mirror of
https://github.com/qgis/QGIS.git
synced 2025-10-04 00:04:03 -04:00
* require qwt >=6.2 (and fallback to internal 6.3 if system's qwt doesn't suffice) * debian doesn't have qwt for Qt6 and won't have it for trixie
430 lines
12 KiB
C++
430 lines
12 KiB
C++
/******************************************************************************
|
|
* Qwt Widget Library
|
|
* Copyright (C) 1997 Josef Wilgen
|
|
* Copyright (C) 2002 Uwe Rathmann
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the Qwt License, Version 1.0
|
|
*****************************************************************************/
|
|
|
|
#include "qwt_raster_data.h"
|
|
#include "qwt_point_3d.h"
|
|
#include "qwt_interval.h"
|
|
|
|
#include <qrect.h>
|
|
#include <qpolygon.h>
|
|
#include <qnumeric.h>
|
|
#include <qlist.h>
|
|
#include <qmap.h>
|
|
|
|
class QwtRasterData::ContourPlane
|
|
{
|
|
public:
|
|
explicit inline ContourPlane( double z ):
|
|
m_z( z )
|
|
{
|
|
}
|
|
|
|
inline bool intersect( const QwtPoint3D vertex[3],
|
|
QPointF line[2], bool ignoreOnPlane ) const;
|
|
|
|
inline double z() const { return m_z; }
|
|
|
|
private:
|
|
inline int compare( double z ) const;
|
|
inline QPointF intersection(
|
|
const QwtPoint3D& p1, const QwtPoint3D& p2 ) const;
|
|
|
|
double m_z;
|
|
};
|
|
|
|
inline bool QwtRasterData::ContourPlane::intersect(
|
|
const QwtPoint3D vertex[3], QPointF line[2],
|
|
bool ignoreOnPlane ) const
|
|
{
|
|
bool found = true;
|
|
|
|
// Are the vertices below (-1), on (0) or above (1) the plan ?
|
|
const int eq1 = compare( vertex[0].z() );
|
|
const int eq2 = compare( vertex[1].z() );
|
|
const int eq3 = compare( vertex[2].z() );
|
|
|
|
/*
|
|
(a) All the vertices lie below the contour level.
|
|
(b) Two vertices lie below and one on the contour level.
|
|
(c) Two vertices lie below and one above the contour level.
|
|
(d) One vertex lies below and two on the contour level.
|
|
(e) One vertex lies below, one on and one above the contour level.
|
|
(f) One vertex lies below and two above the contour level.
|
|
(g) Three vertices lie on the contour level.
|
|
(h) Two vertices lie on and one above the contour level.
|
|
(i) One vertex lies on and two above the contour level.
|
|
(j) All the vertices lie above the contour level.
|
|
*/
|
|
|
|
static const int tab[3][3][3] =
|
|
{
|
|
// jump table to avoid nested case statements
|
|
{ { 0, 0, 8 }, { 0, 2, 5 }, { 7, 6, 9 } },
|
|
{ { 0, 3, 4 }, { 1, 10, 1 }, { 4, 3, 0 } },
|
|
{ { 9, 6, 7 }, { 5, 2, 0 }, { 8, 0, 0 } }
|
|
};
|
|
|
|
const int edgeType = tab[eq1 + 1][eq2 + 1][eq3 + 1];
|
|
switch ( edgeType )
|
|
{
|
|
case 1:
|
|
// d(0,0,-1), h(0,0,1)
|
|
line[0] = vertex[0].toPoint();
|
|
line[1] = vertex[1].toPoint();
|
|
break;
|
|
case 2:
|
|
// d(-1,0,0), h(1,0,0)
|
|
line[0] = vertex[1].toPoint();
|
|
