QGIS/python/plugins/processing/modeler/ModelerAlgorithm.py

762 lines
30 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
ModelerAlgorithm.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os.path
import sys
import copy
import time
import json
import codecs
import traceback
from qgis.PyQt.QtCore import QCoreApplication, QPointF
from qgis.PyQt.QtGui import QIcon
from operator import attrgetter
from qgis.core import QgsRasterLayer, QgsVectorLayer
from qgis.gui import QgsMessageBar
from qgis.utils import iface
from processing.core.GeoAlgorithm import GeoAlgorithm
from processing.modeler.WrongModelException import WrongModelException
from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException
from processing.core.parameters import (getParameterFromString,
ParameterRaster,
ParameterVector,
ParameterTable,
ParameterTableField,
ParameterBoolean,
ParameterString,
ParameterNumber,
ParameterExtent,
ParameterCrs,
ParameterDataObject,
ParameterMultipleInput)
from processing.tools import dataobjects
from processing.gui.Help2Html import getHtmlFromDescriptionsDict
from processing.core.alglist import algList
pluginPath = os.path.split(os.path.dirname(__file__))[0]
class ModelerParameter():
def __init__(self, param=None, pos=None):
self.param = param
self.pos = pos
def todict(self):
return self.__dict__
@staticmethod
def fromdict(d):
return ModelerParameter(d["param"], d["pos"])
class ModelerOutput():
def __init__(self, description=""):
self.description = description
self.pos = None
def todict(self):
return self.__dict__
class Algorithm():
def __init__(self, consoleName=""):
self.name = None
self.description = ""
# The type of the algorithm, indicated as a string, which corresponds
# to the string used to refer to it in the python console
self.consoleName = consoleName
self._algInstance = None
# A dict of Input object. keys are param names
self.params = {}
# A dict of ModelerOutput with final output descriptions. Keys are output names.
# Outputs not final are not stored in this dict
self.outputs = {}
self.pos = None
self.dependencies = []
self.paramsFolded = True
self.outputsFolded = True
self.active = True
def todict(self):
return {k: v for k, v in self.__dict__.iteritems() if not k.startswith("_")}
@property
def algorithm(self):
if self._algInstance is None:
self._algInstance = algList.getAlgorithm(self.consoleName).getCopy()
return self._algInstance
def setName(self, model):
if self.name is None:
i = 1
name = self.consoleName + "_" + unicode(i)
while name in model.algs:
i += 1
name = self.consoleName + "_" + unicode(i)
self.name = name
def getOutputType(self, outputName):
output = self.algorithm.getOutputFromName(outputName)
return "output " + output.__class__.__name__.split(".")[-1][6:].lower()
def toPython(self):
s = []
params = []
for param in self.algorithm.parameters:
value = self.params[param.name]
def _toString(v):
if isinstance(v, (ValueFromInput, ValueFromOutput)):
return v.asPythonParameter()
elif isinstance(v, basestring):
return "\\n".join(("'%s'" % v).splitlines())
elif isinstance(v, list):
return "[%s]" % ",".join([_toString(val) for val in v])
else:
return unicode(value)
params.append(_toString(value))
for out in self.algorithm.outputs:
if out.name in self.outputs:
params.append(safeName(self.outputs[out.name].description).lower())
else:
params.append(str(None))
s.append("outputs_%s=processing.runalg('%s', %s)" % (self.name, self.consoleName, ",".join(params)))
return s
class ValueFromInput():
def __init__(self, name=""):
self.name = name
def todict(self):
return self.__dict__
def __str__(self):
return self.name
def __eq__(self, other):
try:
return self.name == other.name
except:
return False
def asPythonParameter(self):
return self.name
class ValueFromOutput():
def __init__(self, alg="", output=""):
self.alg = alg
self.output = output
def todict(self):
return self.__dict__
def __eq__(self, other):
try:
return self.alg == other.alg and self.output == other.output
except:
return False
def __str__(self):
return self.alg + "," + self.output
def asPythonParameter(self):
return "outputs_%s['%s']" % (self.alg, self.output)
class ModelerAlgorithm(GeoAlgorithm):
CANVAS_SIZE = 4000
def getCopy(self):
newone = ModelerAlgorithm()
newone.provider = self.provider
newone.algs = copy.deepcopy(self.algs)
newone.inputs = copy.deepcopy(self.inputs)
newone.defineCharacteristics()
newone.name = self.name
newone.group = self.group
newone.descriptionFile = self.descriptionFile
newone.helpContent = copy.deepcopy(self.helpContent)
return newone
def __init__(self):
self.name = self.tr('Model', 'ModelerAlgorithm')
# The dialog where this model is being edited
self.modelerdialog = None
self.descriptionFile = None
self.helpContent = {}
# Geoalgorithms in this model. A dict of Algorithm objects, with names as keys
self.algs = {}
# Input parameters. A dict of Input objects, with names as keys
self.inputs = {}
GeoAlgorithm.__init__(self)
def getIcon(self):
return QIcon(os.path.join(pluginPath, 'images', 'model.png'))
def defineCharacteristics(self):
classes = [ParameterRaster, ParameterVector, ParameterTable, ParameterTableField,
ParameterBoolean, ParameterString, ParameterNumber]
self.parameters = []
for c in classes:
for inp in self.inputs.values():
