->promptContext.repeat_penalty = ctx->repeat_penalty;
wrapper->promptContext.repeat_last_n = ctx->repeat_last_n;
wrapper->promptContext.contextErase = ctx->context_erase;
// Call the C++ prompt method
wrapper->llModel->prompt(prompt, prompt_func, response_func, recalc_func, wrapper->promptContext);
// Update the C context by giving access to the wrappers raw pointers to std::vector data
// which involves no copies
ctx->logits = wrapper->promptContext.logits.data();
ctx->logits_size = wrapper->promptContext.logits.size();
ctx->tokens = wrapper->promptContext.tokens.data();
ctx->tokens_size = wrapper->promptContext.tokens.size();
// Update the rest of the C prompt context
ctx->n_past = wrapper->promptContext.n_past;
ctx->n_ctx = wrapper->promptContext.n_ctx;
ctx->n_predict = wrapper->promptContext.n_predict;
ctx->top_k = wrapper->promptContext.top_k;
ctx->top_p = wrapper->promptContext.top_p;
ctx->temp = wrapper->promptContext.temp;
ctx->n_batch = wrapper->promptContext.n_batch;
ctx->repeat_penalty = wrapper->promptContext.repeat_penalty;
ctx->repeat_last_n = wrapper->promptContext.repeat_last_n;
ctx->context_erase = wrapper->promptContext.contextErase;
}
float *llmodel_embedding(llmodel_model model, const char *text, size_t *embedding_size)
{
if (model == nullptr || text == nullptr || !strlen(text)) {
*embedding_size = 0;
return nullptr;
}
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
std::vector<float> embeddingVector = wrapper->llModel->embedding(text);
float *embedding = (float *)malloc(embeddingVector.size() * sizeof(float));
if (embedding == nullptr) {
*embedding_size = 0;
return nullptr;
}
std::copy(embeddingVector.begin(), embeddingVector.end(), embedding);
*embedding_size = embeddingVector.size();
return embedding;
}
void llmodel_free_embedding(float *ptr)
{
free(ptr);
}
void llmodel_setThreadCount(llmodel_model model, int32_t n_threads)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
wrapper->llModel->setThreadCount(n_threads);
}
int32_t llmodel_threadCount(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->threadCount();
}
void llmodel_set_implementation_search_path(const char *path)
{
LLModel::Implementation::setImplementationsSearchPath(path);
}
const char *llmodel_get_implementation_search_path()
{
return LLModel::Implementation::implementationsSearchPath().c_str();
}
struct llmodel_gpu_device* llmodel_available_gpu_devices(llmodel_model model, size_t memoryRequired, int* num_devices)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
std::vector<LLModel::GPUDevice> devices = wrapper->llModel->availableGPUDevices(memoryRequired);
// Set the num_devices
*num_devices = devices.size();
if (*num_devices == 0) return nullptr; // Return nullptr if no devices are found
// Allocate memory for the output array
struct llmodel_gpu_device* output = (struct llmodel_gpu_device*) malloc(*num_devices * sizeof(struct llmodel_gpu_device));
for (int i = 0; i < *num_devices; i++) {
output[i].index = devices[i].index;
output[i].type = devices[i].type;
output[i].heapSize = devices[i].heapSize;
output[i].name = strdup(devices[i].name.c_str()); // Convert std::string to char* and allocate memory
output[i].vendor = strdup(devices[i].vendor.c_str()); // Convert std::string to char* and allocate memory
}
return output;
}
bool llmodel_gpu_init_gpu_device_by_string(llmodel_model model, size_t memoryRequired, const char *device)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->initializeGPUDevice(memoryRequired, std::string(device));
}
bool llmodel_gpu_init_gpu_device_by_struct(llmodel_model model, const llmodel_gpu_device *device)
{
LLModel::GPUDevice d;
d.index = device->index;
d.type = device->type;
d.heapSize = device->heapSize;
d.name = device->name;
d.vendor = device->vendor;
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->initializeGPUDevice(d);
}
bool llmodel_gpu_init_gpu_device_by_int(llmodel_model model, int device)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->initializeGPUDevice(device);
}
bool llmodel_has_gpu_device(llmodel_model model)
{
LLModelWrapper *wrapper = reinterpret_cast<LLModelWrapper*>(model);
return wrapper->llModel->hasGPUDevice();
}

View File

@ -1,9 +1,9 @@
#ifndef LLMODEL_C_H #ifndef LLMODEL_C_H
#define LLMODEL_C_H #define LLMODEL_C_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#ifdef __GNUC__ #ifdef __GNUC__
#define DEPRECATED __attribute__ ((deprecated)) #define DEPRECATED __attribute__ ((deprecated))
@ -24,9 +24,15 @@ extern "C" {
typedef void *llmodel_model; typedef void *llmodel_model;
/** /**
* A token. * Structure containing any errors that may eventually occur
*/ */
typedef int32_t token_t; struct llmodel_error {
const char *message; // Human readable error description; Thread-local; guaranteed to survive until next llmodel C API call
int code; // errno; 0 if none
};
#ifndef __cplusplus
typedef struct llmodel_error llmodel_error;
#endif
/** /**
* llmodel_prompt_context structure for holding the prompt context. * llmodel_prompt_context structure for holding the prompt context.
@ -35,22 +41,26 @@ typedef int32_t token_t;
* behavior. * behavior.
*/ */
struct llmodel_prompt_context { struct llmodel_prompt_context {
float *logits; // logits of current context
size_t logits_size; // the size of the raw logits vector
int32_t *tokens; // current tokens in the context window
size_t tokens_size; // the size of the raw tokens vector
int32_t n_past; // number of tokens in past conversation
int32_t n_ctx; // number of tokens possible in context window
int32_t n_predict; // number of tokens to predict int32_t n_predict; // number of tokens to predict
int32_t top_k; // top k logits to sample from int32_t top_k; // top k logits to sample from
float top_p; // nucleus sampling probability threshold float top_p; // nucleus sampling probability threshold
float min_p; // Min P sampling float temp; // temperature to adjust model's output distribution
float temp; // temperature to adjust model's output distribution
int32_t n_batch; // number of predictions to generate in parallel int32_t n_batch; // number of predictions to generate in parallel
float repeat_penalty; // penalty factor for repeated tokens float repeat_penalty; // penalty factor for repeated tokens
int32_t repeat_last_n; // last n tokens to penalize int32_t repeat_last_n; // last n tokens to penalize
float context_erase; // percent of context to erase if we exceed the context window float context_erase; // percent of context to erase if we exceed the context window
}; };
struct llmodel_gpu_device { struct llmodel_gpu_device {
const char * backend; int index = 0;
int index; int type = 0; // same as VkPhysicalDeviceType
int type; // same as VkPhysicalDeviceType size_t heapSize = 0;
size_t heapSize;
const char * name; const char * name;
const char * vendor; const char * vendor;
}; };
@ -62,12 +72,10 @@ typedef struct llmodel_gpu_device llmodel_gpu_device;
/** /**
* Callback type for prompt processing. * Callback type for prompt processing.
* @param token_ids An array of token ids of the prompt. * @param token_id The token id of the prompt.
* @param n_token_ids The number of tokens in the array.
* @param cached Whether the tokens were already in cache.
* @return a bool indicating whether the model should keep processing. * @return a bool indicating whether the model should keep processing.
*/ */
typedef bool (*llmodel_prompt_callback)(const token_t *token_ids, size_t n_token_ids, bool cached); typedef bool (*llmodel_prompt_callback)(int32_t token_id);
/** /**
* Callback type for response. * Callback type for response.
@ -75,18 +83,14 @@ typedef bool (*llmodel_prompt_callback)(const token_t *token_ids, size_t n_token
* @param response The response string. NOTE: a token_id of -1 indicates the string is an error string. * @param response The response string. NOTE: a token_id of -1 indicates the string is an error string.
* @return a bool indicating whether the model should keep generating. * @return a bool indicating whether the model should keep generating.
*/ */
typedef bool (*llmodel_response_callback)(token_t token_id, const char *response); typedef bool (*llmodel_response_callback)(int32_t token_id, const char *response);
/** /**
* Embedding cancellation callback for use with llmodel_embed. * Callback type for recalculation of context.
* @param batch_sizes The number of tokens in each batch that will be embedded. * @param whether the model is recalculating the context.
* @param n_batch The number of batches that will be embedded. * @return a bool indicating whether the model should keep generating.
* @param backend The backend that will be used for embedding. One of "cpu", "kompute", "cuda", or "metal".
* @return True to cancel llmodel_embed, false to continue.
*/ */
typedef bool (*llmodel_emb_cancel_callback)(unsigned *batch_sizes, unsigned n_batch, const char *backend); typedef bool (*llmodel_recalculate_callback)(bool is_recalculating);
typedef void (*llmodel_special_token_callback)(const char *name, const char *token);
/** /**
* Create a llmodel instance. * Create a llmodel instance.
@ -100,11 +104,11 @@ DEPRECATED llmodel_model llmodel_model_create(const char *model_path);
* Create a llmodel instance. * Create a llmodel instance.
* Recognises correct model type from file at model_path * Recognises correct model type from file at model_path
* @param model_path A string representing the path to the model file; will only be used to detect model type. * @param model_path A string representing the path to the model file; will only be used to detect model type.
* @param backend A string representing the implementation to use. One of 'auto', 'cpu', 'metal', 'kompute', or 'cuda'. * @param build_variant A string representing the implementation to use (auto, default, avxonly, ...),
* @param error A pointer to a string; will only be set on error. * @param error A pointer to a llmodel_error; will only be set on error.
* @return A pointer to the llmodel_model instance; NULL on error. * @return A pointer to the llmodel_model instance; NULL on error.
*/ */
llmodel_model llmodel_model_create2(const char *model_path, const char *backend, const char **error); llmodel_model llmodel_model_create2(const char *model_path, const char *build_variant, llmodel_error *error);
/** /**
* Destroy a llmodel instance. * Destroy a llmodel instance.
@ -117,21 +121,17 @@ void llmodel_model_destroy(llmodel_model model);
* Estimate RAM requirement for a model file * Estimate RAM requirement for a model file
* @param model A pointer to the llmodel_model instance. * @param model A pointer to the llmodel_model instance.
* @param model_path A string representing the path to the model file. * @param model_path A string representing the path to the model file.
* @param n_ctx Maximum size of context window
* @param ngl Number of GPU layers to use (Vulkan)
* @return size greater than 0 if the model was parsed successfully, 0 if file could not be parsed. * @return size greater than 0 if the model was parsed successfully, 0 if file could not be parsed.
*/ */
size_t llmodel_required_mem(llmodel_model model, const char *model_path, int n_ctx, int ngl); size_t llmodel_required_mem(llmodel_model model, const char *model_path);
/** /**
* Load a model from a file. * Load a model from a file.
* @param model A pointer to the llmodel_model instance. * @param model A pointer to the llmodel_model instance.
* @param model_path A string representing the path to the model file. * @param model_path A string representing the path to the model file.
* @param n_ctx Maximum size of context window
* @param ngl Number of GPU layers to use (Vulkan)
* @return true if the model was loaded successfully, false otherwise. * @return true if the model was loaded successfully, false otherwise.
*/ */
bool llmodel_loadModel(llmodel_model model, const char *model_path, int n_ctx, int ngl); bool llmodel_loadModel(llmodel_model model, const char *model_path);
/** /**
* Check if a model is loaded. * Check if a model is loaded.
@ -146,41 +146,25 @@ bool llmodel_isModelLoaded(llmodel_model model);
* @param model A pointer to the llmodel_model instance. * @param model A pointer to the llmodel_model instance.
* @return the size in bytes of the internal state of the model * @return the size in bytes of the internal state of the model
*/ */
uint64_t llmodel_state_get_size(llmodel_model model); uint64_t llmodel_get_state_size(llmodel_model model);
/** /**
* Saves the internal state of the model. * Saves the internal state of the model to the specified destination address.
* NOTE: This state data is specific to the type of model you have created. * NOTE: This state data is specific to the type of model you have created.
* @param model A pointer to the llmodel_model instance. * @param model A pointer to the llmodel_model instance.
* @param state Where to store the state. This must be a buffer of at least llmodel_state_get_size() bytes. * @param dest A pointer to the destination.
* @param state_size The size of the destination for the state. * @return the number of bytes copied
* @param input_tokens_out Where to store the address of the token cache state. This is dynamically allocated and must
* be freed with llmodel_state_free_input_tokens.
* @param n_input_tokens Where to store the size of the token cache state.
* @return The number of bytes copied. On error, zero is returned, the token cache is set to NULL, and the token cache
* size is set to zero.
*/ */
uint64_t llmodel_state_get_data(llmodel_model model, uint8_t *state_out, uint64_t state_size, uint64_t llmodel_save_state_data(llmodel_model model, uint8_t *dest);
token_t **input_tokens_out, uint64_t *n_input_tokens);
/**
* Frees the temporary token cache buffer created by a call to llmodel_state_get_data().
* @param input_tokens The token cache buffer.
*/
void llmodel_state_free_input_tokens(token_t *input_tokens);
/** /**
* Restores the internal state of the model using data from the specified address. * Restores the internal state of the model using data from the specified address.
* NOTE: This state data is specific to the type of model you have created. * NOTE: This state data is specific to the type of model you have created.
* @param model A pointer to the llmodel_model instance. * @param model A pointer to the llmodel_model instance.
* @param state A pointer to the state data. * @param src A pointer to the src.
* @param state_size The size of the state data. * @return the number of bytes read
* @param input_tokens The token cache associated with the saved state.
* @param n_input_tokens The number of tokens in input_tokens.
* @return The number of bytes read, or zero on error.
*/ */
uint64_t llmodel_state_set_data(llmodel_model model, const uint8_t *state, uint64_t state_size, uint64_t llmodel_restore_state_data(llmodel_model model, const uint8_t *src);
const token_t *input_tokens, uint64_t n_input_tokens);
/** /**
* Generate a response using the model. * Generate a response using the model.
@ -188,41 +172,27 @@ uint64_t llmodel_state_set_data(llmodel_model model, const uint8_t *state, uint6
* @param prompt A string representing the input prompt. * @param prompt A string representing the input prompt.
* @param prompt_callback A callback function for handling the processing of prompt. * @param prompt_callback A callback function for handling the processing of prompt.
* @param response_callback A callback function for handling the generated response. * @param response_callback A callback function for handling the generated response.
* @param recalculate_callback A callback function for handling recalculation requests.
* @param ctx A pointer to the llmodel_prompt_context structure. * @param ctx A pointer to the llmodel_prompt_context structure.
* @param error A pointer to a string; will only be set on error.
*/ */
bool llmodel_prompt(llmodel_model model, void llmodel_prompt(llmodel_model model, const char *prompt,
const char *prompt, llmodel_prompt_callback prompt_callback,
llmodel_prompt_callback prompt_callback, llmodel_response_callback response_callback,
llmodel_response_callback response_callback, llmodel_recalculate_callback recalculate_callback,
llmodel_prompt_context *ctx, llmodel_prompt_context *ctx);
const char **error);
/** /**
* Generate an embedding using the model. * Generate an embedding using the model.
* NOTE: If given NULL pointers for the model or text, or an empty text, a NULL pointer will be * NOTE: If given NULL pointers for the model or text, or an empty text, a NULL pointer will be
* returned. Bindings should signal an error when NULL is the return value. * returned. Bindings should signal an error when NULL is the return value.
* @param model A pointer to the llmodel_model instance. * @param model A pointer to the llmodel_model instance.
* @param texts A pointer to a NULL-terminated array of strings representing the texts to generate an * @param text A string representing the text to generate an embedding for.
* embedding for.
* @param embedding_size A pointer to a size_t type that will be set by the call indicating the length * @param embedding_size A pointer to a size_t type that will be set by the call indicating the length
* of the returned floating point array. * of the returned floating point array.
* @param prefix The model-specific prefix representing the embedding task, without the trailing colon. NULL for no
* prefix.
* @param dimensionality The embedding dimension, for use with Matryoshka-capable models. Set to -1 to for full-size.
* @param token_count Return location for the number of prompt tokens processed, or NULL.
* @param do_mean True to average multiple embeddings if the text is longer than the model can accept, False to
* truncate.
* @param atlas Try to be fully compatible with the Atlas API. Currently, this means texts longer than 8192 tokens with
* long_text_mode="mean" will raise an error. Disabled by default.
* @param cancel_cb Cancellation callback, or NULL. See the documentation of llmodel_emb_cancel_callback.
* @param error Return location for a malloc()ed string that will be set on error, or NULL.
* @return A pointer to an array of floating point values passed to the calling method which then will * @return A pointer to an array of floating point values passed to the calling method which then will
* be responsible for lifetime of this memory. NULL if an error occurred. * be responsible for lifetime of this memory.
*/ */
float *llmodel_embed(llmodel_model model, const char **texts, size_t *embedding_size, const char *prefix, float *llmodel_embedding(llmodel_model model, const char *text, size_t *embedding_size);
int dimensionality, size_t *token_count, bool do_mean, bool atlas,
llmodel_emb_cancel_callback cancel_cb, const char **error);
/** /**
* Frees the memory allocated by the llmodel_embedding function. * Frees the memory allocated by the llmodel_embedding function.
@ -260,10 +230,9 @@ const char *llmodel_get_implementation_search_path();
/** /**
* Get a list of available GPU devices given the memory required. * Get a list of available GPU devices given the memory required.
* @param memoryRequired The minimum amount of VRAM, in bytes
* @return A pointer to an array of llmodel_gpu_device's whose number is given by num_devices. * @return A pointer to an array of llmodel_gpu_device's whose number is given by num_devices.
*/ */
struct llmodel_gpu_device* llmodel_available_gpu_devices(size_t memoryRequired, int* num_devices); struct llmodel_gpu_device* llmodel_available_gpu_devices(llmodel_model model, size_t memoryRequired, int* num_devices);
/** /**
* Initializes a GPU device based on a specified string criterion. * Initializes a GPU device based on a specified string criterion.
@ -299,18 +268,9 @@ bool llmodel_gpu_init_gpu_device_by_struct(llmodel_model model, const llmodel_gp
bool llmodel_gpu_init_gpu_device_by_int(llmodel_model model, int device); bool llmodel_gpu_init_gpu_device_by_int(llmodel_model model, int device);
/** /**
* @return The name of the llama.cpp backend currently in use. One of "cpu", "kompute", or "metal". * @return True if a GPU device is successfully initialized, false otherwise.
*/ */
const char *llmodel_model_backend_name(llmodel_model model); bool llmodel_has_gpu_device(llmodel_model model);
/**
* @return The name of the GPU device currently in use, or NULL for backends other than Kompute.
*/
const char *llmodel_model_gpu_device_name(llmodel_model model);
int32_t llmodel_count_prompt_tokens(llmodel_model model, const char *prompt, const char **error);
void llmodel_model_foreach_special_token(llmodel_model model, llmodel_special_token_callback callback);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -0,0 +1,176 @@
#include "llmodel.h"
#include <cassert>
#include <iostream>
#include <unordered_set>
void LLModel::recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate) {
size_t i = 0;
promptCtx.n_past = 0;
while (i < promptCtx.tokens.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, promptCtx.tokens.size());
std::vector<int32_t> batch(promptCtx.tokens.begin() + i, promptCtx.tokens.begin() + batch_end);
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
if (!evalTokens(promptCtx, batch)) {
std::cerr << "LLModel ERROR: Failed to process prompt\n";
goto stop_generating;
}
promptCtx.n_past += batch.size();
if (!recalculate(true))
goto stop_generating;
i = batch_end;
}
assert(promptCtx.n_past == int32_t(promptCtx.tokens.size()));
stop_generating:
recalculate(false);
}
void LLModel::prompt(const std::string &prompt,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx)
{
if (!isModelLoaded()) {
std::cerr << implementation().modelType() << " ERROR: prompt won't work with an unloaded model!\n";
return;
}
if (!supportsCompletion()) {
std::string errorMessage = "ERROR: this model does not support text completion or chat!\n";
responseCallback(-1, errorMessage);
std::cerr << implementation().modelType() << errorMessage;
return;
}
// tokenize the prompt
std::vector<Token> embd_inp = tokenize(promptCtx, prompt);
// save the context size
promptCtx.n_ctx = contextLength();
if ((int) embd_inp.size() > promptCtx.n_ctx - 4) {
responseCallback(-1, "ERROR: The prompt size exceeds the context window size and cannot be processed.");
std::cerr << implementation().modelType() << " ERROR: The prompt is " << embd_inp.size() <<
" tokens and the context window is " << promptCtx.n_ctx << "!\n";
return;
}
promptCtx.n_predict = std::min(promptCtx.n_predict, promptCtx.n_ctx - (int) embd_inp.size());
promptCtx.n_past = std::min(promptCtx.n_past, promptCtx.n_ctx);
promptCtx.n_batch = std::min(promptCtx.n_batch, LLMODEL_MAX_PROMPT_BATCH);
// process the prompt in batches
size_t i = 0;
while (i < embd_inp.size()) {
size_t batch_end = std::min(i + promptCtx.n_batch, embd_inp.size());
std::vector<Token> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
// Check if the context has run out...
if (promptCtx.n_past + int32_t(batch.size()) > promptCtx.n_ctx) {
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
// Erase the first percentage of context from the tokens...
std::cerr << implementation().modelType() << ": reached the end of the context window so resizing\n";
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
promptCtx.n_past = promptCtx.tokens.size();
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
}
if (!evalTokens(promptCtx, batch)) {
std::cerr << implementation().modelType() << " ERROR: Failed to process prompt\n";
return;
}
size_t tokens = batch_end - i;
for (size_t t = 0; t < tokens; ++t) {
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(batch.at(t));
if (!promptCallback(batch.at(t)))
return;
}
promptCtx.n_past += batch.size();
i = batch_end;
}
std::string cachedResponse;
std::vector<Token> cachedTokens;
std::unordered_set<std::string> reversePrompts
= { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant", "### Context" };
// predict next tokens
for (int i = 0; i < promptCtx.n_predict; i++) {
// sample next token
auto id = sampleToken(promptCtx);
// Check if the context has run out...
if (promptCtx.n_past + 1 > promptCtx.n_ctx) {
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
// Erase the first percentage of context from the tokens...
std::cerr << implementation().modelType() << ": reached the end of the context window so resizing\n";
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
promptCtx.n_past = promptCtx.tokens.size();
recalculateContext(promptCtx, recalculateCallback);
assert(promptCtx.n_past + 1 <= promptCtx.n_ctx);
}
if (!evalTokens(promptCtx, { id })) {
std::cerr << implementation().modelType() << " ERROR: Failed to predict next token\n";
return;
}
promptCtx.n_past += 1;
// display text
for (const auto token : endTokens()) {
if (id == token) return;
}
const std::string str = tokenToString(id);
// Check if the provided str is part of our reverse prompts
bool foundPartialReversePrompt = false;
const std::string completed = cachedResponse + std::string(str);
if (reversePrompts.find(completed) != reversePrompts.end())
return;
// Check if it partially matches our reverse prompts and if so, cache
for (const auto& s : reversePrompts) {
if (s.compare(0, completed.size(), completed) == 0) {
foundPartialReversePrompt = true;
cachedResponse = completed;
break;
}
}
// Regardless the token gets added to our cache
cachedTokens.push_back(id);
// Continue if we have found a partial match
if (foundPartialReversePrompt)
continue;
// Empty the cache
for (auto t : cachedTokens) {
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
promptCtx.tokens.erase(promptCtx.tokens.begin());
promptCtx.tokens.push_back(t);
//TODO: Conversion to std::string can be avoided here...
if (!responseCallback(t, std::string(tokenToString(t))))
return;
}
cachedTokens.clear();
}
}
std::vector<float> LLModel::embedding(const std::string &/*text*/)
{
if (!supportsCompletion()) {
std::string errorMessage = "ERROR: this model does not support generating embeddings!\n";
std::cerr << implementation().modelType() << errorMessage;
}
return std::vector<float>();
}