line[1] = vertex[2].toPoint();
|
|
break;
|
|
case 3:
|
|
// d(0,-1,0), h(0,1,0)
|
|
line[0] = vertex[2].toPoint();
|
|
line[1] = vertex[0].toPoint();
|
|
break;
|
|
case 4:
|
|
// e(0,-1,1), e(0,1,-1)
|
|
line[0] = vertex[0].toPoint();
|
|
line[1] = intersection( vertex[1], vertex[2] );
|
|
break;
|
|
case 5:
|
|
// e(-1,0,1), e(1,0,-1)
|
|
line[0] = vertex[1].toPoint();
|
|
line[1] = intersection( vertex[2], vertex[0] );
|
|
break;
|
|
case 6:
|
|
// e(-1,1,0), e(1,0,-1)
|
|
line[0] = vertex[2].toPoint();
|
|
line[1] = intersection( vertex[0], vertex[1] );
|
|
break;
|
|
case 7:
|
|
// c(-1,1,-1), f(1,1,-1)
|
|
line[0] = intersection( vertex[0], vertex[1] );
|
|
line[1] = intersection( vertex[1], vertex[2] );
|
|
break;
|
|
case 8:
|
|
// c(-1,-1,1), f(1,1,-1)
|
|
line[0] = intersection( vertex[1], vertex[2] );
|
|
line[1] = intersection( vertex[2], vertex[0] );
|
|
break;
|
|
case 9:
|
|
// f(-1,1,1), c(1,-1,-1)
|
|
line[0] = intersection( vertex[2], vertex[0] );
|
|
line[1] = intersection( vertex[0], vertex[1] );
|
|
break;
|
|
case 10:
|
|
// g(0,0,0)
|
|
// The CONREC algorithm has no satisfying solution for
|
|
// what to do, when all vertices are on the plane.
|
|
|
|
if ( ignoreOnPlane )
|
|
found = false;
|
|
else
|
|
{
|
|
line[0] = vertex[2].toPoint();
|
|
line[1] = vertex[0].toPoint();
|
|
}
|
|
break;
|
|
default:
|
|
found = false;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
inline int QwtRasterData::ContourPlane::compare( double z ) const
|
|
{
|
|
if ( z > m_z )
|
|
return 1;
|
|
|
|
if ( z < m_z )
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
inline QPointF QwtRasterData::ContourPlane::intersection(
|
|
const QwtPoint3D& p1, const QwtPoint3D& p2 ) const
|
|
{
|
|
const double h1 = p1.z() - m_z;
|
|
const double h2 = p2.z() - m_z;
|
|
|
|
const double x = ( h2 * p1.x() - h1 * p2.x() ) / ( h2 - h1 );
|
|
const double y = ( h2 * p1.y() - h1 * p2.y() ) / ( h2 - h1 );
|
|
|
|
return QPointF( x, y );
|
|
}
|
|
|
|
class QwtRasterData::PrivateData
|
|
{
|
|
public:
|
|
QwtRasterData::Attributes attributes;
|
|
};
|
|
|
|
//! Constructor
|
|
QwtRasterData::QwtRasterData()
|
|
{
|
|
m_data = new PrivateData();
|
|
}
|
|
|
|
//! Destructor
|
|
QwtRasterData::~QwtRasterData()
|
|
{
|
|
delete m_data;
|
|
}
|
|
|
|
/*!
|
|
Specify an attribute of the data
|
|
|
|
\param attribute Attribute
|
|
\param on On/Off
|
|
/sa Attribute, testAttribute()
|
|
*/
|
|
void QwtRasterData::setAttribute( Attribute attribute, bool on )
|
|
{
|
|
if ( on )
|
|
m_data->attributes |= attribute;
|
|
else
|
|
m_data->attributes &= ~attribute;
|
|
}
|
|
|
|
/*!
|
|
\return True, when attribute is enabled
|
|
\sa Attribute, setAttribute()
|
|
*/
|
|
bool QwtRasterData::testAttribute( Attribute attribute ) const
|
|
{
|
|
return m_data->attributes & attribute;
|
|
}
|
|
|
|
/*!
