QGIS/src/core/geometry/qgsabstractgeometry.cpp

398 lines
9.4 KiB
C++

/***************************************************************************
qgsabstractgeometry.cpp
-------------------------------------------------------------------
Date : 04 Sept 2014
Copyright : (C) 2014 by Marco Hugentobler
email : marco.hugentobler at sourcepole dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#include "qgsapplication.h"
#include "qgsabstractgeometry.h"
#include "qgswkbptr.h"
#include "qgsgeos.h"
#include "qgsmaptopixel.h"
#include "qgspoint.h"
#include <limits>
#include <QTransform>
QgsAbstractGeometry::QgsAbstractGeometry( const QgsAbstractGeometry &geom )
{
mWkbType = geom.mWkbType;
}
QgsAbstractGeometry &QgsAbstractGeometry::operator=( const QgsAbstractGeometry &geom )
{
if ( &geom != this )
{
clear();
mWkbType = geom.mWkbType;
}
return *this;
}
bool QgsAbstractGeometry::is3D() const
{
return QgsWkbTypes::hasZ( mWkbType );
}
bool QgsAbstractGeometry::isMeasure() const
{
return QgsWkbTypes::hasM( mWkbType );
}
void QgsAbstractGeometry::setZMTypeFromSubGeometry( const QgsAbstractGeometry *subgeom, QgsWkbTypes::Type baseGeomType )
{
if ( !subgeom )
{
return;
}
//special handling for 25d types:
if ( baseGeomType == QgsWkbTypes::LineString &&
( subgeom->wkbType() == QgsWkbTypes::Point25D || subgeom->wkbType() == QgsWkbTypes::LineString25D ) )
{
mWkbType = QgsWkbTypes::LineString25D;
return;
}
else if ( baseGeomType == QgsWkbTypes::Polygon &&
( subgeom->wkbType() == QgsWkbTypes::Point25D || subgeom->wkbType() == QgsWkbTypes::LineString25D ) )
{
mWkbType = QgsWkbTypes::Polygon25D;
return;
}
bool hasZ = subgeom->is3D();
bool hasM = subgeom->isMeasure();
if ( hasZ && hasM )
{
mWkbType = QgsWkbTypes::addM( QgsWkbTypes::addZ( baseGeomType ) );
}
else if ( hasZ )
{
mWkbType = QgsWkbTypes::addZ( baseGeomType );
}
else if ( hasM )
{
mWkbType = QgsWkbTypes::addM( baseGeomType );
}
else
{
mWkbType = baseGeomType;
}
}
QgsRectangle QgsAbstractGeometry::calculateBoundingBox() const
{
double xmin = std::numeric_limits<double>::max();
double ymin = std::numeric_limits<double>::max();
double xmax = -std::numeric_limits<double>::max();
double ymax = -std::numeric_limits<double>::max();
QgsVertexId id;
QgsPoint vertex;
double x, y;
while ( nextVertex( id, vertex ) )
{
x = vertex.x();
y = vertex.y();
if ( x < xmin )
xmin = x;
if ( x > xmax )
xmax = x;
if ( y < ymin )
ymin = y;
if ( y > ymax )
ymax = y;
}
return QgsRectangle( xmin, ymin, xmax, ymax );
}
void QgsAbstractGeometry::clearCache() const
{
}
int QgsAbstractGeometry::nCoordinates() const
{
int nCoords = 0;
const QgsCoordinateSequence seq = coordinateSequence();
for ( const QgsRingSequence &r : seq )
{
for ( const QgsPointSequence &p : r )
{
nCoords += p.size();
}
}
return nCoords;
}
double QgsAbstractGeometry::length() const
{
return 0.0;
}
double QgsAbstractGeometry::perimeter() const
{
return 0.0;
}
double QgsAbstractGeometry::area() const
{
return 0.0;
}
QString QgsAbstractGeometry::wktTypeStr() const
{
QString wkt = geometryType();
if ( is3D() )
wkt += 'Z';
if ( isMeasure() )
wkt += 'M';
return wkt;
}
QgsPoint QgsAbstractGeometry::centroid() const
{
// http://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
// Pick the first ring of first part for the moment
int n = vertexCount( 0, 0 );
if ( n == 1 )
{
return vertexAt( QgsVertexId( 0, 0, 0 ) );
}
double A = 0.;
double Cx = 0.;
double Cy = 0.;
QgsPoint v0 = vertexAt( QgsVertexId( 0, 0, 0 ) );
int i = 0, j = 1;
if ( vertexAt( QgsVertexId( 0, 0, 0 ) ) != vertexAt( QgsVertexId( 0, 0, n - 1 ) ) )
{
i = n - 1;
j = 0;
}
for ( ; j < n; i = j++ )
{
QgsPoint vi = vertexAt( QgsVertexId( 0, 0, i ) );
QgsPoint vj = vertexAt( QgsVertexId( 0, 0, j ) );
vi.rx() -= v0.x();
vi.ry() -= v0.y();
vj.rx() -= v0.x();
vj.ry() -= v0.y();
double d = vi.x() * vj.y() - vj.x() * vi.y();
A += d;
Cx += ( vi.x() + vj.x() ) * d;
Cy += ( vi.y() + vj.y() ) * d;
}
if ( A < 1E-12 )
{
Cx = Cy = 0.;
for ( int i = 0; i < n - 1; ++i )
{
QgsPoint vi = vertexAt( QgsVertexId( 0, 0, i ) );
Cx += vi.x();
Cy += vi.y();
}
return QgsPoint( Cx / ( n - 1 ), Cy / ( n - 1 ) );
}
else
{
return QgsPoint( v0.x() + Cx / ( 3. * A ), v0.y() + Cy / ( 3. * A ) );