View File

@ -0,0 +1,92 @@
#pragma once
#include <cstdint>
#include <cstddef>
#include <vector>
#include <ggml.h>
#if defined(GGML_USE_KOMPUTE)
#include "ggml-vulkan.h"
struct llm_buffer {
uint8_t * addr = NULL;
size_t size = 0;
ggml_vk_memory memory;
llm_buffer() = default;
void resize(size_t size) {
free();
if (!ggml_vk_has_device()) {
this->addr = new uint8_t[size];
this->size = size;
} else {
this->memory = ggml_vk_allocate(size);
this->addr = (uint8_t*)memory.data;
this->size = size;
}
}
void free() {
if (!memory.primaryMemory) {
delete[] addr;
} else if (memory.data) {
ggml_vk_free_memory(memory);
}
this->addr = NULL;
this->size = 0;
}
~llm_buffer() {
free();
}
// disable copy and move
llm_buffer(const llm_buffer&) = delete;
llm_buffer(llm_buffer&&) = delete;
llm_buffer& operator=(const llm_buffer&) = delete;
llm_buffer& operator=(llm_buffer&&) = delete;
};
#else
struct llm_buffer {
uint8_t * addr = NULL;
size_t size = 0;
void resize(size_t size) {
delete[] addr;
addr = new uint8_t[size];
this->size = size;
}
~llm_buffer() {
delete[] addr;
}
};
#endif
struct llm_kv_cache {
struct ggml_tensor * k;
struct ggml_tensor * v;
struct ggml_context * ctx = NULL;
llm_buffer buf;
int n; // number of tokens currently in the cache
~llm_kv_cache() {
if (ctx) {
ggml_free(ctx);
}
}
};
#if LLAMA_DATE >= 230519
inline void ggml_graph_compute_g4a(llm_buffer& buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.addr;
}
ggml_graph_compute(graph, &plan);
}
#endif

