QGIS/python/plugins/processing/algs/qgis/PointDistance.py
2024-11-29 15:38:02 +01:00

432 lines
14 KiB
Python

"""
***************************************************************************
PointDistance.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = "Victor Olaya"
__date__ = "August 2012"
__copyright__ = "(C) 2012, Victor Olaya"
import os
import math
from qgis.PyQt.QtGui import QIcon
from qgis.PyQt.QtCore import QMetaType
from qgis.core import (
QgsApplication,
QgsFeatureRequest,
QgsField,
QgsFields,
QgsProject,
QgsFeature,
QgsGeometry,
QgsDistanceArea,
QgsFeatureSink,
QgsProcessingParameterFeatureSource,
QgsProcessing,
QgsProcessingException,
QgsProcessingParameterEnum,
QgsProcessingParameterField,
QgsProcessingParameterNumber,
QgsProcessingParameterFeatureSink,
QgsSpatialIndex,
QgsWkbTypes,
)
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class PointDistance(QgisAlgorithm):
INPUT = "INPUT"
INPUT_FIELD = "INPUT_FIELD"
TARGET = "TARGET"
TARGET_FIELD = "TARGET_FIELD"
MATRIX_TYPE = "MATRIX_TYPE"
NEAREST_POINTS = "NEAREST_POINTS"
OUTPUT = "OUTPUT"
def icon(self):
return QgsApplication.getThemeIcon("/algorithms/mAlgorithmDistanceMatrix.svg")
def svgIconPath(self):
return QgsApplication.iconPath("/algorithms/mAlgorithmDistanceMatrix.svg")
def group(self):
return self.tr("Vector analysis")
def groupId(self):
return "vectoranalysis"
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.mat_types = [
self.tr("Linear (N*k x 3) distance matrix"),
self.tr("Standard (N x T) distance matrix"),
self.tr("Summary distance matrix (mean, std. dev., min, max)"),
]
self.addParameter(
QgsProcessingParameterFeatureSource(
self.INPUT,
self.tr("Input point layer"),
[QgsProcessing.SourceType.TypeVectorPoint],
)
)
self.addParameter(
QgsProcessingParameterField(
self.INPUT_FIELD,
self.tr("Input unique ID field"),
parentLayerParameterName=self.INPUT,
type=QgsProcessingParameterField.DataType.Any,
)
)
self.addParameter(
QgsProcessingParameterFeatureSource(
self.TARGET,
self.tr("Target point layer"),
[QgsProcessing.SourceType.TypeVectorPoint],
)
)
self.addParameter(
QgsProcessingParameterField(
self.TARGET_FIELD,
self.tr("Target unique ID field"),
parentLayerParameterName=self.TARGET,
type=QgsProcessingParameterField.DataType.Any,
)
)
self.addParameter(
QgsProcessingParameterEnum(
self.MATRIX_TYPE,
self.tr("Output matrix type"),
options=self.mat_types,
defaultValue=0,
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.NEAREST_POINTS,
self.tr("Use only the nearest (k) target points"),
type=QgsProcessingParameterNumber.Type.Integer,
minValue=0,
defaultValue=0,
)
)
self.addParameter(
QgsProcessingParameterFeatureSink(
self.OUTPUT,
self.tr("Distance matrix"),
QgsProcessing.SourceType.TypeVectorPoint,
)
)
def name(self):
return "distancematrix"
def displayName(self):
return self.tr("Distance matrix")
def processAlgorithm(self, parameters, context, feedback):
source = self.parameterAsSource(parameters, self.INPUT, context)
if source is None:
raise QgsProcessingException(
self.invalidSourceError(parameters, self.INPUT)
)
if QgsWkbTypes.isMultiType(source.wkbType()):
raise QgsProcessingException(
self.tr(
"Input point layer is a MultiPoint layer - first convert to single points before using this algorithm."
)
)
source_field = self.parameterAsString(parameters, self.INPUT_FIELD, context)
target_source = self.parameterAsSource(parameters, self.TARGET, context)
if target_source is None:
raise QgsProcessingException(
self.invalidSourceError(parameters, self.TARGET)
)
if QgsWkbTypes.isMultiType(target_source.wkbType()):
raise QgsProcessingException(
self.tr(
"Target point layer is a MultiPoint layer - first convert to single points before using this algorithm."
