mirror of
https://github.com/qgis/QGIS.git
synced 2025-10-04 00:04:03 -04:00
* require qwt >=6.2 (and fallback to internal 6.3 if system's qwt doesn't suffice) * debian doesn't have qwt for Qt6 and won't have it for trixie
572 lines
15 KiB
C++
572 lines
15 KiB
C++
/******************************************************************************
|
|
* Qwt Widget Library
|
|
* Copyright (C) 1997 Josef Wilgen
|
|
* Copyright (C) 2002 Uwe Rathmann
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the Qwt License, Version 1.0
|
|
*****************************************************************************/
|
|
|
|
#include "qwt_spline_local.h"
|
|
#include "qwt_spline_parametrization.h"
|
|
#include "qwt_spline_polynomial.h"
|
|
|
|
#include <qpainterpath.h>
|
|
|
|
static inline bool qwtIsStrictlyMonotonic( double dy1, double dy2 )
|
|
{
|
|
if ( dy1 == 0.0 || dy2 == 0.0 )
|
|
return false;
|
|
|
|
return ( dy1 > 0.0 ) == ( dy2 > 0.0 );
|
|
}
|
|
|
|
static inline double qwtSlopeLine( const QPointF& p1, const QPointF& p2 )
|
|
{
|
|
// ???
|
|
const double dx = p2.x() - p1.x();
|
|
return dx ? ( p2.y() - p1.y() ) / dx : 0.0;
|
|
}
|
|
|
|
static inline double qwtSlopeCardinal(
|
|
double dx1, double dy1, double s1, double dx2, double dy2, double s2 )
|
|
{
|
|
Q_UNUSED(s1)
|
|
Q_UNUSED(s2)
|
|
|
|
return ( dy1 + dy2 ) / ( dx1 + dx2 );
|
|
}
|
|
|
|
static inline double qwtSlopeParabolicBlending(
|
|
double dx1, double dy1, double s1, double dx2, double dy2, double s2 )
|
|
{
|
|
Q_UNUSED( dy1 )
|
|
Q_UNUSED( dy2 )
|
|
|
|
return ( dx2 * s1 + dx1 * s2 ) / ( dx1 + dx2 );
|
|
}
|
|
|
|
static inline double qwtSlopePChip(
|
|
double dx1, double dy1, double s1, double dx2, double dy2, double s2 )
|
|
{
|
|
if ( qwtIsStrictlyMonotonic( dy1, dy2 ) )
|
|
{
|
|
#if 0
|
|
// weighting the slopes by the dx1/dx2
|
|
const double w1 = ( 3 * dx1 + 3 * dx2 ) / ( 2 * dx1 + 4 * dx2 );
|
|
const double w2 = ( 3 * dx1 + 3 * dx2 ) / ( 4 * dx1 + 2 * dx2 );
|
|
|
|
s1 *= w1;
|
|
s2 *= w2;
|
|
|
|
// harmonic mean ( see https://en.wikipedia.org/wiki/Pythagorean_means )
|
|
return 2.0 / ( 1.0 / s1 + 1.0 / s2 );
|
|
#endif
|
|
// the same as above - but faster
|
|
|
|
const double s12 = ( dy1 + dy2 ) / ( dx1 + dx2 );
|
|
return 3.0 * ( s1 * s2 ) / ( s1 + s2 + s12 );
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
namespace QwtSplineLocalP
|
|
{
|
|
class PathStore
|
|
{
|
|
public:
|
|
inline void init( const QVector< QPointF >& )
|
|
{
|
|
}
|
|
|
|
inline void start( const QPointF& p0, double )
|
|
{
|
|
path.moveTo( p0 );
|
|
}
|
|
|
|
inline void addCubic( const QPointF& p1, double m1,
|
|
const QPointF& p2, double m2 )
|
|
{
|
|
const double dx3 = ( p2.x() - p1.x() ) / 3.0;
|
|
|
|
path.cubicTo( p1.x() + dx3, p1.y() + m1 * dx3,
|
|
p2.x() - dx3, p2.y() - m2 * dx3,
|
|
p2.x(), p2.y() );
|
|
}
|
|
|
|
QPainterPath path;
|
|
};
|
|
|
|
class ControlPointsStore
|
|
{
|
|
public:
|
|
inline void init( const QVector< QPointF >& points )
|
|
{