893
gpt4all-backend/mpt.cpp Normal file
View File

@ -0,0 +1,893 @@
#define MPT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#include "mpt_impl.h"
#include "utils.h"
#include "llmodel_shared.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <random>
#include <string>
#include <vector>
#include <iostream>
#if defined(_WIN32) && defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h>
#else
#include <unistd.h>
#endif
#include <sstream>
#include <thread>
#include <unordered_set>
#include <regex>
#include <ggml.h>
namespace {
const char *modelType_ = "MPT";
}
// default hparams (MPT 7B)
struct mpt_hparams {
int32_t n_vocab = 50432;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 32;
int32_t n_layer = 32;
float alibi_bias_max = 8;
float clip_qkv = 0;
int32_t expand = 4;
int32_t f16 = 1;
};
struct mpt_layer {
// normalization
struct ggml_tensor * norm_1_w;
struct ggml_tensor * norm_2_w;
// attention
struct ggml_tensor * attn_Wqkv_w;
struct ggml_tensor * attn_out_proj_w;
// ff
struct ggml_tensor * ffn_up_proj_w;
struct ggml_tensor * ffn_down_proj_w;
};
struct mpt_model {
mpt_hparams hparams;
// normalization
struct ggml_tensor * norm_f_w;
struct ggml_tensor * wte; // position embedding
// mpt does weight tying
std::vector<mpt_layer> layers;
struct llm_kv_cache kv_self;
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
llm_buffer eval_buf;
llm_buffer scr0_buf;
llm_buffer scr1_buf;
~mpt_model() {
if (ctx) {
ggml_free(ctx);
}
}
};
static bool kv_cache_init(
const struct mpt_hparams & hparams,
struct llm_kv_cache & cache,
ggml_type wtype,
int n_ctx) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB);
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
return true;
}
// load the model's weights from a stream. if mem_req ptr is passed the model is
// only partially parsed to estimate required memory
bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & model, gpt_vocab & vocab, size_t * mem_req) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
if (mem_req != nullptr) {
*mem_req = 0;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6d) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max));
fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max);
printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv);
printf("%s: ftype = %d\n", __func__, hparams.f16);
}
// load vocab
{
int32_t n_vocab = model.hparams.n_vocab;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
return false;
}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
bool special = false;
if (len & (1<<31)) {
len = len &~ (1<<31);
special = true;
}
if (len > 0) {
word.resize(len);
fin.read((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
if(special) {
vocab.add_special_token(word);
}
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = GGML_TYPE_COUNT;
switch (model.hparams.f16) {
case 0: wtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break;
case 2: wtype = GGML_TYPE_Q4_0; break;
case 3: wtype = GGML_TYPE_Q4_1; break;
case 5: wtype = GGML_TYPE_Q4_2; break;
default:
{
fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
__func__, fname.c_str(), model.hparams.f16);
return false;
}
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
const int expand = hparams.expand;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_w
ctx_size += n_embd*n_vocab*ggml_type_sizef(GGML_TYPE_F32); // wte
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // norm_1_w
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // norm_2_w
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // attn_Wqkv_w
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // attn_out_proj_w
ctx_size += n_layer*(expand*n_embd*n_embd*ggml_type_sizef(wtype)); // ffn_up_proj_w
ctx_size += n_layer*(expand*n_embd*n_embd*ggml_type_sizef(wtype)); // ffn_down_proj_w
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F16); // memory_v
// TODO probably less now?
ctx_size += (5 + 10*n_layer)*256; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
if (mem_req != nullptr) {
*mem_req += ctx_size;
const int n_embd = model.hparams.n_embd;
const int n_layer = model.hparams.n_layer;
const int64_t n_mem = (int64_t)n_layer*model.hparams.n_ctx;
const int64_t n_elements = n_embd*n_mem;
*mem_req += (2u*n_elements*ggml_type_size(wtype) + 2_MiB);
return false;
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.no_alloc = false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_vocab = hparams.n_vocab;
const int expand = hparams.expand;
model.layers.resize(n_layer);
model.wte = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
model.norm_f_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["transformer.wte.weight"] = model.wte;
model.tensors["transformer.norm_f.weight"] = model.norm_f_w;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.norm_1_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.norm_2_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.attn_Wqkv_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd * 3);
layer.attn_out_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.ffn_up_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, expand*n_embd);
layer.ffn_down_proj_w = ggml_new_tensor_2d(ctx, wtype, expand*n_embd, n_embd);
// map by name
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.attn_Wqkv_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.attn_out_proj_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj_w;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj_w;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
ggml_free(ctx);
return false;
}
const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v);
printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%" PRId64 ", %" PRId64 "], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ttype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
}
model.scr0_buf.resize(256u * 1024 * 1024);
model.scr1_buf.resize(256u * 1024 * 1024);
return true;
}
// load the model's weights from a file path
bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab) {
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
bool loaded = mpt_model_load(fname, fin, model, vocab, nullptr);
fin.close();
return loaded;
}
bool mpt_eval(
mpt_model & model,
const int n_threads,
const int n_past,
const std::vector<int> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const size_t init_buf_size = 1024_MiB;
if (!model.eval_buf.addr || model.eval_buf.size < init_buf_size)
model.eval_buf.resize(init_buf_size);
if (mem_per_token > 0 && mem_per_token*N > model.eval_buf.size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.buf.size, buf_size_new);
// reallocate
model.eval_buf.resize(buf_size_new);
if (model.eval_buf.addr == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.eval_buf.size);
return false;
}
}
struct ggml_init_params params = {
.mem_size = model.eval_buf.size,
.mem_buffer = model.eval_buf.addr,
.no_alloc = false
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
// wte
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
for (int il = 0; il < n_layer; ++il) {
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
struct ggml_tensor * inpSA = inpL;
struct ggml_tensor * cur = inpSA;
// self-attention
{
// norm1
cur = ggml_norm(ctx0, cur);
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].norm_1_w, cur),
cur);
// compute QKV
cur = ggml_mul_mat(ctx0,
model.layers[il].attn_Wqkv_w,
cur);
// TODO: clip_qkv
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*ggml_element_size(cur)*n_embd));
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*ggml_element_size(cur)*n_embd));
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*ggml_element_size(cur)*n_embd));
// TODO: qk_ln? (seems to be False in MPT-7B configs)
{
Vcur = ggml_transpose(ctx0, Vcur);
struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, model.kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(model.kv_self.v),
(il*n_ctx)*ggml_element_size(model.kv_self.v)*n_embd + n_past*ggml_element_size(model.kv_self.v));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, N),
0, 2, 1, 3);
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// Alibi
struct ggml_tensor * KQ_scaled_biased = ggml_alibi(ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_biased, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V =
ggml_view_3d(ctx0, model.kv_self.v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(model.kv_self.v),
n_ctx*ggml_element_size(model.kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd);
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].attn_out_proj_w,
cur);
}
ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, });
// residual
struct ggml_tensor * resSA = ggml_add(ctx0, cur, inpSA);
// feed-forward network
{
cur = resSA;
// norm2
cur = ggml_norm(ctx0, cur);
cur = ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].norm_2_w, cur),
cur);
// ffn
cur = ggml_mul_mat(ctx0,
model.layers[il].ffn_up_proj_w,
cur);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0,
model.layers[il].ffn_down_proj_w,
cur);
}
// self-attention + FF
inpL = ggml_add(ctx0, cur, resSA);
}
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
struct ggml_tensor * out = inpL;
// -> logits
{
out = ggml_norm(ctx0, out);
out = ggml_mul(ctx0,
ggml_repeat(ctx0, model.norm_f_w, out),
out);
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
out = ggml_mul_mat(ctx0, model.wte, out);
}
// run the computation
ggml_build_forward_expand(&gf, out);
ggml_graph_compute (ctx0, &gf);
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(out) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
#define MPT_MAX_RNG_STATE 64*1024
size_t mpt_get_state_size(const mpt_model &model)
{
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = MPT_MAX_RNG_STATE;
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = model.kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
fflush(stdout);
return s_total;
}
size_t mpt_copy_state_data(const mpt_model &model, const std::mt19937 &rng, uint8_t *dest)
{
uint8_t * out = dest;
fflush(stdout);
// copy rng
{
std::stringstream rng_ss;
rng_ss << rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[MPT_MAX_RNG_STATE];
memset(&rng_buf[0], 0, MPT_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
memcpy(out, &rng_buf[0], MPT_MAX_RNG_STATE); out += MPT_MAX_RNG_STATE;
}
// copy kv cache
{
const size_t kv_size = model.kv_self.buf.size;
const int kv_ntok = model.kv_self.n;
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
if (kv_size) {
memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size;
}
}
const size_t written = out - dest;
assert(written == mpt_get_state_size(model));
fflush(stdout);
return written;
}
size_t mpt_set_state_data(mpt_model *model, std::mt19937 *rng, const uint8_t *src)
{
const uint8_t * in = src;
// set rng
{
size_t rng_size;
char rng_buf[MPT_MAX_RNG_STATE];
memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
memcpy(&rng_buf[0], in, MPT_MAX_RNG_STATE); in += MPT_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> *rng;
assert(rng_ss.fail() == false);
}
// set kv cache
{
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
if (kv_size) {
assert(model->kv_self.buf.size == kv_size);
void * k_data = model->kv_self.k->data; // remember data pointers
void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size;
model->kv_self.k->data = k_data; // restore correct data pointers
model->kv_self.v->data = v_data;
}
model->kv_self.n = kv_ntok;
}
const size_t nread = in - src;
assert(nread == mpt_get_state_size(*model));
fflush(stdout);
return nread;
}
struct MPTPrivate {
const std::string modelPath;
bool modelLoaded;
gpt_vocab vocab;
mpt_model *model = nullptr;
int64_t n_threads = 0;
size_t mem_per_token = 0;
std::mt19937 rng;
bool has_im_end = false;
};
MPT::MPT()
: d_ptr(new MPTPrivate) {
d_ptr->model = new mpt_model;
d_ptr->model->ctx = nullptr;
d_ptr->modelLoaded = false;
}
size_t MPT::requiredMem(const std::string &modelPath) {
mpt_model dummy_model;
gpt_vocab dummy_vocab;
size_t mem_req;
auto fin = std::ifstream(modelPath, std::ios::binary);
mpt_model_load(modelPath, fin, dummy_model, dummy_vocab, &mem_req);
return mem_req;
}
bool MPT::loadModel(const std::string &modelPath) {
std::mt19937 rng(time(NULL));
d_ptr->rng = rng;
auto fin = std::ifstream(modelPath, std::ios::binary);
// load the model
if (!mpt_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab, nullptr)) {
std::cerr << "MPT ERROR: failed to load model from " << modelPath;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
d_ptr->has_im_end = d_ptr->vocab.token_to_id.find("<|im_end|>") != d_ptr->vocab.token_to_id.end();
fflush(stdout);
return true;
}
void MPT::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t MPT::threadCount() const
{
return d_ptr->n_threads;
}
MPT::~MPT()
{
delete d_ptr->model;
}
bool MPT::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
size_t MPT::stateSize() const
{
return mpt_get_state_size(*d_ptr->model);
}
size_t MPT::saveState(uint8_t *dest) const
{
return mpt_copy_state_data(*d_ptr->model, d_ptr->rng, dest);
}
size_t MPT::restoreState(const uint8_t *src)
{
return mpt_set_state_data(d_ptr->model, &d_ptr->rng, src);
}
std::vector<LLModel::Token> MPT::tokenize(PromptContext &, const std::string &str) const
{
return ::gpt_tokenize(d_ptr->vocab, str);
}
std::string MPT::tokenToString(Token id) const
{
return d_ptr->vocab.id_to_token[id];
}
LLModel::Token MPT::sampleToken(PromptContext &promptCtx) const
{
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab,
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
n_prev_toks,
promptCtx.logits,
promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
promptCtx.repeat_penalty,
d_ptr->rng);
}
bool MPT::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
{
// determine the required inference memory per token:
static bool initialized = false;
if (!initialized) {
mpt_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits,
d_ptr->mem_per_token);
initialized = true;
}
return mpt_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token);
}
int32_t MPT::contextLength() const
{
return d_ptr->model->hparams.n_ctx;
}
const std::vector<LLModel::Token> &MPT::endTokens() const
{
static const std::vector<LLModel::Token> fres = {0, d_ptr->vocab.token_to_id["<|im_end|>"]};
return fres;
}
#if defined(_WIN32)
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT __attribute__ ((visibility ("default")))
#endif
extern "C" {
DLL_EXPORT bool is_g4a_backend_model_implementation() {
return true;
}
DLL_EXPORT const char *get_model_type() {
return modelType_;
}
DLL_EXPORT const char *get_build_variant() {
return GGML_BUILD_VARIANT;
}
DLL_EXPORT bool magic_match(std::istream& f) {
uint32_t magic = 0;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
return magic == 0x67676d6d;
}
DLL_EXPORT LLModel *construct() {
return new MPT;
}
}

View File

@ -0,0 +1,41 @@
#ifndef MPT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of mpt.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define MPT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef MPT_H
#define MPT_H
#include <string>
#include <functional>
#include <vector>
#include "llmodel.h"
struct MPTPrivate;
class MPT : public LLModel {
public:
MPT();
~MPT();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
private:
MPTPrivate *d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
std::string tokenToString(Token) const override;
Token sampleToken(PromptContext &ctx) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token>& endTokens() const override;
};
#endif // MPT_H

1027
gpt4all-backend/replit.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,43 @@
#ifndef REPLIT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of replit.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define REPLIT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef REPLIT_H
#define REPLIT_H
#include <string>
#include <functional>
#include <vector>
#include "llmodel.h"
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
struct ReplitPrivate;
class Replit : public LLModel {
public:
Replit();
~Replit();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string & modelPath) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
private:
ReplitPrivate *d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
std::string tokenToString(Token) const override;
Token sampleToken(PromptContext &ctx) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token>& endTokens() const override;
};
#endif // REPLIT_H

View File

@ -0,0 +1,102 @@
import sys
import struct
import json
import torch
import numpy as np
from transformers import AutoModel, AutoTokenizer
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin"
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
encoder = json.load(f)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
with open(dir_model + "/vocab.txt", "r", encoding="utf-8") as f:
vocab = f.readlines()
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
tokenizer = AutoTokenizer.from_pretrained(dir_model)
model = AutoModel.from_pretrained(dir_model, low_cpu_mem_usage=True)
print (model)
print(tokenizer.encode('I believe the meaning of life is'))
list_vars = model.state_dict()
for name in list_vars.keys():
print(name, list_vars[name].shape, list_vars[name].dtype)
fout = open(fname_out, "wb")
print(hparams)
fout.write(struct.pack("i", 0x62657274)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["max_position_embeddings"]))
fout.write(struct.pack("i", hparams["hidden_size"]))
fout.write(struct.pack("i", hparams["intermediate_size"]))
fout.write(struct.pack("i", hparams["num_attention_heads"]))
fout.write(struct.pack("i", hparams["num_hidden_layers"]))
fout.write(struct.pack("i", ftype))
for i in range(hparams["vocab_size"]):
text = vocab[i][:-1] # strips newline at the end
#print(f"{i}:{text}")
data = bytes(text, 'utf-8')
fout.write(struct.pack("i", len(data)))
fout.write(data)
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
if name in ['embeddings.position_ids', 'pooler.dense.weight', 'pooler.dense.bias']:
continue
print("Processing variable: " + name + " with shape: ", data.shape)
n_dims = len(data.shape);
# ftype == 0 -> float32, ftype == 1 -> float16
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
l_type = 1
else:
l_type = 0
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), l_type))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")

View File

@ -0,0 +1,143 @@
# Based on: https://github.com/KerfuffleV2/ggml-falcon/blob/feat-improve-falcon-convert-hf/examples/falcon/convert-hf-to-ggml.py
# Convert Hugging Face fine-tuned bloom-like models to ggml format
#
# Usage:
#
# python3 convert_falcon_hf_to_ggml.py model_directory output_directory [use-f32]
#
# This script is similar to "convert-pt-to-ggml.py"
#
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
import gc
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 3:
print("INFO: GGML V1 files produced are meant to be finalized through examples/falcon_quantize which will bring them to latest version and precision of choice");
print("Usage: python convert_falcon_hf_to_ggml.py model_directory output_directory [use-f32]")
print(" model_directory: name of the directory and model you convert (it should be a subdirectory)")
print(" output-directory: directory where the output file will be written")
print(" use-f32: if present, use float32 instead of float16 (f32 is recommended)")
sys.exit(1)
# num_parts = int(sys.argv[1])
dir_model = sys.argv[1] # name and dir of model
dir_out = sys.argv[2] # output directory
# make sure the output directory exists
os.makedirs(dir_out, exist_ok=True)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = 0
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# print(tokenizer)
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(dir_model, trust_remote_code=True, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
hparams = config.to_dict()
n_head = hparams["n_head"]
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
head_dim = hparams["hidden_size"] // n_head
print("* Loading model from: ", dir_model)
fname_out = dir_out + f"/ggml-model-{dir_model.split('/')[-1]}-{ftype_str[ftype]}.bin"
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676a74)) # magic: ggmf in hex (version 1) - possibly change to ggfc ?
fout.write(struct.pack("i", 1)) # version
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["hidden_size"]))
fout.write(struct.pack("i", n_head))
fout.write(struct.pack("i", n_head_kv))
fout.write(struct.pack("i", hparams["n_layer"]))
fout.write(struct.pack("i", 40 if "n_head_kv" in hparams else 7)) # obsolete field that breaks ggml compatibility - todo again remove one day
fout.write(struct.pack("i", ftype))
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
for i in range(hparams["vocab_size"]):
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", 0.0)) # falcon uses bpe on RefinedWeb - no probability scores used
model = model.state_dict()
for name in model.keys():
src = name
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
if "query_key_value" in src:
qkv = model[src].view(
n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
model[src] = torch.cat((q,k,v)).reshape_as(model[src])
data = model[src].squeeze()
n_dims = len(data.shape)
# default type is fp32
ftype_cur = 1 if ftype == 1 and n_dims > 1 else 0
data = data.to(dtype = torch.float16 if ftype_cur == 1 else torch.float32).numpy()
print(f' |', name, data.shape, '->', data.dtype)
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")