|
|
\brief Initialize a raster
|
|
|
|
Before the composition of an image QwtPlotSpectrogram calls initRaster(),
|
|
announcing the area and its resolution that will be requested.
|
|
|
|
The default implementation does nothing, but for data sets that
|
|
are stored in files, it might be good idea to reimplement initRaster(),
|
|
where the data is resampled and loaded into memory.
|
|
|
|
\param area Area of the raster
|
|
\param raster Number of horizontal and vertical pixels
|
|
|
|
\sa initRaster(), value()
|
|
*/
|
|
void QwtRasterData::initRaster( const QRectF& area, const QSize& raster )
|
|
{
|
|
Q_UNUSED( area );
|
|
Q_UNUSED( raster );
|
|
}
|
|
|
|
/*!
|
|
\brief Discard a raster
|
|
|
|
After the composition of an image QwtPlotSpectrogram calls discardRaster().
|
|
|
|
The default implementation does nothing, but if data has been loaded
|
|
in initRaster(), it could deleted now.
|
|
|
|
\sa initRaster(), value()
|
|
*/
|
|
void QwtRasterData::discardRaster()
|
|
{
|
|
}
|
|
|
|
/*!
|
|
\brief Pixel hint
|
|
|
|
pixelHint() returns the geometry of a pixel, that can be used
|
|
to calculate the resolution and alignment of the plot item, that is
|
|
representing the data.
|
|
|
|
Width and height of the hint need to be the horizontal
|
|
and vertical distances between 2 neighbored points.
|
|
The center of the hint has to be the position of any point
|
|
( it doesn't matter which one ).
|
|
|
|
An empty hint indicates, that there are values for any detail level.
|
|
|
|
Limiting the resolution of the image might significantly improve
|
|
the performance and heavily reduce the amount of memory when rendering
|
|
a QImage from the raster data.
|
|
|
|
The default implementation returns an empty rectangle recommending
|
|
to render in target device ( f.e. screen ) resolution.
|
|
|
|
\param area In most implementations the resolution of the data doesn't
|
|
depend on the requested area.
|
|
|
|
\return Bounding rectangle of a pixel
|
|
*/
|
|
QRectF QwtRasterData::pixelHint( const QRectF& area ) const
|
|
{
|
|
Q_UNUSED( area );
|
|
return QRectF();
|
|
}
|
|
|
|
/*!
|
|
Calculate contour lines
|
|
|
|
\param rect Bounding rectangle for the contour lines
|
|
\param raster Number of data pixels of the raster data
|
|
\param levels List of limits, where to insert contour lines
|
|
\param flags Flags to customize the contouring algorithm
|
|
|
|
\return Calculated contour lines
|
|
|
|
An adaption of CONREC, a simple contouring algorithm.