}
}
bool QgsAbstractGeometry::convertTo( QgsWkbTypes::Type type )
{
if ( type == mWkbType )
return true;
if ( QgsWkbTypes::flatType( type ) != QgsWkbTypes::flatType( mWkbType ) )
return false;
bool needZ = QgsWkbTypes::hasZ( type );
bool needM = QgsWkbTypes::hasM( type );
if ( !needZ )
{
dropZValue();
}
else if ( !is3D() )
{
addZValue( std::numeric_limits<double>::quiet_NaN() );
}
if ( !needM )
{
dropMValue();
}
else if ( !isMeasure() )
{
addMValue( std::numeric_limits<double>::quiet_NaN() );
}
return true;
}
void QgsAbstractGeometry::filterVertices( const std::function<bool ( const QgsPoint & )> & )
{
// Ideally this would be pure virtual, but SIP has issues with that
}
QgsVertexIterator QgsAbstractGeometry::vertices() const
{
return QgsVertexIterator( this );
}
bool QgsAbstractGeometry::hasChildGeometries() const
{
return QgsWkbTypes::isMultiType( wkbType() ) || dimension() == 2;
}
QgsPoint QgsAbstractGeometry::childPoint( int index ) const
{
Q_UNUSED( index );
return QgsPoint();
}
bool QgsAbstractGeometry::isEmpty() const
{
QgsVertexId vId;
QgsPoint vertex;
return !nextVertex( vId, vertex );
}
bool QgsAbstractGeometry::hasCurvedSegments() const
{
return false;
}
QgsAbstractGeometry *QgsAbstractGeometry::segmentize( double tolerance, SegmentationToleranceType toleranceType ) const
{
Q_UNUSED( tolerance );
Q_UNUSED( toleranceType );
return clone();
}
QgsAbstractGeometry::vertex_iterator::vertex_iterator( const QgsAbstractGeometry *g, int index )
: depth( 0 )
{
::memset( levels, 0, sizeof( Level ) * 3 ); // make sure we clean up also the padding areas (for memcmp test in operator==)
levels[0].g = g;
levels[0].index = index;
digDown(); // go to the leaf level of the first vertex
}
QgsAbstractGeometry::vertex_iterator &QgsAbstractGeometry::vertex_iterator::operator++()
{
if ( depth == 0 && levels[0].index >= levels[0].g->childCount() )
return *this; // end of geometry - nowhere else to go
Q_ASSERT( !levels[depth].g->hasChildGeometries() ); // we should be at a leaf level
++levels[depth].index;
// traverse up if we are at the end in the current level
while ( depth > 0 && levels[depth].index >= levels[depth].g->childCount() )
{
--depth;
++levels[depth].index;
}
digDown(); // go to the leaf level again
return *this;
}
QgsAbstractGeometry::vertex_iterator QgsAbstractGeometry::vertex_iterator::operator++( int )
{
vertex_iterator it( *this );
++*this;
return it;
}
QgsPoint QgsAbstractGeometry::vertex_iterator::operator*() const
{
Q_ASSERT( !levels[depth].g->hasChildGeometries() );
return levels[depth].g->childPoint( levels[depth].index );
}
QgsVertexId QgsAbstractGeometry::vertex_iterator::vertexId() const
{
int part = 0, ring = 0, vertex = levels[depth].index;
if ( depth == 0 )
{
// nothing else to do
}
else if ( depth == 1 )
{
if ( QgsWkbTypes::isMultiType( levels[0].g->wkbType() ) )
part = levels[0].index;
else
ring = levels[0].index;
}
else if ( depth == 2 )
{
part = levels[0].index;
ring = levels[1].index;
}
else
{
Q_ASSERT( false );
return QgsVertexId();
}
// get the vertex type: find out from the leaf geometry
QgsVertexId::VertexType vertexType = QgsVertexId::SegmentVertex;
if ( const QgsCurve *curve = dynamic_cast<const QgsCurve *>( levels[depth].g ) )
{
QgsPoint p;
curve->pointAt( vertex, p, vertexType );
}
return QgsVertexId( part, ring, vertex, vertexType );
}
bool QgsAbstractGeometry::vertex_iterator::operator==( const QgsAbstractGeometry::vertex_iterator &other ) const
{
if ( depth != other.depth )
return false;
int res = ::memcmp( levels, other.levels, sizeof( Level ) * ( depth + 1 ) );
return res == 0;
}
void QgsAbstractGeometry::vertex_iterator::digDown()
{
if ( levels[depth].g->hasChildGeometries() && levels[depth].index >= levels[depth].g->childCount() )
return; // first check we are not already at the end
// while not "final" depth for the geom: go one level down.
while ( levels[depth].g->hasChildGeometries() )
{
++depth;
Q_ASSERT( depth < 3 ); // that's capacity of the levels array
levels[depth].index = 0;
levels[depth].g = levels[depth - 1].g->childGeometry( levels[depth - 1].index );
}
}
QgsPoint QgsVertexIterator::next()
{
n = i++;
return *n;
}