View File

@ -0,0 +1,145 @@
# Convert Hugging Face fine-tuned bloom-like models to ggml format
#
# Usage:
#
# python3 models/convert-h5-to-ggml.py
#
# This script is similar to "convert-pt-to-ggml.py"
#
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 3:
print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]")
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
print(" dir-output: directory where the output file will be written")
print(" use-f32: if present, use float32 instead of float16")
sys.exit(1)
model_name = sys.argv[1]
dir_out = sys.argv[2]
# make sure the output directory exists
os.makedirs(dir_out, exist_ok=True)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = 0
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
hparams = config.to_dict()
print("Loading model: ", model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True)
print("Model loaded: ", model_name)
fname_out = dir_out + f"/ggml-model-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
fout = open(fname_out, "wb")
vocab = tokenizer.vocab
hparams["multiple_of"] = 1
fout.write(struct.pack("I", 0x67676d6d)) # magic: ggml in hex
fout.write(struct.pack("I", model.config.vocab_size))
fout.write(struct.pack("I", model.config.max_seq_len))
fout.write(struct.pack("I", model.config.n_layers))
fout.write(struct.pack("I", model.config.n_heads))
fout.write(struct.pack("I", model.config.d_model))
fout.write(struct.pack("f", model.config.attn_config['alibi_bias_max']))
clip_qkv = model.config.attn_config['clip_qkv']
fout.write(struct.pack("f", clip_qkv if clip_qkv is not None else 0))
fout.write(struct.pack("I", ftype))
# # Is this correct??
# dot_token = tokenizer.encode(".")[0]
# write tokens to ggml file
dot_token = tokenizer.encode('.')[0]
fout.write(struct.pack("I", model.config.vocab_size))
for i in range(model.config.vocab_size):
text = tokenizer.decode([dot_token, i]).encode('utf-8')
# remove the first byte (it's always '.')
text = text[1:]
enclen = len(text)
if i in tokenizer.all_special_ids:
print(f"special token: {text}")
enclen = enclen | 1<<31
fout.write(struct.pack("I", enclen))
fout.write(text)
list_vars = model.state_dict()
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable: " + name + " with shape: ", data.shape)
n_dims = len(data.shape);
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0;
if ftype != 0:
# Keep token embeddings in fp32
if name[-7:] == ".weight" and n_dims == 2 and ".wte" not in name:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")

View File

@ -0,0 +1,113 @@
from pathlib import Path
import sys
import struct
import json
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import sentencepiece.sentencepiece_model_pb2 as model
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-replit-code-v1-3b.bin"
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
sp_proto = model.ModelProto()
sp_proto.ParseFromString(open(Path(sys.argv[1]) / "spiece.model", "rb").read())
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-replit-code-v1-3b-" + ftype_str[ftype] + ".bin"
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
dir_model, low_cpu_mem_usage=True, trust_remote_code=True
)
# print (model)
# print(tokenizer.encode('I believe the meaning of life is'))
list_vars = model.state_dict()
for name in list_vars.keys():
print(name, list_vars[name].shape, list_vars[name].dtype)
fout = open(fname_out, "wb")
print(hparams)
fout.write(struct.pack("i", 0x7265706c)) # magic: repl in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["max_seq_len"]))
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", ftype))
# TODO: temporary hack to not deal with implementing the tokenizer
for piece in sp_proto.pieces:
encoded_piece = piece.piece.encode("utf-8")
fout.write(struct.pack("i", len(encoded_piece)))
fout.write(encoded_piece)
fout.write(struct.pack("f", piece.score))
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable: " + name + " with shape: ", data.shape)
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if ftype != 0:
if name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# header
str = name.encode("utf-8")
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")

View File

@ -1,73 +0,0 @@
#include "dlhandle.h"
#include <string>
#ifndef _WIN32
# include <dlfcn.h>
#else
# include <cassert>
# include <sstream>
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#endif
using namespace std::string_literals;
namespace fs = std::filesystem;
#ifndef _WIN32
Dlhandle::Dlhandle(const fs::path &fpath)
{
chandle = dlopen(fpath.c_str(), RTLD_LAZY | RTLD_LOCAL);
if (!chandle) {
throw Exception("dlopen: "s + dlerror());
}
}
Dlhandle::~Dlhandle()
{
if (chandle) dlclose(chandle);
}
void *Dlhandle::get_internal(const char *symbol) const
{
return dlsym(chandle, symbol);
}
#else // defined(_WIN32)
Dlhandle::Dlhandle(const fs::path &fpath)
{
fs::path afpath = fs::absolute(fpath);
// Suppress the "Entry Point Not Found" dialog, caused by outdated nvcuda.dll from the GPU driver
UINT lastErrorMode = GetErrorMode();
SetErrorMode(lastErrorMode | SEM_FAILCRITICALERRORS);
chandle = LoadLibraryExW(afpath.c_str(), NULL, LOAD_LIBRARY_SEARCH_DEFAULT_DIRS | LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR);
SetErrorMode(lastErrorMode);
if (!chandle) {
DWORD err = GetLastError();
std::ostringstream ss;
ss << "LoadLibraryExW failed with error 0x" << std::hex << err;
throw Exception(ss.str());
}
}
Dlhandle::~Dlhandle()
{
if (chandle) FreeLibrary(HMODULE(chandle));
}
void *Dlhandle::get_internal(const char *symbol) const
{
return GetProcAddress(HMODULE(chandle), symbol);
}
#endif // defined(_WIN32)

View File

@ -1,47 +0,0 @@
#pragma once
#include <filesystem>
#include <stdexcept>
#include <string>
#include <utility>
namespace fs = std::filesystem;
class Dlhandle {
void *chandle = nullptr;
public:
class Exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
Dlhandle() = default;
Dlhandle(const fs::path &fpath);
Dlhandle(const Dlhandle &o) = delete;
Dlhandle(Dlhandle &&o)
: chandle(o.chandle)
{
o.chandle = nullptr;
}
~Dlhandle();
Dlhandle &operator=(Dlhandle &&o) {
chandle = std::exchange(o.chandle, nullptr);
return *this;
}
template <typename T>
T *get(const std::string &symbol) const {
return reinterpret_cast<T *>(get_internal(symbol.c_str()));
}
auto get_fnc(const std::string &symbol) const {
return get<void*(...)>(symbol);
}
private:
void *get_internal(const char *symbol) const;
};

File diff suppressed because it is too large Load Diff

View File

@ -1,84 +0,0 @@
#ifndef LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of llamamodel.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef LLAMAMODEL_H
#define LLAMAMODEL_H
#include "llmodel.h"
#include <memory>
#include <span>
#include <string>
#include <string_view>
#include <vector>
#include <unordered_map>
struct LLamaPrivate;
struct EmbModelSpec;
class LLamaModel : public LLModel {
public:
LLamaModel();
~LLamaModel();
bool supportsEmbedding() const override { return m_supportsEmbedding; }
bool supportsCompletion() const override { return m_supportsCompletion; }
bool loadModel(const std::string &modelPath, int n_ctx, int ngl) override;
bool isModelBlacklisted(const std::string &modelPath) const override;
bool isEmbeddingModel(const std::string &modelPath) const override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) override;
size_t stateSize() const override;
size_t saveState(std::span<uint8_t> stateOut, std::vector<Token> &inputTokensOut) const override;
size_t restoreState(std::span<const uint8_t> state, std::span<const Token> inputTokens) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired = 0) const override;
bool initializeGPUDevice(size_t memoryRequired, const std::string &name) const override;
bool initializeGPUDevice(int device, std::string *unavail_reason = nullptr) const override;
bool usingGPUDevice() const override;
const char *backendName() const override;
const char *gpuDeviceName() const override;
size_t embeddingSize() const override;
// user-specified prefix
void embed(const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix,
int dimensionality = -1, size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false,
EmbedCancelCallback *cancelCb = nullptr) override;
// automatic prefix
void embed(const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality = -1,
size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false) override;
int32_t contextLength() const override;
auto specialTokens() -> std::unordered_map<std::string, std::string> const override;
protected:
std::vector<Token> tokenize(std::string_view str) const override;
bool isSpecialToken(Token id) const override;
std::string tokenToString(Token id) const override;
void initSampler(const PromptContext &ctx) override;
Token sampleToken() const override;
bool evalTokens(int32_t nPast, std::span<const Token> tokens) const override;
void shiftContext(const PromptContext &promptCtx, int32_t *nPast) override;
int32_t inputLength() const override;
int32_t computeModelInputPosition(std::span<const Token> input) const override;
void setModelInputPosition(int32_t pos) override;
void appendInputToken(Token tok) override;
std::span<const Token> inputTokens() const override;
const std::vector<Token> &endTokens() const override;
bool shouldAddBOS() const override;
int32_t maxContextLength(std::string const &modelPath) const override;
int32_t layerCount(std::string const &modelPath) const override;
auto chatTemplate(const char *modelPath) const -> std::expected<std::string, std::string> override;
void embedInternal(const std::vector<std::string> &texts, float *embeddings, std::string prefix, int dimensionality,
size_t *tokenCount, bool doMean, bool atlas, EmbedCancelCallback *cancelCb,
const EmbModelSpec *spec);
private:
std::unique_ptr<LLamaPrivate> d_ptr;
bool m_supportsEmbedding = false;
bool m_supportsCompletion = false;
};
#endif // LLAMAMODEL_H

View File

@ -1,358 +0,0 @@
#include "llmodel.h"
#include "dlhandle.h"
#include <cassert>
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <iterator>
#include <memory>
#include <optional>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#endif
#ifdef _MSC_VER
# include <intrin.h>
#endif
#if defined(__APPLE__) && defined(__aarch64__)
# include "sysinfo.h" // for getSystemTotalRAMInBytes
#endif
namespace fs = std::filesystem;
#ifndef __APPLE__
static const std::string DEFAULT_BACKENDS[] = {"kompute", "cpu"};
#elif defined(__aarch64__)
static const std::string DEFAULT_BACKENDS[] = {"metal", "cpu"};
#else
static const std::string DEFAULT_BACKENDS[] = {"cpu"};
#endif
std::string s_implementations_search_path = ".";
#if !(defined(__x86_64__) || defined(_M_X64))
// irrelevant on non-x86_64
#define cpu_supports_avx() -1
#define cpu_supports_avx2() -1
#elif defined(_MSC_VER)
// MSVC
static int get_cpu_info(int func_id, int reg_id) {
int info[4];
__cpuid(info, func_id);
return info[reg_id];
}
// AVX via EAX=1: Processor Info and Feature Bits, bit 28 of ECX
#define cpu_supports_avx() !!(get_cpu_info(1, 2) & (1 << 28))
// AVX2 via EAX=7, ECX=0: Extended Features, bit 5 of EBX
#define cpu_supports_avx2() !!(get_cpu_info(7, 1) & (1 << 5))
#else
// gcc/clang
#define cpu_supports_avx() !!__builtin_cpu_supports("avx")
#define cpu_supports_avx2() !!__builtin_cpu_supports("avx2")
#endif
LLModel::Implementation::Implementation(Dlhandle &&dlhandle_)
: m_dlhandle(new Dlhandle(std::move(dlhandle_))) {
auto get_model_type = m_dlhandle->get<const char *()>("get_model_type");
assert(get_model_type);
m_modelType = get_model_type();
auto get_build_variant = m_dlhandle->get<const char *()>("get_build_variant");
assert(get_build_variant);
m_buildVariant = get_build_variant();
m_getFileArch = m_dlhandle->get<char *(const char *)>("get_file_arch");
assert(m_getFileArch);
m_isArchSupported = m_dlhandle->get<bool(const char *)>("is_arch_supported");
assert(m_isArchSupported);
m_construct = m_dlhandle->get<LLModel *()>("construct");
assert(m_construct);
}
LLModel::Implementation::Implementation(Implementation &&o)
: m_getFileArch(o.m_getFileArch)
, m_isArchSupported(o.m_isArchSupported)
, m_construct(o.m_construct)
, m_modelType(o.m_modelType)
, m_buildVariant(o.m_buildVariant)
, m_dlhandle(o.m_dlhandle) {
o.m_dlhandle = nullptr;
}
LLModel::Implementation::~Implementation()
{
delete m_dlhandle;
}
static bool isImplementation(const Dlhandle &dl)
{
return dl.get<bool(uint32_t)>("is_g4a_backend_model_implementation");
}
// Add the CUDA Toolkit to the DLL search path on Windows.
// This is necessary for chat.exe to find CUDA when started from Qt Creator.
static void addCudaSearchPath()
{
#ifdef _WIN32
if (const auto *cudaPath = _wgetenv(L"CUDA_PATH")) {
auto libDir = std::wstring(cudaPath) + L"\\bin";
if (!AddDllDirectory(libDir.c_str())) {
auto err = GetLastError();
std::wcerr << L"AddDllDirectory(\"" << libDir << L"\") failed with error 0x" << std::hex << err << L"\n";
}
}
#endif
}
const std::vector<LLModel::Implementation> &LLModel::Implementation::implementationList()
{
if (cpu_supports_avx() == 0) {
throw std::runtime_error("CPU does not support AVX");
}
// NOTE: allocated on heap so we leak intentionally on exit so we have a chance to clean up the
// individual models without the cleanup of the static list interfering
static auto* libs = new std::vector<Implementation>([] () {
std::vector<Implementation> fres;
addCudaSearchPath();
std::string impl_name_re = "llamamodel-mainline-(cpu|metal|kompute|vulkan|cuda)";
if (cpu_supports_avx2() == 0) {
impl_name_re += "-avxonly";
}
std::regex re(impl_name_re);
auto search_in_directory = [&](const std::string& paths) {
std::stringstream ss(paths);
std::string path;
// Split the paths string by the delimiter and process each path.
while (std::getline(ss, path, ';')) {
fs::directory_iterator iter;
try {
iter = fs::directory_iterator(std::u8string(path.begin(), path.end()));
} catch (const fs::filesystem_error &) {
continue; // skip nonexistent path
}
// Iterate over all libraries
for (const auto &f : iter) {
const fs::path &p = f.path();
if (p.extension() != LIB_FILE_EXT) continue;
if (!std::regex_search(p.stem().string(), re)) continue;
// Add to list if model implementation
Dlhandle dl;
try {
dl = Dlhandle(p);
} catch (const Dlhandle::Exception &e) {
std::cerr << "Failed to load " << p.filename().string() << ": " << e.what() << "\n";
continue;
}
if (!isImplementation(dl)) {
std::cerr << "Not an implementation: " << p.filename().string() << "\n";
continue;
}
fres.emplace_back(Implementation(std::move(dl)));
}
}
};
search_in_directory(s_implementations_search_path);
return fres;
}());
// Return static result
return *libs;
}
static std::string applyCPUVariant(const std::string &buildVariant)
{
if (buildVariant != "metal" && cpu_supports_avx2() == 0) {
return buildVariant + "-avxonly";
}
return buildVariant;
}
const LLModel::Implementation* LLModel::Implementation::implementation(const char *fname, const std::string& buildVariant)
{
bool buildVariantMatched = false;
std::optional<std::string> archName;
for (const auto& i : implementationList()) {
if (buildVariant != i.m_buildVariant) continue;
buildVariantMatched = true;
char *arch = i.m_getFileArch(fname);
if (!arch) continue;
archName = arch;
bool archSupported = i.m_isArchSupported(arch);
free(arch);
if (archSupported) return &i;
}
if (!buildVariantMatched)
return nullptr;
if (!archName)
throw UnsupportedModelError("Unsupported file format");
throw BadArchError(std::move(*archName));
}
LLModel *LLModel::Implementation::construct(const std::string &modelPath, const std::string &backend, int n_ctx)
{
std::vector<std::string> desiredBackends;
if (backend != "auto") {
desiredBackends.push_back(backend);
} else {
desiredBackends.insert(desiredBackends.end(), DEFAULT_BACKENDS, std::end(DEFAULT_BACKENDS));
}
for (const auto &desiredBackend: desiredBackends) {
const auto *impl = implementation(modelPath.c_str(), applyCPUVariant(desiredBackend));
if (impl) {
// Construct llmodel implementation
auto *fres = impl->m_construct();
fres->m_implementation = impl;
#if defined(__APPLE__) && defined(__aarch64__) // FIXME: See if metal works for intel macs
/* TODO(cebtenzzre): after we fix requiredMem, we should change this to happen at
* load time, not construct time. right now n_ctx is incorrectly hardcoded 2048 in
* most (all?) places where this is called, causing underestimation of required
* memory. */
if (backend == "auto" && desiredBackend == "metal") {
// on a 16GB M2 Mac a 13B q4_0 (0.52) works for me but a 13B q4_K_M (0.55) does not
size_t req_mem = fres->requiredMem(modelPath, n_ctx, 100);
if (req_mem >= size_t(0.53f * getSystemTotalRAMInBytes())) {
delete fres;
continue;
}
}
#else
(void)n_ctx;
#endif
return fres;
}
}
throw MissingImplementationError("Could not find any implementations for backend: " + backend);
}
LLModel *LLModel::Implementation::constructGlobalLlama(const std::optional<std::string> &backend)
{
static std::unordered_map<std::string, std::unique_ptr<LLModel>> implCache;
const std::vector<Implementation> *impls;
try {
impls = &implementationList();
} catch (const std::runtime_error &e) {
std::cerr << __func__ << ": implementationList failed: " << e.what() << "\n";
return nullptr;
}
std::vector<std::string> desiredBackends;
if (backend) {
desiredBackends.push_back(backend.value());
} else {
desiredBackends.insert(desiredBackends.end(), DEFAULT_BACKENDS, std::end(DEFAULT_BACKENDS));
}
const Implementation *impl = nullptr;
for (const auto &desiredBackend: desiredBackends) {
auto cacheIt = implCache.find(desiredBackend);
if (cacheIt != implCache.end())
return cacheIt->second.get(); // cached
for (const auto &i: *impls) {
if (i.m_modelType == "LLaMA" && i.m_buildVariant == applyCPUVariant(desiredBackend)) {
impl = &i;
break;
}
}
if (impl) {
auto *fres = impl->m_construct();
fres->m_implementation = impl;
implCache[desiredBackend] = std::unique_ptr<LLModel>(fres);
return fres;
}
}
std::cerr << __func__ << ": could not find Llama implementation for backend: " << backend.value_or("default") << "\n";
return nullptr;
}
std::vector<LLModel::GPUDevice> LLModel::Implementation::availableGPUDevices(size_t memoryRequired)
{
std::vector<LLModel::GPUDevice> devices;
#ifndef __APPLE__
static const std::string backends[] = {"kompute", "cuda"};
for (const auto &backend: backends) {
auto *llama = constructGlobalLlama(backend);
if (llama) {
auto backendDevs = llama->availableGPUDevices(memoryRequired);
devices.insert(devices.end(), backendDevs.begin(), backendDevs.end());
}
}
#endif
return devices;
}
int32_t LLModel::Implementation::maxContextLength(const std::string &modelPath)
{
auto *llama = constructGlobalLlama();
return llama ? llama->maxContextLength(modelPath) : -1;
}
int32_t LLModel::Implementation::layerCount(const std::string &modelPath)
{
auto *llama = constructGlobalLlama();
return llama ? llama->layerCount(modelPath) : -1;
}
bool LLModel::Implementation::isEmbeddingModel(const std::string &modelPath)
{
auto *llama = constructGlobalLlama();
return llama && llama->isEmbeddingModel(modelPath);
}
auto LLModel::Implementation::chatTemplate(const char *modelPath) -> std::expected<std::string, std::string>
{
auto *llama = constructGlobalLlama();
return llama ? llama->chatTemplate(modelPath) : std::unexpected("backend not available");
}
void LLModel::Implementation::setImplementationsSearchPath(const std::string& path)
{
s_implementations_search_path = path;
}
const std::string& LLModel::Implementation::implementationsSearchPath()
{
return s_implementations_search_path;
}
bool LLModel::Implementation::hasSupportedCPU()
{
return cpu_supports_avx() != 0;
}
int LLModel::Implementation::cpuSupportsAVX2()
{
return cpu_supports_avx2();
}

