mirror of
https://github.com/qgis/QGIS.git
synced 2025-03-04 00:30:59 -05:00
have specific icons, instead of generic qgis icon We consider these 'top level' algorithms, and using the standard algorithm icon should help reflect this and differentiate them from 3rd party algorithms.
225 lines
8.4 KiB
Python
225 lines
8.4 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
***************************************************************************
|
|
HypsometricCurves.py
|
|
---------------------
|
|
Date : November 2014
|
|
Copyright : (C) 2014 by Alexander Bruy
|
|
Email : alexander dot bruy at gmail dot com
|
|
***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************
|
|
"""
|
|
from builtins import str
|
|
|
|
__author__ = 'Alexander Bruy'
|
|
__date__ = 'November 2014'
|
|
__copyright__ = '(C) 2014, Alexander Bruy'
|
|
|
|
# This will get replaced with a git SHA1 when you do a git archive
|
|
|
|
__revision__ = '$Format:%H$'
|
|
|
|
import os
|
|
|
|
import numpy
|
|
from osgeo import gdal, ogr, osr
|
|
|
|
from qgis.core import (QgsRectangle,
|
|
QgsFeatureSink,
|
|
QgsGeometry,
|
|
QgsApplication,
|
|
QgsProcessingUtils)
|
|
|
|
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
|
|
from processing.core.parameters import ParameterRaster
|
|
from processing.core.parameters import ParameterVector
|
|
from processing.core.parameters import ParameterNumber
|
|
from processing.core.parameters import ParameterBoolean
|
|
from processing.core.outputs import OutputDirectory
|
|
|
|
from processing.tools import raster, vector, dataobjects
|
|
|
|
|
|
class HypsometricCurves(QgisAlgorithm):
|
|
|
|
INPUT_DEM = 'INPUT_DEM'
|
|
BOUNDARY_LAYER = 'BOUNDARY_LAYER'
|
|
STEP = 'STEP'
|
|
USE_PERCENTAGE = 'USE_PERCENTAGE'
|
|
OUTPUT_DIRECTORY = 'OUTPUT_DIRECTORY'
|
|
|
|
def group(self):
|
|
return self.tr('Raster tools')
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.addParameter(ParameterRaster(self.INPUT_DEM,
|
|
self.tr('DEM to analyze')))
|
|
self.addParameter(ParameterVector(self.BOUNDARY_LAYER,
|
|
self.tr('Boundary layer'), dataobjects.TYPE_VECTOR_POLYGON))
|
|
self.addParameter(ParameterNumber(self.STEP,
|
|
self.tr('Step'), 0.0, 999999999.999999, 100.0))
|
|
self.addParameter(ParameterBoolean(self.USE_PERCENTAGE,
|
|
self.tr('Use % of area instead of absolute value'), False))
|
|
|
|
self.addOutput(OutputDirectory(self.OUTPUT_DIRECTORY,
|
|
self.tr('Hypsometric curves')))
|
|
|
|
def name(self):
|
|
return 'hypsometriccurves'
|
|
|
|
def displayName(self):
|
|
return self.tr('Hypsometric curves')
|
|
|
|
def processAlgorithm(self, parameters, context, feedback):
|
|
rasterPath = self.getParameterValue(self.INPUT_DEM)
|
|
layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.BOUNDARY_LAYER), context)
|
|
step = self.getParameterValue(self.STEP)
|
|
percentage = self.getParameterValue(self.USE_PERCENTAGE)
|
|
|
|
outputPath = self.getOutputValue(self.OUTPUT_DIRECTORY)
|
|
|
|
rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
|
|
geoTransform = rasterDS.GetGeoTransform()
|
|
rasterBand = rasterDS.GetRasterBand(1)
|
|
noData = rasterBand.GetNoDataValue()
|
|
|
|
cellXSize = abs(geoTransform[1])
|
|
cellYSize = abs(geoTransform[5])
|
|
rasterXSize = rasterDS.RasterXSize
|
|
rasterYSize = rasterDS.RasterYSize
|
|
|
|
rasterBBox = QgsRectangle(geoTransform[0],
|
|
geoTransform[3] - cellYSize * rasterYSize,
|
|
geoTransform[0] + cellXSize * rasterXSize,
|
|
geoTransform[3])
|
|
rasterGeom = QgsGeometry.fromRect(rasterBBox)
|
|
|
|
crs = osr.SpatialReference()
|
|
