mirror of
https://github.com/qgis/QGIS.git
synced 2025-10-18 00:06:00 -04:00
432 lines
14 KiB
Python
432 lines
14 KiB
Python
"""
|
|
***************************************************************************
|
|
PointDistance.py
|
|
---------------------
|
|
Date : August 2012
|
|
Copyright : (C) 2012 by Victor Olaya
|
|
Email : volayaf at gmail dot com
|
|
***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************
|
|
"""
|
|
|
|
__author__ = "Victor Olaya"
|
|
__date__ = "August 2012"
|
|
__copyright__ = "(C) 2012, Victor Olaya"
|
|
|
|
import os
|
|
import math
|
|
|
|
from qgis.PyQt.QtGui import QIcon
|
|
from qgis.PyQt.QtCore import QMetaType
|
|
|
|
from qgis.core import (
|
|
QgsApplication,
|
|
QgsFeatureRequest,
|
|
QgsField,
|
|
QgsFields,
|
|
QgsProject,
|
|
QgsFeature,
|
|
QgsGeometry,
|
|
QgsDistanceArea,
|
|
QgsFeatureSink,
|
|
QgsProcessingParameterFeatureSource,
|
|
QgsProcessing,
|
|
QgsProcessingException,
|
|
QgsProcessingParameterEnum,
|
|
QgsProcessingParameterField,
|
|
QgsProcessingParameterNumber,
|
|
QgsProcessingParameterFeatureSink,
|
|
QgsSpatialIndex,
|
|
QgsWkbTypes,
|
|
)
|
|
|
|
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
|
|
|
|
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
|
|
|
|
|
|
class PointDistance(QgisAlgorithm):
|
|
INPUT = "INPUT"
|
|
INPUT_FIELD = "INPUT_FIELD"
|
|
TARGET = "TARGET"
|
|
TARGET_FIELD = "TARGET_FIELD"
|
|
MATRIX_TYPE = "MATRIX_TYPE"
|
|
NEAREST_POINTS = "NEAREST_POINTS"
|
|
OUTPUT = "OUTPUT"
|
|
|
|
def icon(self):
|
|
return QgsApplication.getThemeIcon("/algorithms/mAlgorithmDistanceMatrix.svg")
|
|
|
|
def svgIconPath(self):
|
|
return QgsApplication.iconPath("/algorithms/mAlgorithmDistanceMatrix.svg")
|
|
|
|
def group(self):
|
|
return self.tr("Vector analysis")
|
|
|
|
def groupId(self):
|
|
return "vectoranalysis"
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def initAlgorithm(self, config=None):
|
|
self.mat_types = [
|
|
self.tr("Linear (N*k x 3) distance matrix"),
|
|
self.tr("Standard (N x T) distance matrix"),
|
|
self.tr("Summary distance matrix (mean, std. dev., min, max)"),
|
|
]
|
|
|
|
self.addParameter(
|
|
QgsProcessingParameterFeatureSource(
|
|
self.INPUT,
|
|
self.tr("Input point layer"),
|
|
[QgsProcessing.SourceType.TypeVectorPoint],
|
|
)
|
|
)
|
|
self.addParameter(
|
|
QgsProcessingParameterField(
|
|
self.INPUT_FIELD,
|
|
self.tr("Input unique ID field"),
|
|
parentLayerParameterName=self.INPUT,
|
|
type=QgsProcessingParameterField.DataType.Any,
|
|
)
|
|
)
|
|
self.addParameter(
|
|
QgsProcessingParameterFeatureSource(
|
|
self.TARGET,
|
|
self.tr("Target point layer"),
|
|
[QgsProcessing.SourceType.TypeVectorPoint],
|
|
)
|
|
)
|
|
self.addParameter(
|
|
QgsProcessingParameterField(
|
|
self.TARGET_FIELD,
|
|
self.tr("Target unique ID field"),
|
|
parentLayerParameterName=self.TARGET,
|
|
type=QgsProcessingParameterField.DataType.Any,
|
|
)
|
|
)
|
|
self.addParameter(
|
|
QgsProcessingParameterEnum(
|
|
self.MATRIX_TYPE,
|
|
self.tr("Output matrix type"),
|
|
options=self.mat_types,
|
|
defaultValue=0,
|
|
)
|
|
)
|
|
self.addParameter(
|
|
QgsProcessingParameterNumber(
|
|
self.NEAREST_POINTS,
|
|
self.tr("Use only the nearest (k) target points"),
|
|
type=QgsProcessingParameterNumber.Type.Integer,
|
|
minValue=0,
|
|
defaultValue=0,
|
|
)
|
|
)
|
|
|
|
self.addParameter(
|
|
QgsProcessingParameterFeatureSink(
|
|
self.OUTPUT,
|
|
self.tr("Distance matrix"),
|
|
QgsProcessing.SourceType.TypeVectorPoint,
|
|
)
|
|
)
|
|
|
|
def name(self):
|
|
return "distancematrix"
|
|
|
|
def displayName(self):
|
|
return self.tr("Distance matrix")
|
|
|
|
def processAlgorithm(self, parameters, context, feedback):
|
|
source = self.parameterAsSource(parameters, self.INPUT, context)
|
|
if source is None:
|
|
raise QgsProcessingException(
|
|
self.invalidSourceError(parameters, self.INPUT)
|
|
)
|
|
|
|
if QgsWkbTypes.isMultiType(source.wkbType()):
|
|
raise QgsProcessingException(
|
|
self.tr(
|
|
"Input point layer is a MultiPoint layer - first convert to single points before using this algorithm."