|
|
if ( points.size() > 0 )
|
|
controlPoints.resize( points.size() - 1 );
|
|
m_cp = controlPoints.data();
|
|
}
|
|
|
|
inline void start( const QPointF&, double )
|
|
{
|
|
}
|
|
|
|
inline void addCubic( const QPointF& p1, double m1,
|
|
const QPointF& p2, double m2 )
|
|
{
|
|
const double dx3 = ( p2.x() - p1.x() ) / 3.0;
|
|
|
|
QLineF& l = *m_cp++;
|
|
l.setLine( p1.x() + dx3, p1.y() + m1 * dx3,
|
|
p2.x() - dx3, p2.y() - m2 * dx3 );
|
|
}
|
|
|
|
QVector< QLineF > controlPoints;
|
|
|
|
private:
|
|
QLineF* m_cp;
|
|
};
|
|
|
|
class SlopeStore
|
|
{
|
|
public:
|
|
void init( const QVector< QPointF >& points )
|
|
{
|
|
slopes.resize( points.size() );
|
|
m_m = slopes.data();
|
|
}
|
|
|
|
inline void start( const QPointF&, double m0 )
|
|
{
|
|
*m_m++ = m0;
|
|
}
|
|
|
|
inline void addCubic( const QPointF&, double,
|
|
const QPointF&, double m2 )
|
|
{
|
|
*m_m++ = m2;
|
|
}
|
|
|
|
QVector< double > slopes;
|
|
|
|
private:
|
|
double* m_m;
|
|
};
|
|
|
|
struct slopeCardinal
|
|
{
|
|
static inline double value( double dx1, double dy1, double s1,
|
|
double dx2, double dy2, double s2 )
|
|
{
|
|
return qwtSlopeCardinal( dx1, dy1, s1, dx2, dy2, s2 );
|
|
}
|
|
};
|
|
|
|
struct slopeParabolicBlending
|
|
{
|
|
static inline double value( double dx1, double dy1, double s1,
|
|
double dx2, double dy2, double s2 )
|
|
{
|
|
return qwtSlopeParabolicBlending( dx1, dy1, s1, dx2, dy2, s2 );
|
|
}
|
|
};
|
|
|
|
struct slopePChip
|
|
{
|
|
static inline double value( double dx1, double dy1, double s1,
|
|
double dx2, double dy2, double s2 )
|
|
{
|
|
return qwtSlopePChip( dx1, dy1, s1, dx2, dy2, s2 );
|
|
}
|
|
};
|
|
}
|
|
|
|
template< class Slope >
|
|
static inline double qwtSlopeP3(
|
|
const QPointF& p1, const QPointF& p2, const QPointF& p3 )
|
|
{
|
|
const double dx1 = p2.x() - p1.x();
|
|
const double dy1 = p2.y() - p1.y();
|
|
const double dx2 = p3.x() - p2.x();
|
|
const double dy2 = p3.y() - p2.y();
|
|
|
|
return Slope::value( dx1, dy1, dy1 / dx1, dx2, dy2, dy2 / dx2 );
|
|
}
|
|
|
|
static inline double qwtSlopeAkima( double s1, double s2, double s3, double s4 )
|
|
{
|
|
if ( ( s1 == s2 ) && ( s3 == s4 ) )
|
|
{
|
|
return 0.5 * ( s2 + s3 );
|
|
}
|
|
|
|
const double ds12 = qAbs( s2 - s1 );
|
|
const double ds34 = qAbs( s4 - s3 );
|
|
|
|
return ( s2 * ds34 + s3 * ds12 ) / ( ds12 + ds34 );
|
|
}
|
|
|
|
static inline double qwtSlopeAkima( const QPointF& p1, const QPointF& p2,
|
|
const QPointF& p3, const QPointF& p4, const QPointF& p5 )
|
|
{
|
|
const double s1 = qwtSlopeLine( p1, p2 );
|
|
const double s2 = qwtSlopeLine( p2, p3 );
|
|
const double s3 = qwtSlopeLine( p3, p4 );
|
|
const double s4 = qwtSlopeLine( p4, p5 );
|
|
|
|
return qwtSlopeAkima( s1, s2, s3, s4 );
|
|
}
|
|
|
|
template< class Slope >
|
|
static void qwtSplineBoundariesL1(
|
|
const QwtSplineLocal* spline, const QVector< QPointF >& points,
|
|
double& slopeBegin, double& slopeEnd )
|
|
{
|
|
const int n = points.size();
|
|