View File

@ -1,320 +0,0 @@
#include "llmodel_c.h"
#include "llmodel.h"
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <iostream>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <vector>
#include <span>
namespace ranges = std::ranges;
static_assert(sizeof(token_t) == sizeof(LLModel::Token));
struct LLModelWrapper {
LLModel *llModel = nullptr;
~LLModelWrapper() { delete llModel; }
};
llmodel_model llmodel_model_create(const char *model_path)
{
const char *error;
auto fres = llmodel_model_create2(model_path, "auto", &error);
if (!fres) {
fprintf(stderr, "Unable to instantiate model: %s\n", error);
}
return fres;
}
static void llmodel_set_error(const char **errptr, const char *message)
{
thread_local static std::string last_error_message;
if (errptr) {
last_error_message = message;
*errptr = last_error_message.c_str();
}
}
llmodel_model llmodel_model_create2(const char *model_path, const char *backend, const char **error)
{
LLModel *llModel;
try {
llModel = LLModel::Implementation::construct(model_path, backend);
} catch (const std::exception& e) {
llmodel_set_error(error, e.what());
return nullptr;
}
auto wrapper = new LLModelWrapper;
wrapper->llModel = llModel;
return wrapper;
}
void llmodel_model_destroy(llmodel_model model)
{
delete static_cast<LLModelWrapper *>(model);
}
size_t llmodel_required_mem(llmodel_model model, const char *model_path, int n_ctx, int ngl)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->requiredMem(model_path, n_ctx, ngl);
}
bool llmodel_loadModel(llmodel_model model, const char *model_path, int n_ctx, int ngl)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
std::string modelPath(model_path);
if (wrapper->llModel->isModelBlacklisted(modelPath)) {
size_t slash = modelPath.find_last_of("/\\");
auto basename = slash == std::string::npos ? modelPath : modelPath.substr(slash + 1);
std::cerr << "warning: model '" << basename << "' is out-of-date, please check for an updated version\n";
}
return wrapper->llModel->loadModel(modelPath, n_ctx, ngl);
}
bool llmodel_isModelLoaded(llmodel_model model)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->isModelLoaded();
}
uint64_t llmodel_state_get_size(llmodel_model model)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->stateSize();
}
uint64_t llmodel_state_get_data(llmodel_model model, uint8_t *state_out, uint64_t state_size,
token_t **input_tokens_out, uint64_t *n_input_tokens)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
std::vector<LLModel::Token> inputTokens;
auto bytesWritten = wrapper->llModel->saveState({state_out, size_t(state_size)}, inputTokens);
if (bytesWritten) {
auto *buf = new LLModel::Token[inputTokens.size()];
ranges::copy(inputTokens, buf);
*input_tokens_out = buf;
*n_input_tokens = uint64_t(inputTokens.size());
} else {
*input_tokens_out = nullptr;
*n_input_tokens = 0;
}
return bytesWritten;
}
void llmodel_state_free_input_tokens(LLModel::Token *input_tokens)
{
delete[] input_tokens;
}
uint64_t llmodel_state_set_data(llmodel_model model, const uint8_t *state, uint64_t state_size,
const token_t *input_tokens, uint64_t n_input_tokens)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->restoreState({state, size_t(state_size)}, {input_tokens, size_t(n_input_tokens)});
}
bool llmodel_prompt(llmodel_model model,
const char *prompt,
llmodel_prompt_callback prompt_callback,
llmodel_response_callback response_callback,
llmodel_prompt_context *ctx,
const char **error)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
// Copy the C prompt context
LLModel::PromptContext promptContext {
.n_predict = ctx->n_predict,
.top_k = ctx->top_k,
.top_p = ctx->top_p,
.min_p = ctx->min_p,
.temp = ctx->temp,
.n_batch = ctx->n_batch,
.repeat_penalty = ctx->repeat_penalty,
.repeat_last_n = ctx->repeat_last_n,
.contextErase = ctx->context_erase,
};
auto prompt_func = [prompt_callback](std::span<const LLModel::Token> token_ids, bool cached) {
return prompt_callback(token_ids.data(), token_ids.size(), cached);
};
auto response_func = [response_callback](LLModel::Token token_id, std::string_view piece) {
return response_callback(token_id, piece.data());
};
// Call the C++ prompt method
try {
wrapper->llModel->prompt(prompt, prompt_func, response_func, promptContext);
} catch (std::exception const &e) {
llmodel_set_error(error, e.what());
return false;
}
return true;
}
float *llmodel_embed(
llmodel_model model, const char **texts, size_t *embedding_size, const char *prefix, int dimensionality,
size_t *token_count, bool do_mean, bool atlas, llmodel_emb_cancel_callback cancel_cb, const char **error
) {
auto *wrapper = static_cast<LLModelWrapper *>(model);
if (!texts || !*texts) {
llmodel_set_error(error, "'texts' is NULL or empty");
return nullptr;
}
std::vector<std::string> textsVec;
while (*texts) { textsVec.emplace_back(*texts++); }
size_t embd_size;
float *embedding;
try {
embd_size = wrapper->llModel->embeddingSize();
if (dimensionality > 0 && dimensionality < int(embd_size))
embd_size = dimensionality;
embd_size *= textsVec.size();
std::optional<std::string> prefixStr;
if (prefix) { prefixStr = prefix; }
embedding = new float[embd_size];
wrapper->llModel->embed(textsVec, embedding, prefixStr, dimensionality, token_count, do_mean, atlas, cancel_cb);
} catch (std::exception const &e) {
llmodel_set_error(error, e.what());
return nullptr;
}
*embedding_size = embd_size;
return embedding;
}
void llmodel_free_embedding(float *ptr)
{
delete[] ptr;
}
void llmodel_setThreadCount(llmodel_model model, int32_t n_threads)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
wrapper->llModel->setThreadCount(n_threads);
}
int32_t llmodel_threadCount(llmodel_model model)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->threadCount();
}
void llmodel_set_implementation_search_path(const char *path)
{
LLModel::Implementation::setImplementationsSearchPath(path);
}
const char *llmodel_get_implementation_search_path()
{
return LLModel::Implementation::implementationsSearchPath().c_str();
}
// RAII wrapper around a C-style struct
struct llmodel_gpu_device_cpp: llmodel_gpu_device {
llmodel_gpu_device_cpp() = default;
llmodel_gpu_device_cpp(const llmodel_gpu_device_cpp &) = delete;
llmodel_gpu_device_cpp( llmodel_gpu_device_cpp &&) = delete;
const llmodel_gpu_device_cpp &operator=(const llmodel_gpu_device_cpp &) = delete;
llmodel_gpu_device_cpp &operator=( llmodel_gpu_device_cpp &&) = delete;
~llmodel_gpu_device_cpp() {
free(const_cast<char *>(name));
free(const_cast<char *>(vendor));
}
};
static_assert(sizeof(llmodel_gpu_device_cpp) == sizeof(llmodel_gpu_device));
struct llmodel_gpu_device *llmodel_available_gpu_devices(size_t memoryRequired, int *num_devices)
{
static thread_local std::unique_ptr<llmodel_gpu_device_cpp[]> c_devices;
auto devices = LLModel::Implementation::availableGPUDevices(memoryRequired);
*num_devices = devices.size();
if (devices.empty()) { return nullptr; /* no devices */ }
c_devices = std::make_unique<llmodel_gpu_device_cpp[]>(devices.size());
for (unsigned i = 0; i < devices.size(); i++) {
const auto &dev = devices[i];
auto &cdev = c_devices[i];
cdev.backend = dev.backend;
cdev.index = dev.index;
cdev.type = dev.type;
cdev.heapSize = dev.heapSize;
cdev.name = strdup(dev.name.c_str());
cdev.vendor = strdup(dev.vendor.c_str());
}
return c_devices.get();
}
bool llmodel_gpu_init_gpu_device_by_string(llmodel_model model, size_t memoryRequired, const char *device)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->initializeGPUDevice(memoryRequired, std::string(device));
}
bool llmodel_gpu_init_gpu_device_by_struct(llmodel_model model, const llmodel_gpu_device *device)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->initializeGPUDevice(device->index);
}
bool llmodel_gpu_init_gpu_device_by_int(llmodel_model model, int device)
{
auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->initializeGPUDevice(device);
}
const char *llmodel_model_backend_name(llmodel_model model)
{
const auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->backendName();
}
const char *llmodel_model_gpu_device_name(llmodel_model model)
{
const auto *wrapper = static_cast<LLModelWrapper *>(model);
return wrapper->llModel->gpuDeviceName();
}
int32_t llmodel_count_prompt_tokens(llmodel_model model, const char *prompt, const char **error)
{
auto *wrapper = static_cast<const LLModelWrapper *>(model);
try {
return wrapper->llModel->countPromptTokens(prompt);
} catch (const std::exception& e) {
llmodel_set_error(error, e.what());
return -1;
}
}
void llmodel_model_foreach_special_token(llmodel_model model, llmodel_special_token_callback callback)
{
auto *wrapper = static_cast<const LLModelWrapper *>(model);
for (auto &[name, token] : wrapper->llModel->specialTokens())
callback(name.c_str(), token.c_str());
}