|
|
)
|
|
)
|
|
|
|
source_field = self.parameterAsString(parameters, self.INPUT_FIELD, context)
|
|
target_source = self.parameterAsSource(parameters, self.TARGET, context)
|
|
if target_source is None:
|
|
raise QgsProcessingException(
|
|
self.invalidSourceError(parameters, self.TARGET)
|
|
)
|
|
|
|
if QgsWkbTypes.isMultiType(target_source.wkbType()):
|
|
raise QgsProcessingException(
|
|
self.tr(
|
|
"Target point layer is a MultiPoint layer - first convert to single points before using this algorithm."
|
|
)
|
|
)
|
|
|
|
target_field = self.parameterAsString(parameters, self.TARGET_FIELD, context)
|
|
same_source_and_target = parameters[self.INPUT] == parameters[self.TARGET]
|
|
matType = self.parameterAsEnum(parameters, self.MATRIX_TYPE, context)
|
|
nPoints = self.parameterAsInt(parameters, self.NEAREST_POINTS, context)
|
|
|
|
if nPoints < 1:
|
|
nPoints = target_source.featureCount()
|
|
|
|
if matType == 0:
|
|
# Linear distance matrix
|
|
return self.linearMatrix(
|
|
parameters,
|
|
context,
|
|
source,
|
|
source_field,
|
|
target_source,
|
|
target_field,
|
|
same_source_and_target,
|
|
matType,
|
|
nPoints,
|
|
feedback,
|
|
)
|
|
elif matType == 1:
|
|
# Standard distance matrix
|
|
return self.regularMatrix(
|
|
parameters,
|
|
context,
|
|
source,
|
|
source_field,
|
|
target_source,
|
|
target_field,
|
|
nPoints,
|
|
feedback,
|
|
)
|
|
elif matType == 2:
|
|
# Summary distance matrix
|
|
return self.linearMatrix(
|
|
parameters,
|
|
context,
|
|
source,
|
|
source_field,
|
|
target_source,
|
|
target_field,
|
|
same_source_and_target,
|
|
matType,
|
|
nPoints,
|
|
feedback,
|
|
)
|
|
|
|
def linearMatrix(
|
|
self,
|
|
parameters,
|
|
context,
|
|
source,
|
|
inField,
|
|
target_source,
|
|
targetField,
|
|
same_source_and_target,
|
|
matType,
|
|
nPoints,
|
|
feedback,
|
|
):
|
|
|
|
if same_source_and_target:
|
|
# need to fetch an extra point from the index, since the closest match will always be the same
|
|
# as the input feature
|
|
nPoints += 1
|
|
|
|
inIdx = source.fields().lookupField(inField)
|
|
outIdx = target_source.fields().lookupField(targetField)
|
|
|
|
fields = QgsFields()
|
|
input_id_field = source.fields()[inIdx]
|
|
input_id_field.setName("InputID")
|
|
fields.append(input_id_field)
|
|
if matType == 0:
|
|
target_id_field = target_source.fields()[outIdx]
|
|
target_id_field.setName("TargetID")
|
|
fields.append(target_id_field)
|
|
fields.append(QgsField("Distance", QMetaType.Type.Double))
|
|
else:
|
|
fields.append(QgsField("MEAN", QMetaType.Type.Double))
|
|
fields.append(QgsField("STDDEV", QMetaType.Type.Double))
|
|
fields.append(QgsField("MIN", QMetaType.Type.Double))
|
|
fields.append(QgsField("MAX", QMetaType.Type.Double))
|
|
|
|
out_wkb = (
|
|
QgsWkbTypes.multiType(source.wkbType())
|
|
if matType == 0
|
|
else source.wkbType()
|
|
)
|
|
(sink, dest_id) = self.parameterAsSink(
|
|
parameters, self.OUTPUT, context, fields, out_wkb, source.sourceCrs()
|
|
)
|
|
if sink is None:
|
|
raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
|
|
|
|
index = QgsSpatialIndex(
|
|
target_source.getFeatures(
|
|
QgsFeatureRequest()
|
|
.setSubsetOfAttributes([])
|
|
.setDestinationCrs(source.sourceCrs(), context.transformContext())
|
|
),
|
|
feedback,
|
|
)
|
|
|
|
distArea = QgsDistanceArea()
|
|
distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
|
|
distArea.setEllipsoid(context.ellipsoid())
|
|
|
|
features = source.getFeatures(
|
|
QgsFeatureRequest().setSubsetOfAttributes([inIdx])
|
|
)
|
|
total = 100.0 / source.featureCount() if source.featureCount() else 0
|
|
for current, inFeat in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
|
|
inGeom = inFeat.geometry()
|
|
inID = str(inFeat[inIdx])
|
|
featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
|
|