const QPointF* p = points.constData();
|
|
|
|
if ( ( spline->boundaryType() == QwtSpline::PeriodicPolygon )
|
|
|| ( spline->boundaryType() == QwtSpline::ClosedPolygon ) )
|
|
{
|
|
const QPointF pn = p[0] - ( p[n - 1] - p[n - 2] );
|
|
slopeBegin = slopeEnd = qwtSlopeP3< Slope >( pn, p[0], p[1] );
|
|
}
|
|
else
|
|
{
|
|
const double m2 = qwtSlopeP3< Slope >( p[0], p[1], p[2] );
|
|
slopeBegin = spline->slopeAtBeginning( points, m2 );
|
|
|
|
const double mn2 = qwtSlopeP3< Slope >( p[n - 3], p[n - 2], p[n - 1] );
|
|
slopeEnd = spline->slopeAtEnd( points, mn2 );
|
|
}
|
|
}
|
|
|
|
template< class SplineStore, class Slope >
|
|
static inline SplineStore qwtSplineL1(
|
|
const QwtSplineLocal* spline, const QVector< QPointF >& points )
|
|
{
|
|
const int size = points.size();
|
|
const QPointF* p = points.constData();
|
|
|
|
double slopeBegin, slopeEnd;
|
|
qwtSplineBoundariesL1< Slope >( spline, points, slopeBegin, slopeEnd );
|
|
|
|
double m1 = slopeBegin;
|
|
|
|
SplineStore store;
|
|
store.init( points );
|
|
store.start( p[0], m1 );
|
|
|
|
double dx1 = p[1].x() - p[0].x();
|
|
double dy1 = p[1].y() - p[0].y();
|
|
double s1 = dy1 / dx1;
|
|
|
|
for ( int i = 1; i < size - 1; i++ )
|
|
{
|
|
const double dx2 = p[i + 1].x() - p[i].x();
|
|
const double dy2 = p[i + 1].y() - p[i].y();
|
|
|
|
// cardinal spline doesn't need the line slopes, but
|
|
// the compiler will eliminate pointless calculations
|
|
const double s2 = dy2 / dx2;
|
|
|
|
const double m2 = Slope::value( dx1, dy1, s1, dx2, dy2, s2 );
|
|
|
|
store.addCubic( p[i - 1], m1, p[i], m2 );
|
|
|
|
dx1 = dx2;
|
|
dy1 = dy2;
|
|
s1 = s2;
|
|
m1 = m2;
|
|
}
|
|
|
|
store.addCubic( p[size - 2], m1, p[size - 1], slopeEnd );
|
|
|
|
return store;
|
|
}
|
|
|
|
static inline void qwtSplineAkimaBoundaries(
|
|
const QwtSplineLocal* spline, const QVector< QPointF >& points,
|
|
double& slopeBegin, double& slopeEnd )
|
|
{
|
|
const int n = points.size();
|
|
const QPointF* p = points.constData();
|
|
|
|
if ( ( spline->boundaryType() == QwtSpline::PeriodicPolygon )
|
|
|| ( spline->boundaryType() == QwtSpline::ClosedPolygon ) )
|
|
{
|
|
const QPointF p2 = p[0] - ( p[n - 1] - p[n - 2] );
|
|
const QPointF p1 = p2 - ( p[n - 2] - p[n - 3] );
|
|
|
|
slopeBegin = slopeEnd = qwtSlopeAkima( p1, p2, p[0], p[1], p[2] );
|
|
|
|
return;
|
|
}
|
|
|
|
if ( spline->boundaryCondition( QwtSpline::AtBeginning ) == QwtSpline::Clamped1
|
|
&& spline->boundaryCondition( QwtSpline::AtEnd ) == QwtSpline::Clamped1 )
|
|
{
|
|
slopeBegin = spline->boundaryValue( QwtSpline::AtBeginning);
|
|
slopeEnd = spline->boundaryValue( QwtSpline::AtEnd );
|
|
|
|
return;
|
|
}
|
|
|
|
if ( n == 3 )
|
|
{
|
|
const double s1 = qwtSlopeLine( p[0], p[1] );
|
|
const double s2 = qwtSlopeLine( p[1], p[2] );
|
|
const double m = qwtSlopeAkima( 0.5 * s1, s1, s2, 0.5 * s2 );
|
|
|
|
slopeBegin = spline->slopeAtBeginning( points, m );
|
|
slopeEnd = spline->slopeAtEnd( points, m );
|
|
}
|
|
else
|
|
{
|
|