View File

@ -1,298 +0,0 @@
#include "llmodel.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iostream>
#include <iterator>
#include <optional>
#include <ranges>
#include <stdexcept>
#include <string>
#include <string_view>
#include <vector>
namespace ranges = std::ranges;
namespace views = std::ranges::views;
void LLModel::prompt(
std::string_view prompt,
const PromptCallback &promptCallback,
const ResponseCallback &responseCallback,
const PromptContext &promptCtx
) {
if (!isModelLoaded())
throw std::invalid_argument("Attempted to prompt an unloaded model.");
if (!supportsCompletion())
throw std::invalid_argument("Not a text completion model.");
if (!promptCtx.n_batch)
throw std::invalid_argument("Batch size cannot be zero.");
if (!promptCtx.n_predict)
return; // nothing requested
auto embd_inp = tokenize(prompt);
if (embd_inp.empty())
throw std::invalid_argument("Prompt tokenized to zero tokens.");
if (auto res = decodePrompt(promptCallback, promptCtx, std::move(embd_inp)))
generateResponse(responseCallback, promptCtx, /*n_past*/ *res);
}
int32_t LLModel::countPromptTokens(std::string_view prompt) const
{
if (!isModelLoaded())
throw std::invalid_argument("Attempted to tokenize with an unloaded model.");
return int32_t(tokenize(prompt).size());
}
auto LLModel::decodePrompt(
const PromptCallback &promptCallback,
const PromptContext &promptCtx,
std::vector<Token> embd_inp
) -> std::optional<int32_t>
{
assert(!embd_inp.empty());
int32_t nCtx = contextLength();
int32_t n_batch = std::min(promptCtx.n_batch, LLMODEL_MAX_PROMPT_BATCH);
// Find the greatest n_past where the beginning of embd_inp matches the end of the token cache, starting at the
// requested n_past.
// This is used to skip unnecessary work when the prompt shares a common prefix with the previous result.
int32_t nPast = computeModelInputPosition(embd_inp);
// always decode up to a full batch before generating, even if cached
nPast -= std::min(n_batch, nPast);
// TODO(jared): generalize this to find the smallest new_embd_inp.size() - nPast given the cache
if (!nPast && int32_t(embd_inp.size()) > nCtx) {
// no cache hit -> shift the input before even processing
int32_t nKeep = shouldAddBOS();
auto newLength = int32_t(nCtx * (1.f - promptCtx.contextErase));
int32_t nDiscard = int32_t(embd_inp.size()) - std::max(1, std::min(nCtx, newLength));
// execute the callback even for skipped tokens. this misrepresents the position of BOS but we don't care
auto discardedTokens = embd_inp | views::drop(nKeep) | views::take(nDiscard);
if (!promptCallback(discardedTokens, true))
return std::nullopt;
// erase nDiscard tokens
embd_inp.erase(discardedTokens.begin(), discardedTokens.end());
assert(int32_t(embd_inp.size()) <= nCtx);
// check the cache again, just in case
nPast = computeModelInputPosition(embd_inp);
nPast -= std::min(n_batch, nPast);
}
setModelInputPosition(nPast);
// execute the callback even for skipped tokens
if (!promptCallback(embd_inp | views::take(nPast), true))
return std::nullopt;
// process the prompt in batches
for (int32_t i = nPast; i < embd_inp.size();) {
auto batch_end = std::min(i + n_batch, int32_t(embd_inp.size()));
std::span batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
// Check if the context has run out...
if (nPast + int32_t(batch.size()) > nCtx) {
shiftContext(promptCtx, &nPast);
assert(nPast + int32_t(batch.size()) <= nCtx);
}
// FIXME(Adam): We should find a way to bubble these strings to the UI level to allow for translation
if (!evalTokens(nPast, batch))
throw std::runtime_error("An internal error was encountered during prompt processing.");
for (auto &tok : batch) {
appendInputToken(tok);
nPast++;
if (!promptCallback({ &tok, 1 }, false))
return std::nullopt;
}
i = batch_end;
}
return nPast;
}
/*
* If string s overlaps with the string key such that some prefix of the key is at the end
* of the string, return the position in s where the first match starts. Otherwise, return
* std::string::npos. Examples:
* s = "bfo", key = "foo" -> 1
* s = "fooa", key = "foo" -> npos
*/
static std::string::size_type stringsOverlap(const std::string &s, const std::string &key)
{
if (s.empty() || key.empty())
throw std::invalid_argument("arguments to stringsOverlap must not be empty");
for (int start = std::max(0, int(s.size()) - int(key.size())); start < s.size(); start++) {
if (s.compare(start, s.size(), key, 0, s.size() - start) == 0)
return start;
}
return std::string::npos;
}
void LLModel::generateResponse(
const ResponseCallback &responseCallback,
const PromptContext &promptCtx,
int32_t nPast
) {
static const char *stopSequences[] {
"### System", "### Instruction", "### Human", "### User", "### Response", "### Assistant", "### Context",
"<|im_start|>", "<|im_end|>", "<|endoftext|>",
};
initSampler(promptCtx);
std::string cachedResponse;
std::vector<Token> cachedTokens;
int n_predicted = 0;
// Predict next tokens
for (bool stop = false; !stop;) {
// Sample next token
std::optional<Token> new_tok = sampleToken();
std::string new_piece = tokenToString(new_tok.value());
cachedTokens.push_back(new_tok.value());
cachedResponse += new_piece;
auto accept = [this, &promptCtx, &new_tok, &nPast] {
// Shift context if out of space
if (nPast >= contextLength()) {
shiftContext(promptCtx, &nPast);
assert(nPast < contextLength());
}
// Accept the token
Token tok = std::exchange(new_tok, std::nullopt).value();
if (!evalTokens(nPast, { &tok, 1 }))
throw std::runtime_error("An internal error was encountered during response generation.");
appendInputToken(tok);
nPast++;
};
// Check for EOS
auto lengthLimit = std::string::npos;
for (const auto token : endTokens()) {
if (new_tok == token) {
stop = true;
lengthLimit = cachedResponse.size() - new_piece.size();
}
}
if (lengthLimit != std::string::npos) {
// EOS matched
} else if (!isSpecialToken(new_tok.value())) {
// Check if the response contains a stop sequence
for (const auto &p : stopSequences) {
auto match = cachedResponse.find(p);
if (match != std::string::npos) stop = true;
lengthLimit = std::min(lengthLimit, match);
if (match == 0) break;
}
// Check if the response matches the start of a stop sequence
if (lengthLimit == std::string::npos) {
for (const auto &p : stopSequences) {
auto match = stringsOverlap(cachedResponse, p);
lengthLimit = std::min(lengthLimit, match);
if (match == 0) break;
}
}
} else if (ranges::find(stopSequences, new_piece) < std::end(stopSequences)) {
// Special tokens must exactly match a stop sequence
stop = true;
lengthLimit = cachedResponse.size() - new_piece.size();
}
// Empty the cache, up to the length limit
std::string::size_type responseLength = 0;
while (!cachedTokens.empty()) {
Token tok = cachedTokens.front();
std::string piece = tokenToString(tok);
// Stop if the piece (or part of it) does not fit within the length limit
if (responseLength + (stop ? 1 : piece.size()) > lengthLimit)
break;
// Remove token from cache
assert(cachedResponse.starts_with(piece));
cachedTokens.erase(cachedTokens.begin(), cachedTokens.begin() + 1);
cachedResponse.erase(cachedResponse.begin(), cachedResponse.begin() + piece.size());
// Accept the token, if needed (not cached)
if (cachedTokens.empty() && new_tok)
accept();
// Send the token
if (!responseCallback(tok, piece) || ++n_predicted >= promptCtx.n_predict) {
stop = true;
break;
}
// FIXME(jared): we could avoid printing partial stop sequences if we didn't have to
// output token IDs and could cache a partial token for the next prompt call
responseLength += piece.size();
}
assert(cachedTokens.empty() == cachedResponse.empty());
// Accept the token, if needed (in cache)
if (new_tok) {
assert(!cachedTokens.empty() && cachedTokens.back() == new_tok);
if (stop) {
cachedTokens.pop_back();
} else {
accept();
}
}
}
if (inputLength() < cachedTokens.size()) {
/* This is theoretically possible if the longest stop sequence is greater than
* n_ctx * contextErase tokens. */
throw std::runtime_error("shifted too much context, can't go back");
}
#ifndef NDEBUG
auto inp = inputTokens();
auto discard_start = inp.end() - cachedTokens.size();
assert(std::equal(discard_start, inp.end(), cachedTokens.begin()));
#endif
}
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix, int dimensionality,
size_t *tokenCount, bool doMean, bool atlas, EmbedCancelCallback *cancelCb
) {
(void)texts;
(void)embeddings;
(void)prefix;
(void)dimensionality;
(void)tokenCount;
(void)doMean;
(void)atlas;
(void)cancelCb;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}
void LLModel::embed(
const std::vector<std::string> &texts, float *embeddings, bool isRetrieval, int dimensionality, size_t *tokenCount,
bool doMean, bool atlas
) {
(void)texts;
(void)embeddings;
(void)isRetrieval;
(void)dimensionality;
(void)tokenCount;
(void)doMean;
(void)atlas;
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}

View File

@ -1,17 +0,0 @@
#pragma once
#include <cassert>
#ifdef NDEBUG
# ifdef __has_builtin
# if __has_builtin(__builtin_unreachable)
# define UNREACHABLE() __builtin_unreachable()
# else
# define UNREACHABLE() do {} while (0)
# endif
# else
# define UNREACHABLE() do {} while (0)
# endif
#else
# define UNREACHABLE() assert(!"Unreachable statement was reached")
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,42 @@
#ifndef STARCODER_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#error This file is NOT meant to be included outside of starcoder.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define STARCODER_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
#endif
#ifndef STARCODER_H
#define STARCODER_H
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include "llmodel.h"
struct StarcoderPrivate;
class Starcoder : public LLModel {
public:
Starcoder();
~Starcoder();
bool supportsEmbedding() const override { return false; }
bool supportsCompletion() const override { return true; }
bool loadModel(const std::string &modelPath) override;
bool isModelLoaded() const override;
size_t requiredMem(const std::string &modelPath) override;
size_t stateSize() const override;
size_t saveState(uint8_t *dest) const override;
size_t restoreState(const uint8_t *src) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() const override;
private:
std::unique_ptr<StarcoderPrivate> d_ptr;
protected:
std::vector<Token> tokenize(PromptContext &, const std::string&) const override;
Token sampleToken(PromptContext &ctx) const override;
std::string tokenToString(Token) const override;
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
int32_t contextLength() const override;
const std::vector<Token>& endTokens() const override;
};
#endif // STARCODER_H

View File

@ -2,21 +2,17 @@
#define SYSINFO_H #define SYSINFO_H
#include <fstream> #include <fstream>
#include <iomanip>
#include <sstream>
#include <string> #include <string>
#include <sstream>
#include <iomanip>
#if defined(__linux__) #if defined(__linux__)
# include <unistd.h> #include <unistd.h>
#elif defined(__APPLE__) #elif defined(__APPLE__)
# include <sys/types.h> #include <sys/types.h>
# include <sys/sysctl.h> #include <sys/sysctl.h>
#elif defined(_WIN32) #elif defined(_WIN32)
# define WIN32_LEAN_AND_MEAN #include <windows.h>
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#endif #endif
static long long getSystemTotalRAMInBytes() static long long getSystemTotalRAMInBytes()

328
gpt4all-backend/utils.cpp Normal file
View File

@ -0,0 +1,328 @@
#include "utils.h"
#include <fstream>
#include <regex>
void replace(std::string & str, const std::string & needle, const std::string & replacement) {
size_t pos = 0;
while ((pos = str.find(needle, pos)) != std::string::npos) {
str.replace(pos, needle.length(), replacement);
pos += replacement.length();
}
}
std::map<std::string, int32_t> json_parse(const std::string & fname) {
std::map<std::string, int32_t> result;
// read file into string
std::string json;
{
std::ifstream ifs(fname);
if (!ifs) {
fprintf(stderr, "Failed to open %s\n", fname.c_str());
exit(1);
}
json = std::string((std::istreambuf_iterator<char>(ifs)),
(std::istreambuf_iterator<char>()));
}
if (json[0] != '{') {
return result;
}
// parse json
{
bool has_key = false;
bool in_token = false;
std::string str_key = "";
std::string str_val = "";
int n = json.size();
for (int i = 1; i < n; ++i) {
if (!in_token) {
if (json[i] == ' ') continue;
if (json[i] == '"') {
in_token = true;
continue;
}
} else {
if (json[i] == '\\' && i+1 < n) {
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
++i;
} else if (json[i] == '"') {
if (has_key == false) {
has_key = true;
++i;
while (json[i] == ' ') ++i;
++i; // :
while (json[i] == ' ') ++i;
if (json[i] != '\"') {
while (json[i] != ',' && json[i] != '}') {
str_val += json[i++];
}
has_key = false;
} else {
in_token = true;
continue;
}
} else {
has_key = false;
}
::replace(str_key, "\\u0120", " " ); // \u0120 -> space
::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
::replace(str_key, "\\\"", "\""); // \\\" -> "
try {
result[str_key] = std::stoi(str_val);
} catch (...) {
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
}
str_key = "";
str_val = "";
in_token = false;
continue;
}
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
}
}
}
return result;
}
std::vector<gpt_vocab::id> gpt_tokenize_inner(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
// find the longest tokens that form the words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
if (word.size() == 0) continue;
int i = 0;
int n = word.size();
while (i < n) {
int j = n;
while (j > i) {
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
break;
}
--j;
}
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
}
++i;
}
}
}
return tokens;
}
std::string regex_escape(const std::string &s) {
static const std::regex metacharacters(R"([\.\^\$\-\+\(\)\[\]\{\}\|\?\*])");
return std::regex_replace(s, metacharacters, "\\$&");
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
std::vector<gpt_vocab::id> out;
std::vector<std::string> chunks;
std::string str = text;
std::string special_tokens_subpattern;
for (const auto &token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += regex_escape(token);
}
std::regex re(special_tokens_subpattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
auto tok = vocab.token_to_id.find(m.str());
if (tok != vocab.token_to_id.end()) {
auto tokid = tok->second;
auto pfxtoks = gpt_tokenize_inner(vocab, m.prefix());
out.insert(out.end(), pfxtoks.begin(), pfxtoks.end());
out.push_back(tokid);
str = m.suffix();
}
}
if (!str.empty()) {
auto tokrest = gpt_tokenize_inner(vocab, str);
out.insert(out.end(), tokrest.begin(), tokrest.end());
}
return out;
} else {
return gpt_tokenize_inner(vocab, text);
}
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto & kv : vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const size_t actualVocabSize,
const int32_t * last_n_tokens_data,
int last_n_tokens_size,
const std::vector<float> logits,
int top_k,
double top_p,
double temp,
float repeat_penalty,
std::mt19937 & rng) {
int n_logits = actualVocabSize;
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
const auto * plogits = logits.data();
if (temp <= 0) {
// select the token with the highest logit directly
float max_logit = plogits[0];
gpt_vocab::id max_id = 0;
for (int i = 1; i < n_logits; ++i) {
if (plogits[i] > max_logit) {
max_logit = plogits[i];
max_id = i;
}
}
return max_id;
}
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const float scale = 1.0f/temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (plogits[i] < 0.0f) {
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
}
} else {
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
}
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}

97
gpt4all-backend/utils.h Normal file
View File

@ -0,0 +1,97 @@
// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
//
// General purpose inline functions
//
constexpr inline unsigned long long operator ""_MiB(unsigned long long bytes) {
return bytes*1024*1024;
}
//
// CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t n_batch = 8; // batch size for prompt processing
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string &token) {
special_tokens.push_back(token);
}
};
void replace(std::string & str, const std::string & needle, const std::string & replacement);
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
//
gpt_vocab::id gpt_sample_top_k_top_p(
const size_t actualVocabSize,
const int32_t * last_n_tokens_data,
int last_n_tokens_size,
const std::vector<float> logits,
int top_k,
double top_p,
double temp,
float repeat_penalty,
std::mt19937 & rng);

View File

@ -1,21 +1,3 @@
# GPT4All Language Bindings # GPT4All Bindings
These are the language bindings for the GPT4All backend. They provide functionality to load GPT4All models (and other llama.cpp models), generate text, and (in the case of the Python bindings) embed text as a vector representation. This directory will contain language specific bindings on top of the C/C++ model backends.
We will have one directory per language binding (e.g. Python, Typescript, Golang, etc.).
See their respective folders for language-specific documentation.
### Languages
- [Python](https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/python) (Nomic official, maintained by [@cebtenzzre](https://github.com/cebtenzzre))
- [Node.js/Typescript](https://github.com/nomic-ai/gpt4all/tree/main/gpt4all-bindings/typescript) (community, maintained by [@jacoobes](https://github.com/jacoobes) and [@iimez](https://github.com/iimez))
<br/>
<br/>
<details><summary><b>Archived Bindings</b></summary>
<br/>
The following bindings have been removed from this repository due to lack of maintenance. If adopted, they can be brought back&mdash;feel free to message a developer on Dicsord if you are interested in maintaining one of them. Below are links to their last available version (not necessarily the last working version).
- C#: [41c9013f](https://github.com/nomic-ai/gpt4all/tree/41c9013fa46a194b3e4fee6ced1b9d1b65e177ac/gpt4all-bindings/csharp)
- Java: [41c9013f](https://github.com/nomic-ai/gpt4all/tree/41c9013fa46a194b3e4fee6ced1b9d1b65e177ac/gpt4all-bindings/java)
- Go: [41c9013f](https://github.com/nomic-ai/gpt4all/tree/41c9013fa46a194b3e4fee6ced1b9d1b65e177ac/gpt4all-bindings/golang)
</details>