crs.ImportFromProj4(str(layer.crs().toProj4()))
|
|
|
|
memVectorDriver = ogr.GetDriverByName('Memory')
|
|
memRasterDriver = gdal.GetDriverByName('MEM')
|
|
|
|
features = QgsProcessingUtils.getFeatures(layer, context)
|
|
total = 100.0 / layer.featureCount() if layer.featureCount() else 0
|
|
|
|
for current, f in enumerate(features):
|
|
geom = f.geometry()
|
|
intersectedGeom = rasterGeom.intersection(geom)
|
|
|
|
if intersectedGeom.isEmpty():
|
|
feedback.pushInfo(
|
|
self.tr('Feature {0} does not intersect raster or '
|
|
'entirely located in NODATA area').format(f.id()))
|
|
continue
|
|
|
|
fName = os.path.join(
|
|
outputPath, 'hystogram_%s_%s.csv' % (layer.name(), f.id()))
|
|
|
|
ogrGeom = ogr.CreateGeometryFromWkt(intersectedGeom.exportToWkt())
|
|
bbox = intersectedGeom.boundingBox()
|
|
xMin = bbox.xMinimum()
|
|
xMax = bbox.xMaximum()
|
|
yMin = bbox.yMinimum()
|
|
yMax = bbox.yMaximum()
|
|
|
|
(startColumn, startRow) = raster.mapToPixel(xMin, yMax, geoTransform)
|
|
(endColumn, endRow) = raster.mapToPixel(xMax, yMin, geoTransform)
|
|
|
|
width = endColumn - startColumn
|
|
height = endRow - startRow
|
|
|
|
srcOffset = (startColumn, startRow, width, height)
|
|
srcArray = rasterBand.ReadAsArray(*srcOffset)
|
|
|
|
if srcOffset[2] == 0 or srcOffset[3] == 0:
|
|
feedback.pushInfo(
|
|
self.tr('Feature {0} is smaller than raster '
|
|
'cell size').format(f.id()))
|
|
continue
|
|
|
|
newGeoTransform = (
|
|
geoTransform[0] + srcOffset[0] * geoTransform[1],
|
|
geoTransform[1],
|
|
0.0,
|
|
geoTransform[3] + srcOffset[1] * geoTransform[5],
|
|
0.0,
|
|
geoTransform[5]
|
|
)
|
|
|
|
memVDS = memVectorDriver.CreateDataSource('out')
|
|
memLayer = memVDS.CreateLayer('poly', crs, ogr.wkbPolygon)
|
|
|
|
ft = ogr.Feature(memLayer.GetLayerDefn())
|
|
ft.SetGeometry(ogrGeom)
|
|
memLayer.CreateFeature(ft)
|
|
ft.Destroy()
|
|
|
|
rasterizedDS = memRasterDriver.Create('', srcOffset[2],
|
|
srcOffset[3], 1, gdal.GDT_Byte)
|
|
rasterizedDS.SetGeoTransform(newGeoTransform)
|
|
gdal.RasterizeLayer(rasterizedDS, [1], memLayer, burn_values=[1])
|
|
rasterizedArray = rasterizedDS.ReadAsArray()
|
|
|
|
srcArray = numpy.nan_to_num(srcArray)
|
|
masked = numpy.ma.MaskedArray(srcArray,
|
|
mask=numpy.logical_or(srcArray == noData,
|
|
numpy.logical_not(rasterizedArray)))
|
|
|
|
self.calculateHypsometry(f.id(), fName, feedback, masked,
|
|
cellXSize, cellYSize, percentage, step)
|
|
|
|
memVDS = None
|
|
rasterizedDS = None
|
|
feedback.setProgress(int(current * total))
|
|
|
|
rasterDS = None
|
|
|
|
def calculateHypsometry(self, fid, fName, feedback, data, pX, pY,
|
|
percentage, step):
|
|
out = dict()
|
|
d = data.compressed()
|
|
if d.size == 0:
|
|
feedback.pushInfo(
|
|
self.tr('Feature {0} does not intersect raster or '
|
|
'entirely located in NODATA area').format(fid))
|
|
return
|
|
|
|
minValue = d.min()
|
|
maxValue = d.max()
|
|
startValue = minValue
|
|
tmpValue = minValue + step
|
|
while startValue < maxValue:
|
|
out[tmpValue] = ((startValue <= d) & (d < tmpValue)).sum()
|
|
startValue = tmpValue
|
|
tmpValue += step
|
|
|
|
if percentage:
|
|
multiplier = 100.0 / len(d.flat)
|
|
else:
|
|
multiplier = pX * pY
|
|
|
|
for k, v in list(out.items()):
|
|
out[k] = v * multiplier
|
|
|
|
prev = None
|
|
for i in sorted(out.items()):
|
|
if prev is None:
|
|
out[i[0]] = i[1]
|
|
else:
|
|
out[i[0]] = i[1] + out[prev]
|
|
prev = i[0]
|
|
|
|
writer = vector.TableWriter(fName, 'utf-8', [self.tr('Area'), self.tr('Elevation')])
|
|
for i in sorted(out.items()):
|
|
writer.addRecord([i[1], i[0]])
|
|
del writer
|