double s[3];
|
|
|
|
s[0] = qwtSlopeLine( p[0], p[1] );
|
|
s[1] = qwtSlopeLine( p[1], p[2] );
|
|
s[2] = qwtSlopeLine( p[2], p[3] );
|
|
|
|
const double m2 = qwtSlopeAkima( 0.5 * s[0], s[0], s[1], s[2] );
|
|
|
|
slopeBegin = spline->slopeAtBeginning( points, m2 );
|
|
|
|
s[0] = qwtSlopeLine( p[n - 4], p[n - 3] );
|
|
s[1] = qwtSlopeLine( p[n - 3], p[n - 2] );
|
|
s[2] = qwtSlopeLine( p[n - 2], p[n - 1] );
|
|
|
|
const double mn2 = qwtSlopeAkima( s[0], s[1], s[2], 0.5 * s[2] );
|
|
|
|
slopeEnd = spline->slopeAtEnd( points, mn2 );
|
|
}
|
|
}
|
|
|
|
template< class SplineStore >
|
|
static inline SplineStore qwtSplineAkima(
|
|
const QwtSplineLocal* spline, const QVector< QPointF >& points )
|
|
{
|
|
const int size = points.size();
|
|
const QPointF* p = points.constData();
|
|
|
|
double slopeBegin, slopeEnd;
|
|
qwtSplineAkimaBoundaries( spline, points, slopeBegin, slopeEnd );
|
|
|
|
double m1 = slopeBegin;
|
|
|
|
SplineStore store;
|
|
store.init( points );
|
|
store.start( p[0], m1 );
|
|
|
|
double s2 = qwtSlopeLine( p[0], p[1] );
|
|
double s3 = qwtSlopeLine( p[1], p[2] );
|
|
double s1 = 0.5 * s2;
|
|
|
|
for ( int i = 0; i < size - 3; i++ )
|
|
{
|
|
const double s4 = qwtSlopeLine( p[i + 2], p[i + 3] );
|
|
|
|
const double m2 = qwtSlopeAkima( s1, s2, s3, s4 );
|
|
store.addCubic( p[i], m1, p[i + 1], m2 );
|
|
|
|
s1 = s2;
|
|
s2 = s3;
|
|
s3 = s4;
|
|
|
|
m1 = m2;
|
|
}
|
|
|
|
const double m2 = qwtSlopeAkima( s1, s2, s3, 0.5 * s3 );
|
|
|
|
store.addCubic( p[size - 3], m1, p[size - 2], m2 );
|
|
store.addCubic( p[size - 2], m2, p[size - 1], slopeEnd );
|
|
|
|
return store;
|
|
}
|
|
|
|
template< class SplineStore >
|
|
static inline SplineStore qwtSplineLocal(
|
|
const QwtSplineLocal* spline, const QVector< QPointF >& points )
|
|
{
|
|
SplineStore store;
|
|
|
|
const int size = points.size();
|
|
if ( size <= 1 )
|
|
return store;
|
|
|
|
if ( size == 2 )
|
|
{
|
|
const double s0 = qwtSlopeLine( points[0], points[1] );
|
|
const double m1 = spline->slopeAtBeginning( points, s0 );
|
|
const double m2 = spline->slopeAtEnd( points, s0 );
|
|
|
|
store.init( points );
|
|
store.start( points[0], m1 );
|
|
store.addCubic( points[0], m1, points[1], m2 );
|
|
|
|
return store;
|
|
}
|
|
|
|
switch( spline->type() )
|
|
{
|
|
case QwtSplineLocal::Cardinal:
|
|
{
|
|
using namespace QwtSplineLocalP;
|
|
store = qwtSplineL1< SplineStore, slopeCardinal >( spline, points );
|
|
break;
|
|
}
|
|
case QwtSplineLocal::ParabolicBlending:
|
|
{
|
|
using namespace QwtSplineLocalP;
|
|
store = qwtSplineL1< SplineStore, slopeParabolicBlending >( spline, points );
|
|
break;
|
|
}
|
|
case QwtSplineLocal::PChip:
|
|
{
|
|
using namespace QwtSplineLocalP;
|
|
store = qwtSplineL1< SplineStore, slopePChip >( spline, points );
|
|
break;
|
|
}
|
|
case QwtSplineLocal::Akima:
|
|
{
|
|
store = qwtSplineAkima< SplineStore >( spline, points );
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return store;
|
|
}
|
|
|
|
/*!