distList = []
|
|
vari = 0.0
|
|
request = (
|
|
QgsFeatureRequest()
|
|
.setFilterFids(featList)
|
|
.setSubsetOfAttributes([outIdx])
|
|
.setDestinationCrs(source.sourceCrs(), context.transformContext())
|
|
)
|
|
for outFeat in target_source.getFeatures(request):
|
|
if feedback.isCanceled():
|
|
break
|
|
|
|
if same_source_and_target and inFeat.id() == outFeat.id():
|
|
continue
|
|
|
|
outID = outFeat[outIdx]
|
|
outGeom = outFeat.geometry()
|
|
dist = distArea.measureLine(inGeom.asPoint(), outGeom.asPoint())
|
|
|
|
if matType == 0:
|
|
out_feature = QgsFeature()
|
|
out_geom = QgsGeometry.unaryUnion(
|
|
[inFeat.geometry(), outFeat.geometry()]
|
|
)
|
|
out_feature.setGeometry(out_geom)
|
|
out_feature.setAttributes([inID, outID, dist])
|
|
sink.addFeature(out_feature, QgsFeatureSink.Flag.FastInsert)
|
|
else:
|
|
distList.append(float(dist))
|
|
|
|
if matType != 0:
|
|
mean = sum(distList) / len(distList)
|
|
for i in distList:
|
|
vari += (i - mean) * (i - mean)
|
|
vari = math.sqrt(vari / len(distList))
|
|
|
|
out_feature = QgsFeature()
|
|
out_feature.setGeometry(inFeat.geometry())
|
|
out_feature.setAttributes(
|
|
[inID, mean, vari, min(distList), max(distList)]
|
|
)
|
|
sink.addFeature(out_feature, QgsFeatureSink.Flag.FastInsert)
|
|
|
|
feedback.setProgress(int(current * total))
|
|
|
|
sink.finalize()
|
|
return {self.OUTPUT: dest_id}
|
|
|
|
def regularMatrix(
|
|
self,
|
|
parameters,
|
|
context,
|
|
source,
|
|
inField,
|
|
target_source,
|
|
targetField,
|
|
nPoints,
|
|
feedback,
|
|
):
|
|
|
|
distArea = QgsDistanceArea()
|
|
distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
|
|
distArea.setEllipsoid(context.ellipsoid())
|
|
|
|
inIdx = source.fields().lookupField(inField)
|
|
targetIdx = target_source.fields().lookupField(targetField)
|
|
|
|
index = QgsSpatialIndex(
|
|
target_source.getFeatures(
|
|
QgsFeatureRequest()
|
|
.setSubsetOfAttributes([])
|
|
.setDestinationCrs(source.sourceCrs(), context.transformContext())
|
|
),
|
|
feedback,
|
|
)
|
|
|
|
first = True
|
|
sink = None
|
|
dest_id = None
|
|
features = source.getFeatures(
|
|
QgsFeatureRequest().setSubsetOfAttributes([inIdx])
|
|
)
|
|
total = 100.0 / source.featureCount() if source.featureCount() else 0
|
|
for current, inFeat in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
|
|
inGeom = inFeat.geometry()
|
|
if first:
|
|
featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
|
|
first = False
|
|
fields = QgsFields()
|
|
input_id_field = source.fields()[inIdx]
|
|
input_id_field.setName("ID")
|
|
fields.append(input_id_field)
|
|
for f in target_source.getFeatures(
|
|
QgsFeatureRequest()
|
|
.setFilterFids(featList)
|
|
.setSubsetOfAttributes([targetIdx])
|
|
.setDestinationCrs(source.sourceCrs(), context.transformContext())
|
|
):
|
|
fields.append(QgsField(str(f[targetField]), QMetaType.Type.Double))
|
|
|
|
(sink, dest_id) = self.parameterAsSink(
|
|
parameters,
|
|
self.OUTPUT,
|
|
context,
|
|
fields,
|
|
source.wkbType(),
|
|
source.sourceCrs(),
|
|
)
|
|
if sink is None:
|
|
raise QgsProcessingException(
|
|
self.invalidSinkError(parameters, self.OUTPUT)
|
|
)
|
|
|
|
data = [inFeat[inField]]
|
|
for target in target_source.getFeatures(
|
|
QgsFeatureRequest()
|
|
.setSubsetOfAttributes([])
|
|
.setFilterFids(featList)
|
|
.setDestinationCrs(source.sourceCrs(), context.transformContext())
|
|
):
|
|
if feedback.isCanceled():
|
|
break
|
|
outGeom = target.geometry()
|
|
dist = distArea.measureLine(inGeom.asPoint(), outGeom.asPoint())
|
|
data.append(dist)
|
|
|
|
out_feature = QgsFeature()
|
|
out_feature.setGeometry(inGeom)
|
|
out_feature.setAttributes(data)
|
|
sink.addFeature(out_feature, QgsFeatureSink.Flag.FastInsert)
|
|
feedback.setProgress(int(current * total))
|
|
|
|
return {self.OUTPUT: dest_id}
|