View File

@ -2,7 +2,8 @@
GPT4All on the command-line. GPT4All on the command-line.
More details on the [wiki](https://github.com/nomic-ai/gpt4all/wiki/Python-CLI). ## Documentation
<https://docs.gpt4all.io/gpt4all_cli.html>
## Quickstart ## Quickstart
@ -33,11 +34,11 @@ python -m pip install --user --upgrade gpt4all typer
# run the CLI # run the CLI
python app.py repl python app.py repl
``` ```
By default, it will automatically download the `Mistral Instruct` model to `.cache/gpt4all/` in your By default, it will automatically download the `groovy` model to `.cache/gpt4all/` in your user
user directory, if necessary. directory, if necessary.
If you have already saved a model beforehand, specify its path with the `-m`/`--model` argument, If you have already saved a model beforehand, specify its path with the `-m`/`--model` argument,
for example: for example:
```shell ```shell
python app.py repl --model /home/user/my-gpt4all-models/mistral-7b-instruct-v0.1.Q4_0.gguf python app.py repl --model /home/user/my-gpt4all-models/GPT4All-13B-snoozy.ggmlv3.q4_0.bin
``` ```

22
gpt4all-bindings/cli/app.py Executable file → Normal file
View File

@ -1,17 +1,16 @@
#!/usr/bin/env python3
"""GPT4All CLI """GPT4All CLI
The GPT4All CLI is a self-contained script based on the `gpt4all` and `typer` packages. It offers a The GPT4All CLI is a self-contained script based on the `gpt4all` and `typer` packages. It offers a
REPL to communicate with a language model similar to the chat GUI application, but more basic. REPL to communicate with a language model similar to the chat GUI application, but more basic.
""" """
import importlib.metadata
import io import io
import pkg_resources # should be present as a dependency of gpt4all
import sys import sys
import typer
from collections import namedtuple from collections import namedtuple
from typing_extensions import Annotated from typing_extensions import Annotated
import typer
from gpt4all import GPT4All from gpt4all import GPT4All
@ -54,18 +53,14 @@ def repl(
model: Annotated[ model: Annotated[
str, str,
typer.Option("--model", "-m", help="Model to use for chatbot"), typer.Option("--model", "-m", help="Model to use for chatbot"),
] = "mistral-7b-instruct-v0.1.Q4_0.gguf", ] = "ggml-gpt4all-j-v1.3-groovy",
n_threads: Annotated[ n_threads: Annotated[
int, int,
typer.Option("--n-threads", "-t", help="Number of threads to use for chatbot"), typer.Option("--n-threads", "-t", help="Number of threads to use for chatbot"),
] = None, ] = None,
device: Annotated[
str,
typer.Option("--device", "-d", help="Device to use for chatbot, e.g. gpu, amd, nvidia, intel. Defaults to CPU."),
] = None,
): ):
"""The CLI read-eval-print loop.""" """The CLI read-eval-print loop."""
gpt4all_instance = GPT4All(model, device=device) gpt4all_instance = GPT4All(model)
# if threads are passed, set them # if threads are passed, set them
if n_threads is not None: if n_threads is not None:
@ -84,7 +79,7 @@ def repl(
use_new_loop = False use_new_loop = False
try: try:
version = importlib.metadata.version('gpt4all') version = pkg_resources.Environment()['gpt4all'][0].version
version_major = int(version.split('.')[0]) version_major = int(version.split('.')[0])
if version_major >= 1: if version_major >= 1:
use_new_loop = True use_new_loop = True
@ -113,11 +108,13 @@ def _old_loop(gpt4all_instance):
full_response = gpt4all_instance.chat_completion( full_response = gpt4all_instance.chat_completion(
MESSAGES, MESSAGES,
# preferential kwargs for chat ux # preferential kwargs for chat ux
logits_size=0,
tokens_size=0,
n_past=0, n_past=0,
n_ctx=0,
n_predict=200, n_predict=200,
top_k=40, top_k=40,
top_p=0.9, top_p=0.9,
min_p=0.0,
temp=0.9, temp=0.9,
n_batch=9, n_batch=9,
repeat_penalty=1.1, repeat_penalty=1.1,
@ -154,7 +151,6 @@ def _new_loop(gpt4all_instance):
temp=0.9, temp=0.9,
top_k=40, top_k=40,
top_p=0.9, top_p=0.9,
min_p=0.0,
repeat_penalty=1.1, repeat_penalty=1.1,
repeat_last_n=64, repeat_last_n=64,
n_batch=9, n_batch=9,

View File

@ -0,0 +1,346 @@
# EditorConfig is awesome: https://EditorConfig.org
# top-most EditorConfig file
root = true
# Don't use tabs for indentation.
[*]
indent_style = space
# (Please don't specify an indent_size here; that has too many unintended consequences.)
# Code files
[*.{cs,csx,vb,vbx}]
indent_size = 4
insert_final_newline = true
charset = utf-8-bom
# XML project files
[*.{csproj,vbproj,vcxproj,vcxproj.filters,proj,projitems,shproj}]
indent_size = 4
# XML config files
[*.{props,targets,ruleset,config,nuspec,resx,vsixmanifest,vsct}]
indent_size = 2
# JSON files
[*.json]
indent_size = 2
# Powershell files
[*.ps1]
indent_size = 2
# Shell script files
[*.sh]
end_of_line = lf
indent_size = 2
insert_final_newline = true
# Dotnet code style settings:
[*.{cs,vb}]
# IDE0055: Fix formatting
dotnet_diagnostic.IDE0055.severity = error
# Sort using and Import directives with System.* appearing first
dotnet_sort_system_directives_first = true
dotnet_separate_import_directive_groups = false
# Avoid "this." and "Me." if not necessary
dotnet_style_qualification_for_field = false:suggestion
dotnet_style_qualification_for_property = false:suggestion
dotnet_style_qualification_for_method = false:suggestion
dotnet_style_qualification_for_event = false:suggestion
# Use language keywords instead of framework type names for type references
dotnet_style_predefined_type_for_locals_parameters_members = true:warning
dotnet_style_predefined_type_for_member_access = true:warning
# Suggest more modern language features when available
dotnet_style_object_initializer = true:suggestion
dotnet_style_collection_initializer = true:suggestion
dotnet_style_coalesce_expression = true:suggestion
dotnet_style_null_propagation = true:suggestion
dotnet_style_explicit_tuple_names = true:suggestion
# Whitespace options
dotnet_style_allow_multiple_blank_lines_experimental = false
# Private fields are camelCase with '_' prefix
dotnet_naming_rule.private_members_with_underscore.symbols = private_fields
dotnet_naming_rule.private_members_with_underscore.style = prefix_underscore
dotnet_naming_rule.private_members_with_underscore.severity = error
dotnet_naming_symbols.private_fields.applicable_kinds = field
dotnet_naming_symbols.private_fields.applicable_accessibilities = private
dotnet_naming_style.prefix_underscore.capitalization = camel_case
dotnet_naming_style.prefix_underscore.required_prefix = _
# Non-private static fields are PascalCase
dotnet_naming_rule.non_private_static_fields_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.non_private_static_fields_should_be_pascal_case.symbols = non_private_static_fields
dotnet_naming_rule.non_private_static_fields_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.non_private_static_fields.applicable_kinds = field
dotnet_naming_symbols.non_private_static_fields.applicable_accessibilities = public, protected, internal, protected_internal, private_protected
dotnet_naming_symbols.non_private_static_fields.required_modifiers = static
dotnet_naming_style.non_private_static_field_style.capitalization = pascal_case
# Non-private readonly fields are PascalCase
dotnet_naming_rule.non_private_readonly_fields_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.non_private_readonly_fields_should_be_pascal_case.symbols = non_private_readonly_fields
dotnet_naming_rule.non_private_readonly_fields_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.non_private_readonly_fields.applicable_kinds = field
dotnet_naming_symbols.non_private_readonly_fields.applicable_accessibilities = public, protected, internal, protected_internal, private_protected
dotnet_naming_symbols.non_private_readonly_fields.required_modifiers = readonly
dotnet_naming_style.non_private_readonly_field_style.capitalization = pascal_case
# Constants are PascalCase
dotnet_naming_rule.constants_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.constants_should_be_pascal_case.symbols = constants
dotnet_naming_rule.constants_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.constants.applicable_kinds = field, local
dotnet_naming_symbols.constants.required_modifiers = const
dotnet_naming_style.constant_style.capitalization = pascal_case
# Static fields are camelCase and start with s_
dotnet_naming_rule.static_fields_should_be_camel_case.severity = none
dotnet_naming_rule.static_fields_should_be_camel_case.symbols = static_fields
dotnet_naming_rule.static_fields_should_be_camel_case.style = static_field_style
dotnet_naming_symbols.static_fields.applicable_kinds = field
dotnet_naming_symbols.static_fields.required_modifiers = static
dotnet_naming_style.static_field_style.capitalization = camel_case
dotnet_naming_style.static_field_style.required_prefix = s_
# Instance fields are camelCase and start with _
dotnet_naming_rule.instance_fields_should_be_camel_case.severity = none
dotnet_naming_rule.instance_fields_should_be_camel_case.symbols = instance_fields
dotnet_naming_rule.instance_fields_should_be_camel_case.style = instance_field_style
dotnet_naming_symbols.instance_fields.applicable_kinds = field
dotnet_naming_style.instance_field_style.capitalization = camel_case
dotnet_naming_style.instance_field_style.required_prefix = _
# Locals and parameters are camelCase
dotnet_naming_rule.locals_should_be_camel_case.severity = suggestion
dotnet_naming_rule.locals_should_be_camel_case.symbols = locals_and_parameters
dotnet_naming_rule.locals_should_be_camel_case.style = camel_case_style
dotnet_naming_symbols.locals_and_parameters.applicable_kinds = parameter, local
dotnet_naming_style.camel_case_style.capitalization = camel_case
# Local functions are PascalCase
dotnet_naming_rule.local_functions_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.local_functions_should_be_pascal_case.symbols = local_functions
dotnet_naming_rule.local_functions_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.local_functions.applicable_kinds = local_function
dotnet_naming_style.local_function_style.capitalization = pascal_case
# By default, name items with PascalCase
dotnet_naming_rule.members_should_be_pascal_case.severity = suggestion
dotnet_naming_rule.members_should_be_pascal_case.symbols = all_members
dotnet_naming_rule.members_should_be_pascal_case.style = non_private_static_field_style
dotnet_naming_symbols.all_members.applicable_kinds = *
dotnet_naming_style.pascal_case_style.capitalization = pascal_case
# error RS2008: Enable analyzer release tracking for the analyzer project containing rule '{0}'
dotnet_diagnostic.RS2008.severity = none
# IDE0073: File header
dotnet_diagnostic.IDE0073.severity = none
#file_header_template = Licensed to the .NET Foundation under one or more agreements.\nThe .NET Foundation licenses this file to you under the MIT license.\nSee the LICENSE file in the project root for more information.
# IDE0035: Remove unreachable code
dotnet_diagnostic.IDE0035.severity = warning
# IDE0036: Order modifiers
dotnet_diagnostic.IDE0036.severity = warning
# IDE0043: Format string contains invalid placeholder
dotnet_diagnostic.IDE0043.severity = warning
# IDE0044: Make field readonly
dotnet_diagnostic.IDE0044.severity = warning
# IDE1006: Naming rule violation
#dotnet_diagnostic.IDE1006.severity = none
# RS0016: Only enable if API files are present
dotnet_public_api_analyzer.require_api_files = true
dotnet_style_operator_placement_when_wrapping = beginning_of_line
tab_width = 4
end_of_line = crlf
dotnet_style_prefer_is_null_check_over_reference_equality_method = true:suggestion
dotnet_style_prefer_auto_properties = true:silent
dotnet_style_prefer_simplified_boolean_expressions = true:suggestion
dotnet_style_prefer_conditional_expression_over_assignment = true:silent
dotnet_style_prefer_conditional_expression_over_return = true:silent
dotnet_style_prefer_inferred_tuple_names = true:suggestion
dotnet_style_prefer_inferred_anonymous_type_member_names = true:suggestion
dotnet_style_prefer_compound_assignment = true:suggestion
dotnet_style_prefer_simplified_interpolation = true:suggestion
dotnet_style_namespace_match_folder = true:suggestion
# CSharp code style settings:
[*.cs]
# Newline settings
csharp_new_line_before_open_brace = all
csharp_new_line_before_else = true
csharp_new_line_before_catch = true
csharp_new_line_before_finally = true
csharp_new_line_before_members_in_object_initializers = true
csharp_new_line_before_members_in_anonymous_types = true
csharp_new_line_between_query_expression_clauses = true
# Indentation preferences
csharp_indent_block_contents = true
csharp_indent_braces = false
csharp_indent_case_contents = true
csharp_indent_case_contents_when_block = true
csharp_indent_switch_labels = true
csharp_indent_labels = flush_left
# Whitespace options
csharp_style_allow_embedded_statements_on_same_line_experimental = false
csharp_style_allow_blank_lines_between_consecutive_braces_experimental = false
csharp_style_allow_blank_line_after_colon_in_constructor_initializer_experimental = false
# Prefer "var" everywhere
csharp_style_var_for_built_in_types = true:suggestion
csharp_style_var_when_type_is_apparent = true:suggestion
csharp_style_var_elsewhere = true:suggestion
# Prefer method-like constructs to have a block body
csharp_style_expression_bodied_methods = false:none
csharp_style_expression_bodied_constructors = false:none
csharp_style_expression_bodied_operators = false:none
# Prefer property-like constructs to have an expression-body
csharp_style_expression_bodied_properties = true:none
csharp_style_expression_bodied_indexers = true:none
csharp_style_expression_bodied_accessors = true:none
# Suggest more modern language features when available
csharp_style_pattern_matching_over_is_with_cast_check = true:suggestion
csharp_style_pattern_matching_over_as_with_null_check = true:suggestion
csharp_style_inlined_variable_declaration = true:suggestion
csharp_style_throw_expression = true:suggestion
csharp_style_conditional_delegate_call = true:suggestion