|
|
http://local.wasp.uwa.edu.au/~pbourke/papers/conrec/
|
|
*/
|
|
QwtRasterData::ContourLines QwtRasterData::contourLines(
|
|
const QRectF& rect, const QSize& raster,
|
|
const QList< double >& levels, ConrecFlags flags ) const
|
|
{
|
|
ContourLines contourLines;
|
|
|
|
if ( levels.size() == 0 || !rect.isValid() || !raster.isValid() )
|
|
return contourLines;
|
|
|
|
const double dx = rect.width() / raster.width();
|
|
const double dy = rect.height() / raster.height();
|
|
|
|
const bool ignoreOnPlane =
|
|
flags & QwtRasterData::IgnoreAllVerticesOnLevel;
|
|
|
|
const QwtInterval range = interval( Qt::ZAxis );
|
|
bool ignoreOutOfRange = false;
|
|
if ( range.isValid() )
|
|
ignoreOutOfRange = flags & IgnoreOutOfRange;
|
|
|
|
QwtRasterData* that = const_cast< QwtRasterData* >( this );
|
|
that->initRaster( rect, raster );
|
|
|
|
for ( int y = 0; y < raster.height() - 1; y++ )
|
|
{
|
|
enum Position
|
|
{
|
|
Center,
|
|
|
|
TopLeft,
|
|
TopRight,
|
|
BottomRight,
|
|
BottomLeft,
|
|
|
|
NumPositions
|
|
};
|
|
|
|
QwtPoint3D xy[NumPositions];
|
|
|
|
for ( int x = 0; x < raster.width() - 1; x++ )
|
|
{
|
|
const QPointF pos( rect.x() + x * dx, rect.y() + y * dy );
|
|
|
|
if ( x == 0 )
|
|
{
|
|
xy[TopRight].setX( pos.x() );
|
|
xy[TopRight].setY( pos.y() );
|
|
xy[TopRight].setZ(
|
|
value( xy[TopRight].x(), xy[TopRight].y() )
|
|
);
|
|
|
|
xy[BottomRight].setX( pos.x() );
|
|
xy[BottomRight].setY( pos.y() + dy );
|
|
xy[BottomRight].setZ(
|
|
value( xy[BottomRight].x(), xy[BottomRight].y() )
|
|
);
|
|
}
|
|
|
|
xy[TopLeft] = xy[TopRight];
|
|
xy[BottomLeft] = xy[BottomRight];
|
|
|
|
xy[TopRight].setX( pos.x() + dx );
|
|
xy[TopRight].setY( pos.y() );
|
|
xy[BottomRight].setX( pos.x() + dx );
|
|
xy[BottomRight].setY( pos.y() + dy );
|
|
|
|
xy[TopRight].setZ(
|
|
value( xy[TopRight].x(), xy[TopRight].y() )
|
|
);
|
|
xy[BottomRight].setZ(
|
|
value( xy[BottomRight].x(), xy[BottomRight].y() )
|
|
);
|
|
|
|
double zMin = xy[TopLeft].z();
|
|
double zMax = zMin;
|
|
double zSum = zMin;
|
|
|
|
for ( int i = TopRight; i <= BottomLeft; i++ )
|
|
{
|
|
const double z = xy[i].z();
|
|
|
|
zSum += z;
|
|
if ( z < zMin )
|
|
zMin = z;
|
|
if ( z > zMax )
|
|
zMax = z;
|
|
}
|
|
|
|
if ( qIsNaN( zSum ) )
|
|
{
|
|
// one of the points is NaN
|
|
continue;
|
|
}
|
|
|
|
if ( ignoreOutOfRange )
|
|
{
|
|
if ( !range.contains( zMin ) || !range.contains( zMax ) )
|
|
continue;
|
|
}
|
|
|
|
if ( zMax < levels[0] ||
|
|
zMin > levels[levels.size() - 1] )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
xy[Center].setX( pos.x() + 0.5 * dx );
|
|
xy[Center].setY( pos.y() + 0.5 * dy );
|
|
xy[Center].setZ( 0.25 * zSum );
|
|
|
|
const int numLevels = levels.size();
|
|
for ( int l = 0; l < numLevels; l++ )
|
|
{
|
|
const double level = levels[l];
|
|
if ( level < zMin || level > zMax )
|
|
continue;
|
|
QPolygonF& lines = contourLines[level];
|
|
const ContourPlane plane( level );
|
|
|
|
QPointF line[2];
|
|
QwtPoint3D vertex[3];
|
|
|
|
for ( int m = TopLeft; m < NumPositions; m++ )
|
|
{
|
|
vertex[0] = xy[m];
|
|
vertex[1] = xy[0];
|
|
vertex[2] = xy[m != BottomLeft ? m + 1 : TopLeft];
|
|
|
|
const bool intersects =
|
|
plane.intersect( vertex, line, ignoreOnPlane );
|
|
if ( intersects )
|
|
{
|
|
lines += line[0];
|
|
lines += line[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
that->discardRaster();
|
|
|
|
return contourLines;
|
|
}
|