)
)
target_field = self.parameterAsString(parameters, self.TARGET_FIELD, context)
same_source_and_target = parameters[self.INPUT] == parameters[self.TARGET]
matType = self.parameterAsEnum(parameters, self.MATRIX_TYPE, context)
nPoints = self.parameterAsInt(parameters, self.NEAREST_POINTS, context)
if nPoints < 1:
nPoints = target_source.featureCount()
if matType == 0:
# Linear distance matrix
return self.linearMatrix(
parameters,
context,
source,
source_field,
target_source,
target_field,
same_source_and_target,
matType,
nPoints,
feedback,
)
elif matType == 1:
# Standard distance matrix
return self.regularMatrix(
parameters,
context,
source,
source_field,
target_source,
target_field,
nPoints,
feedback,
)
elif matType == 2:
# Summary distance matrix
return self.linearMatrix(
parameters,
context,
source,
source_field,
target_source,
target_field,
same_source_and_target,
matType,
nPoints,
feedback,
)
def linearMatrix(
self,
parameters,
context,
source,
inField,
target_source,
targetField,
same_source_and_target,
matType,
nPoints,
feedback,
):
if same_source_and_target:
# need to fetch an extra point from the index, since the closest match will always be the same
# as the input feature
nPoints += 1
inIdx = source.fields().lookupField(inField)
outIdx = target_source.fields().lookupField(targetField)
fields = QgsFields()
input_id_field = source.fields()[inIdx]
input_id_field.setName("InputID")
fields.append(input_id_field)
if matType == 0:
target_id_field = target_source.fields()[outIdx]
target_id_field.setName("TargetID")
fields.append(target_id_field)
fields.append(QgsField("Distance", QMetaType.Type.Double))
else:
fields.append(QgsField("MEAN", QMetaType.Type.Double))
fields.append(QgsField("STDDEV", QMetaType.Type.Double))
fields.append(QgsField("MIN", QMetaType.Type.Double))
fields.append(QgsField("MAX", QMetaType.Type.Double))
out_wkb = (
QgsWkbTypes.multiType(source.wkbType())
if matType == 0
else source.wkbType()
)
(sink, dest_id) = self.parameterAsSink(
parameters, self.OUTPUT, context, fields, out_wkb, source.sourceCrs()
)
if sink is None:
raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
index = QgsSpatialIndex(
target_source.getFeatures(
QgsFeatureRequest()
.setSubsetOfAttributes([])
.setDestinationCrs(source.sourceCrs(), context.transformContext())
),
feedback,
)
distArea = QgsDistanceArea()
distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
distArea.setEllipsoid(context.ellipsoid())
features = source.getFeatures(
QgsFeatureRequest().setSubsetOfAttributes([inIdx])
)
total = 100.0 / source.featureCount() if source.featureCount() else 0
for current, inFeat in enumerate(features):
if feedback.isCanceled():
break
inGeom = inFeat.geometry()
inID = str(inFeat[inIdx])
featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
distList = []
vari = 0.0
request = (
QgsFeatureRequest()
.setFilterFids(featList)
.setSubsetOfAttributes([outIdx])
.setDestinationCrs(source.sourceCrs(), context.transformContext())
)
for outFeat in target_source.getFeatures(request):
if feedback.isCanceled():
break
if same_source_and_target and inFeat.id() == outFeat.id():
continue
outID = outFeat[outIdx]
outGeom = outFeat.geometry()
dist = distArea.measureLine(inGeom.asPoint(), outGeom.asPoint())
if matType == 0:
out_feature = QgsFeature()
out_geom = QgsGeometry.unaryUnion(
[inFeat.geometry(), outFeat.geometry()]
)
out_feature.setGeometry(out_geom)
out_feature.setAttributes([inID, outID, dist])
sink.addFeature(out_feature, QgsFeatureSink.Flag.FastInsert)
else:
distList.append(float(dist))
if matType != 0:
mean = sum(distList) / len(distList)
for i in distList:
vari += (i - mean) * (i - mean)
vari = math.sqrt(vari / len(distList))
out_feature = QgsFeature()
out_feature.setGeometry(inFeat.geometry())
out_feature.setAttributes(
[inID, mean, vari, min(distList), max(distList)]
)
sink.addFeature(out_feature, QgsFeatureSink.Flag.FastInsert)
feedback.setProgress(int(current * total))
sink.finalize()
return {self.OUTPUT: dest_id}
def regularMatrix(
self,
parameters,
context,
source,
inField,
target_source,
targetField,
nPoints,
feedback,
):
distArea = QgsDistanceArea()
distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
distArea.setEllipsoid(context.ellipsoid())
inIdx = source.fields().lookupField(inField)
targetIdx = target_source.fields().lookupField(targetField)
index = QgsSpatialIndex(
target_source.getFeatures(
QgsFeatureRequest()
.setSubsetOfAttributes([])
.setDestinationCrs(source.sourceCrs(), context.transformContext())
),
feedback,
)
first = True
sink = None
dest_id = None
features = source.getFeatures(
QgsFeatureRequest().setSubsetOfAttributes([inIdx])
)
total = 100.0 / source.featureCount() if source.featureCount() else 0
for current, inFeat in enumerate(features):
if feedback.isCanceled():
break
inGeom = inFeat.geometry()
if first:
featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
first = False
fields = QgsFields()
input_id_field = source.fields()[inIdx]
input_id_field.setName("ID")
fields.append(input_id_field)
for f in target_source.getFeatures(
QgsFeatureRequest()
.setFilterFids(featList)
.setSubsetOfAttributes([targetIdx])
.setDestinationCrs(source.sourceCrs(), context.transformContext())
):
fields.append(QgsField(str(f[targetField]), QMetaType.Type.Double))
(sink, dest_id) = self.parameterAsSink(
parameters,
self.OUTPUT,
context,
fields,
source.wkbType(),
source.sourceCrs(),
)
if sink is None:
raise QgsProcessingException(
self.invalidSinkError(parameters, self.OUTPUT)
)
data = [inFeat[inField]]
for target in target_source.getFeatures(
QgsFeatureRequest()
.setSubsetOfAttributes([])
.setFilterFids(featList)
.setDestinationCrs(source.sourceCrs(), context.transformContext())
):
if feedback.isCanceled():
break
outGeom = target.geometry()
dist = distArea.measureLine(inGeom.asPoint(), outGeom.asPoint())
data.append(dist)
out_feature = QgsFeature()
out_feature.setGeometry(inGeom)
out_feature.setAttributes(data)
sink.addFeature(out_feature, QgsFeatureSink.Flag.FastInsert)
feedback.setProgress(int(current * total))
return {self.OUTPUT: dest_id}