# Space preferences
csharp_space_after_cast = false
csharp_space_after_colon_in_inheritance_clause = true
csharp_space_after_comma = true
csharp_space_after_dot = false
csharp_space_after_keywords_in_control_flow_statements = true
csharp_space_after_semicolon_in_for_statement = true
csharp_space_around_binary_operators = before_and_after
csharp_space_around_declaration_statements = do_not_ignore
csharp_space_before_colon_in_inheritance_clause = true
csharp_space_before_comma = false
csharp_space_before_dot = false
csharp_space_before_open_square_brackets = false
csharp_space_before_semicolon_in_for_statement = false
csharp_space_between_empty_square_brackets = false
csharp_space_between_method_call_empty_parameter_list_parentheses = false
csharp_space_between_method_call_name_and_opening_parenthesis = false
csharp_space_between_method_call_parameter_list_parentheses = false
csharp_space_between_method_declaration_empty_parameter_list_parentheses = false
csharp_space_between_method_declaration_name_and_open_parenthesis = false
csharp_space_between_method_declaration_parameter_list_parentheses = false
csharp_space_between_parentheses = false
csharp_space_between_square_brackets = false
# Blocks are allowed
csharp_prefer_braces = true:silent
csharp_preserve_single_line_blocks = true
csharp_preserve_single_line_statements = true
# Target-type new expressio
csharp_style_implicit_object_creation_when_type_is_apparent = true:suggestion
# Currently only enabled for C# due to crash in VB analyzer. VB can be enabled once
# https://github.com/dotnet/roslyn/pull/54259 has been published.
dotnet_style_allow_statement_immediately_after_block_experimental = false
dotnet_diagnostic.RCS0003.severity=warning
dotnet_diagnostic.RCS1036.severity=error
dotnet_diagnostic.IDE0005.severity=warning
dotnet_diagnostic.IDE0007.severity=error
csharp_using_directive_placement = outside_namespace:silent
csharp_prefer_simple_using_statement = true:suggestion
csharp_style_namespace_declarations = block_scoped:silent
csharp_style_expression_bodied_lambdas = true:silent
csharp_style_expression_bodied_local_functions = false:silent
csharp_style_prefer_null_check_over_type_check = true:suggestion
dotnet_diagnostic.RCS1075.severity = suggestion
[src/CodeStyle/**.{cs,vb}]
# warning RS0005: Do not use generic CodeAction.Create to create CodeAction
dotnet_diagnostic.RS0005.severity = none
[src/{Analyzers,CodeStyle,Features,Workspaces,EditorFeatures,VisualStudio}/**/*.{cs,vb}]
# IDE0011: Add braces
csharp_prefer_braces = when_multiline:warning
# NOTE: We need the below severity entry for Add Braces due to https://github.com/dotnet/roslyn/issues/44201
dotnet_diagnostic.IDE0011.severity = warning
# IDE0040: Add accessibility modifiers
dotnet_diagnostic.IDE0040.severity = warning
# CONSIDER: Are IDE0051 and IDE0052 too noisy to be warnings for IDE editing scenarios? Should they be made build-only warnings?
# IDE0051: Remove unused private member
dotnet_diagnostic.IDE0051.severity = warning
# IDE0052: Remove unread private member
dotnet_diagnostic.IDE0052.severity = warning
# IDE0059: Unnecessary assignment to a value
dotnet_diagnostic.IDE0059.severity = warning
# IDE0060: Remove unused parameter
dotnet_diagnostic.IDE0060.severity = warning
# CA1012: Abstract types should not have public constructors
dotnet_diagnostic.CA1012.severity = warning
# CA1822: Make member static
dotnet_diagnostic.CA1822.severity = warning
# Prefer "var" everywhere
dotnet_diagnostic.IDE0007.severity = warning
csharp_style_var_for_built_in_types = true:warning
csharp_style_var_when_type_is_apparent = true:warning
csharp_style_var_elsewhere = true:warning
# dotnet_style_allow_multiple_blank_lines_experimental
dotnet_diagnostic.IDE2000.severity = warning
# csharp_style_allow_embedded_statements_on_same_line_experimental
dotnet_diagnostic.IDE2001.severity = warning
# csharp_style_allow_blank_lines_between_consecutive_braces_experimental
dotnet_diagnostic.IDE2002.severity = warning
# dotnet_style_allow_statement_immediately_after_block_experimental
dotnet_diagnostic.IDE2003.severity = warning
# csharp_style_allow_blank_line_after_colon_in_constructor_initializer_experimental
dotnet_diagnostic.IDE2004.severity = warning
[src/{VisualStudio}/**/*.{cs,vb}]
# CA1822: Make member static
# There is a risk of accidentally breaking an internal API that partners rely on though IVT.
dotnet_code_quality.CA1822.api_surface = private

379
gpt4all-bindings/csharp/.gitignore vendored Normal file
View File

@ -0,0 +1,379 @@
## Ignore Visual Studio temporary files, build results, and
## files generated by popular Visual Studio add-ons.
##
## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
runtimes
**/*nuget
*.zip
include/
*.exp
*.lib
*.dll
# User-specific files
*.rsuser
*.suo
*.user
*.userosscache
*.sln.docstates
# User-specific files (MonoDevelop/Xamarin Studio)
*.userprefs
# Mono auto generated files
mono_crash.*
Tests/**/launchSettings.json
# Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
x64/
x86/
[Ww][Ii][Nn]32/
[Aa][Rr][Mm]/
[Aa][Rr][Mm]64/
bld/
[Bb]in/
[Oo]bj/
[Oo]ut/
[Ll]og/
[Ll]ogs/
# Visual Studio 2015/2017 cache/options directory
.vs/
# Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/
# Visual Studio 2017 auto generated files
Generated\ Files/
# MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*
# NUnit
*.VisualState.xml
TestResult.xml
nunit-*.xml
# Build Results of an ATL Project
[Dd]ebugPS/
[Rr]eleasePS/
dlldata.c
# Benchmark Results
BenchmarkDotNet.Artifacts/
# .NET Core
project.lock.json
project.fragment.lock.json
artifacts/
# ASP.NET Scaffolding
ScaffoldingReadMe.txt
# StyleCop
StyleCopReport.xml
# Files built by Visual Studio
*_i.c
*_p.c
*_h.h
*.ilk
*.meta
*.obj
*.iobj
*.pch
*.pdb
*.ipdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*_wpftmp.csproj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.svclog
*.scc
# Chutzpah Test files
_Chutzpah*
# Visual C++ cache files
ipch/
*.aps
*.ncb
*.opendb
*.opensdf
*.sdf
*.cachefile
*.VC.db
*.VC.VC.opendb
# Visual Studio profiler
*.psess
*.vsp
*.vspx
*.sap
# Visual Studio Trace Files
*.e2e
# TFS 2012 Local Workspace
$tf/
# Guidance Automation Toolkit
*.gpState
# ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
*.DotSettings.user
# TeamCity is a build add-in
_TeamCity*
# DotCover is a Code Coverage Tool
*.dotCover
# AxoCover is a Code Coverage Tool
.axoCover/*
!.axoCover/settings.json
# Coverlet is a free, cross platform Code Coverage Tool
coverage*.json
coverage*.xml
coverage*.info
# Visual Studio code coverage results
*.coverage
*.coveragexml
# NCrunch
_NCrunch_*
.*crunch*.local.xml
nCrunchTemp_*
# MightyMoose
*.mm.*
AutoTest.Net/
# Web workbench (sass)
.sass-cache/
# Installshield output folder
[Ee]xpress/
# DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html
# Click-Once directory
publish/
# Publish Web Output
*.[Pp]ublish.xml
*.azurePubxml
# Note: Comment the next line if you want to checkin your web deploy settings,
# but database connection strings (with potential passwords) will be unencrypted
*.pubxml
*.publishproj
# Microsoft Azure Web App publish settings. Comment the next line if you want to
# checkin your Azure Web App publish settings, but sensitive information contained
# in these scripts will be unencrypted
PublishScripts/
# NuGet Packages
*.nupkg
# NuGet Symbol Packages
*.snupkg
# The packages folder can be ignored because of Package Restore
**/[Pp]ackages/*
# except build/, which is used as an MSBuild target.
!**/[Pp]ackages/build/
# Uncomment if necessary however generally it will be regenerated when needed
#!**/[Pp]ackages/repositories.config
# NuGet v3's project.json files produces more ignorable files
*.nuget.props
*.nuget.targets
# Microsoft Azure Build Output
csx/
*.build.csdef
# Microsoft Azure Emulator
ecf/
rcf/
# Windows Store app package directories and files
AppPackages/
BundleArtifacts/
Package.StoreAssociation.xml
_pkginfo.txt
*.appx
*.appxbundle
*.appxupload
# Visual Studio cache files
# files ending in .cache can be ignored
*.[Cc]ache
# but keep track of directories ending in .cache
!?*.[Cc]ache/
# Others
ClientBin/
~$*
*~
*.dbmdl
*.dbproj.schemaview
*.jfm
*.pfx
*.publishsettings
orleans.codegen.cs
# Including strong name files can present a security risk
# (https://github.com/github/gitignore/pull/2483#issue-259490424)
#*.snk
# Since there are multiple workflows, uncomment next line to ignore bower_components
# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
#bower_components/
# RIA/Silverlight projects
Generated_Code/
# Backup & report files from converting an old project file
# to a newer Visual Studio version. Backup files are not needed,
# because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm
ServiceFabricBackup/
*.rptproj.bak
# SQL Server files
*.mdf
*.ldf
*.ndf
# Business Intelligence projects
*.rdl.data
*.bim.layout
*.bim_*.settings
*.rptproj.rsuser
*- [Bb]ackup.rdl
*- [Bb]ackup ([0-9]).rdl
*- [Bb]ackup ([0-9][0-9]).rdl
# Microsoft Fakes
FakesAssemblies/
# GhostDoc plugin setting file
*.GhostDoc.xml
# Node.js Tools for Visual Studio
.ntvs_analysis.dat
node_modules/
# Visual Studio 6 build log
*.plg
# Visual Studio 6 workspace options file
*.opt
# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
*.vbw
# Visual Studio LightSwitch build output
**/*.HTMLClient/GeneratedArtifacts
**/*.DesktopClient/GeneratedArtifacts
**/*.DesktopClient/ModelManifest.xml
**/*.Server/GeneratedArtifacts
**/*.Server/ModelManifest.xml
_Pvt_Extensions
# Paket dependency manager
.paket/paket.exe
paket-files/
# FAKE - F# Make
.fake/
# CodeRush personal settings
.cr/personal
# Python Tools for Visual Studio (PTVS)
__pycache__/
*.pyc
# Cake - Uncomment if you are using it
# tools/**
# !tools/packages.config
# Tabs Studio
*.tss
# Telerik's JustMock configuration file
*.jmconfig
# BizTalk build output
*.btp.cs
*.btm.cs
*.odx.cs
*.xsd.cs
# OpenCover UI analysis results
OpenCover/
# Azure Stream Analytics local run output
ASALocalRun/
# MSBuild Binary and Structured Log
*.binlog
# NVidia Nsight GPU debugger configuration file
*.nvuser
# MFractors (Xamarin productivity tool) working folder
.mfractor/
# Local History for Visual Studio
.localhistory/
# BeatPulse healthcheck temp database
healthchecksdb
# Backup folder for Package Reference Convert tool in Visual Studio 2017
MigrationBackup/
# Ionide (cross platform F# VS Code tools) working folder
.ionide/
# Fody - auto-generated XML schema
FodyWeavers.xsd
# JetBrains Rider
.idea
# Visual Studio Code
.vscode

View File

@ -0,0 +1,44 @@
<?xml version="1.0" encoding="utf-8"?>
<Project>
<PropertyGroup>
<Company></Company>
<Copyright></Copyright>
<NeutralLanguage>en-US</NeutralLanguage>
<Version>0.6.3-alpha</Version>
<VersionSuffix>$(VersionSuffix)</VersionSuffix>
<Version Condition=" '$(VersionSuffix)' != '' ">$(Version)$(VersionSuffix)</Version>
<TreatWarningsAsErrors>true</TreatWarningsAsErrors>
<RepositoryUrl></RepositoryUrl>
<RepositoryType>git</RepositoryType>
<IncludeSymbols>true</IncludeSymbols>
<IncludeSource>true</IncludeSource>
<AnalysisLevel>latest-minimum</AnalysisLevel>
<EnforceCodeStyleInBuild>true</EnforceCodeStyleInBuild>
</PropertyGroup>
<ItemGroup>
<Using Include="System"/>
</ItemGroup>
<PropertyGroup>
<LangVersion>preview</LangVersion>
<Features>strict</Features>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Roslynator.Analyzers" Version="4.2.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
<PackageReference Include="Roslynator.CodeAnalysis.Analyzers" Version="4.2.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
<PackageReference Include="Roslynator.Formatting.Analyzers" Version="4.2.0">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
</PackageReference>
</ItemGroup>
</Project>

View File

@ -0,0 +1,32 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<ProjectReference Include="..\Gpt4All\Gpt4All.csproj" />
</ItemGroup>
<ItemGroup>
<!-- Windows -->
<None Include="..\runtimes\win-x64\native\*.dll" Pack="true" PackagePath="runtimes\win-x64\native\%(Filename)%(Extension)" />
<!-- Linux -->
<None Include="..\runtimes\linux-x64\native\*.so" Pack="true" PackagePath="runtimes\linux-x64\native\%(Filename)%(Extension)" />
<!-- MacOS -->
<None Include="..\runtimes\osx\native\*.dylib" Pack="true" PackagePath="runtimes\osx\native\%(Filename)%(Extension)" />
</ItemGroup>
<ItemGroup>
<!-- Windows -->
<None Condition="$([MSBuild]::IsOSPlatform('Windows'))" Include="..\runtimes\win-x64\native\*.dll" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<!-- Linux -->
<None Condition="$([MSBuild]::IsOSPlatform('Linux'))" Include="..\runtimes\linux-x64\native\*.so" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<!-- MacOS -->
<None Condition="$([MSBuild]::IsOSPlatform('OSX'))" Include="..\runtimes\osx\native\*.dylib" Visible="False" CopyToOutputDirectory="PreserveNewest" />
<Content Condition="$([MSBuild]::IsOSPlatform('OSX'))" Include="..\runtimes\osx\native\*.metal" Visible="False" CopyToOutputDirectory="PreserveNewest" />
</ItemGroup>
</Project>

View File

@ -0,0 +1,22 @@
using Gpt4All;
var modelFactory = new Gpt4AllModelFactory();
if (args.Length < 2)
{
Console.WriteLine($"Usage: Gpt4All.Samples <model-path> <prompt>");
return;
}
var modelPath = args[0];
var prompt = args[1];
using var model = modelFactory.LoadModel(modelPath);
var result = await model.GetStreamingPredictionAsync(
prompt,
PredictRequestOptions.Defaults);
await foreach (var token in result.GetPredictionStreamingAsync())
{
Console.Write(token);
}

View File

@ -0,0 +1,9 @@
namespace Gpt4All.Tests;
public static class Constants
{
public const string MODELS_BASE_DIR = "../../../models";
public const string LLAMA_MODEL_PATH = $"{MODELS_BASE_DIR}/ggml-gpt4all-l13b-snoozy.bin";
public const string GPTJ_MODEL_PATH = $"{MODELS_BASE_DIR}/ggml-gpt4all-j-v1.3-groovy.bin";
public const string MPT_MODEL_PATH = $"{MODELS_BASE_DIR}/ggml-mpt-7b-chat.bin";
}

Some files were not shown because too many files have changed in this diff Show More