|
|
\brief Constructor
|
|
|
|
\param type Spline type, specifying the type of interpolation
|
|
\sa type()
|
|
*/
|
|
QwtSplineLocal::QwtSplineLocal( Type type )
|
|
: m_type( type )
|
|
{
|
|
setBoundaryCondition( QwtSpline::AtBeginning, QwtSpline::LinearRunout );
|
|
setBoundaryValue( QwtSpline::AtBeginning, 0.0 );
|
|
|
|
setBoundaryCondition( QwtSpline::AtEnd, QwtSpline::LinearRunout );
|
|
setBoundaryValue( QwtSpline::AtEnd, 0.0 );
|
|
}
|
|
|
|
//! Destructor
|
|
QwtSplineLocal::~QwtSplineLocal()
|
|
{
|
|
}
|
|
|
|
/*!
|
|
\return Spline type, specifying the type of interpolation
|
|
*/
|
|
QwtSplineLocal::Type QwtSplineLocal::type() const
|
|
{
|
|
return m_type;
|
|
}
|
|
|
|
/*!
|
|
\brief Interpolate a curve with Bezier curves
|
|
|
|
Interpolates a polygon piecewise with cubic Bezier curves
|
|
and returns them as QPainterPath.
|
|
|
|
\param points Control points
|
|
\return Painter path, that can be rendered by QPainter
|
|
*/
|
|
QPainterPath QwtSplineLocal::painterPath( const QPolygonF& points ) const
|
|
{
|
|
if ( parametrization()->type() == QwtSplineParametrization::ParameterX )
|
|
{
|
|
using namespace QwtSplineLocalP;
|
|
return qwtSplineLocal< PathStore >( this, points).path;
|
|
}
|
|
|
|
return QwtSplineC1::painterPath( points );
|
|
}
|
|
|
|
/*!
|
|
\brief Interpolate a curve with Bezier curves
|
|
|
|
Interpolates a polygon piecewise with cubic Bezier curves
|
|
and returns the 2 control points of each curve as QLineF.
|
|
|
|
\param points Control points
|
|
\return Control points of the interpolating Bezier curves
|
|
*/
|
|
QVector< QLineF > QwtSplineLocal::bezierControlLines( const QPolygonF& points ) const
|
|
{
|
|
if ( parametrization()->type() == QwtSplineParametrization::ParameterX )
|
|
{
|
|
using namespace QwtSplineLocalP;
|
|
return qwtSplineLocal< ControlPointsStore >( this, points ).controlPoints;
|
|
}
|
|
|
|
return QwtSplineC1::bezierControlLines( points );
|
|
}
|
|
|
|
/*!
|
|
\brief Find the first derivative at the control points
|
|
|
|
\param points Control nodes of the spline
|
|
\return Vector with the values of the 2nd derivate at the control points
|
|
|
|
\note The x coordinates need to be increasing or decreasing
|
|
*/
|
|
QVector< double > QwtSplineLocal::slopes( const QPolygonF& points ) const
|
|
{
|
|
using namespace QwtSplineLocalP;
|
|
return qwtSplineLocal< SlopeStore >( this, points ).slopes;
|
|
}
|
|
|
|
/*!
|
|
\brief Calculate the interpolating polynomials for a non parametric spline
|
|
|
|
\param points Control points
|
|
\return Interpolating polynomials
|
|
|
|
\note The x coordinates need to be increasing or decreasing
|
|
\note The implementation simply calls QwtSplineC1::polynomials(), but is
|
|
intended to be replaced by a one pass calculation some day.
|
|
*/
|
|
QVector< QwtSplinePolynomial > QwtSplineLocal::polynomials( const QPolygonF& points ) const
|
|
{
|
|
// Polynomial store -> TODO
|
|
return QwtSplineC1::polynomials( points );
|
|
}
|
|
|
|
/*!
|
|
The locality of an spline interpolation identifies how many adjacent
|
|
polynomials are affected, when changing the position of one point.
|
|
|
|
The Cardinal, ParabolicBlending and PChip algorithms have a locality of 1,
|
|
while the Akima interpolation has a locality of 2.
|
|
|
|
\return 1 or 2.
|
|
*/
|
|
uint QwtSplineLocal::locality() const
|
|
{
|
|
switch ( m_type )
|
|
{
|
|
case Akima:
|
|
{
|
|
// polynomials: 2 left, 2 right
|
|
return 2;
|
|
}
|
|
case Cardinal:
|
|
case ParabolicBlending:
|
|
case PChip:
|
|
{
|
|
// polynomials: 1 left, 1 right
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return QwtSplineC1::locality();
|
|
}
|