if isinstance(inp.param, c):
self.parameters.append(inp.param)
for inp in self.inputs.values():
if inp.param not in self.parameters:
self.parameters.append(inp.param)
self.outputs = []
for alg in self.algs.values():
if alg.active:
for out in alg.outputs:
modelOutput = copy.deepcopy(alg.algorithm.getOutputFromName(out))
modelOutput.name = self.getSafeNameForOutput(alg.name, out)
modelOutput.description = alg.outputs[out].description
self.outputs.append(modelOutput)
self.outputs.sort(key=attrgetter("description"))
def addParameter(self, param):
self.inputs[param.param.name] = param
def updateParameter(self, param):
self.inputs[param.name].param = param
def addAlgorithm(self, alg):
name = self.getNameForAlgorithm(alg)
alg.name = name
self.algs[name] = alg
def getNameForAlgorithm(self, alg):
i = 1
while alg.consoleName.upper().replace(":", "") + "_" + unicode(i) in self.algs.keys():
i += 1
return alg.consoleName.upper().replace(":", "") + "_" + unicode(i)
def updateAlgorithm(self, alg):
alg.pos = self.algs[alg.name].pos
alg.paramsFolded = self.algs[alg.name].paramsFolded
alg.outputsFolded = self.algs[alg.name].outputsFolded
self.algs[alg.name] = alg
from processing.modeler.ModelerGraphicItem import ModelerGraphicItem
for i, out in enumerate(alg.outputs):
alg.outputs[out].pos = (alg.outputs[out].pos or
alg.pos + QPointF(
ModelerGraphicItem.BOX_WIDTH,
(i + 1.5) * ModelerGraphicItem.BOX_HEIGHT))
def removeAlgorithm(self, name):
"""Returns True if the algorithm could be removed, False if
others depend on it and could not be removed.
"""
if self.hasDependencies(name):
return False
del self.algs[name]
self.modelerdialog.hasChanged = True
return True
def removeParameter(self, name):
"""Returns True if the parameter could be removed, False if
others depend on it and could not be removed.
"""
if self.hasDependencies(name):
return False
del self.inputs[name]
self.modelerdialog.hasChanged = True
return True
def hasDependencies(self, name):
"""This method returns True if some other element depends on
the passed one.
"""
for alg in self.algs.values():
for value in alg.params.values():
if value is None:
continue
if isinstance(value, list):
for v in value:
if isinstance(v, ValueFromInput):
if v.name == name:
return True
elif isinstance(v, ValueFromOutput):
if v.alg == name:
return True
if isinstance(value, ValueFromInput):
if value.name == name:
return True
elif isinstance(value, ValueFromOutput):
if value.alg == name:
return True
return False
def getDependsOnAlgorithms(self, name):
"""This method returns a list with names of algorithms
a given one depends on.
"""
alg = self.algs[name]
algs = set()
algs.update(set(alg.dependencies))
for value in alg.params.values():
if value is None:
continue
if isinstance(value, list):
for v in value:
if isinstance(v, ValueFromOutput):
algs.add(v.alg)
algs.update(self.getDependsOnAlgorithms(v.alg))
elif isinstance(value, ValueFromOutput):
algs.add(value.alg)
algs.update(self.getDependsOnAlgorithms(value.alg))
return algs
def getDependentAlgorithms(self, name):
"""This method returns a list with the names of algorithms
depending on a given one. It includes the algorithm itself
"""
algs = set()
algs.add(name)
for alg in self.algs.values():
for value in alg.params.values():
if value is None:
continue
if isinstance(value, list):
for v in value:
if isinstance(v, ValueFromOutput) and v.alg == name:
algs.update(self.getDependentAlgorithms(alg.name))
elif isinstance(value, ValueFromOutput) and value.alg == name:
algs.update(self.getDependentAlgorithms(alg.name))
return algs
def setPositions(self, paramPos, algPos, outputsPos):
for param, pos in paramPos.iteritems():
self.inputs[param].pos = pos
for alg, pos in algPos.iteritems():
self.algs[alg].pos = pos
for alg, positions in outputsPos.iteritems():
for output, pos in positions.iteritems():
self.algs[alg].outputs[output].pos = pos
def prepareAlgorithm(self, alg):
algInstance = alg.algorithm
for param in algInstance.parameters:
if not param.hidden:
if param.name in alg.params:
value = self.resolveValue(alg.params[param.name])
else:
if iface is not None:
iface.messageBar().pushMessage(self.tr("Warning"),
self.tr("Parameter %s in algorithm %s in the model is run with default value! Edit the model to make sure that this is correct.") % (param.name, alg.name),
QgsMessageBar.WARNING, 4)
value = param.default
if value is None and isinstance(param, ParameterExtent):
value = self.getMinCoveringExtent()
# We allow unexistent filepaths, since that allows
# algorithms to skip some conversion routines
if not param.setValue(value) and not isinstance(param,
ParameterDataObject):
raise GeoAlgorithmExecutionException(
self.tr('Wrong value %s for %s %s', 'ModelerAlgorithm')
% (value, param.__class__.__name__, param.name))
for out in algInstance.outputs:
if not out.hidden:
if out.name in alg.outputs:
name = self.getSafeNameForOutput(alg.name, out.name)
modelOut = self.getOutputFromName(name)
if modelOut:
out.value = modelOut.value
else:
out.value = None
return algInstance
def deactivateAlgorithm(self, algName):
dependent = self.getDependentAlgorithms(algName)
for alg in dependent:
self.algs[alg].active = False
def activateAlgorithm(self, algName):
parents = self.getDependsOnAlgorithms(algName)
for alg in parents:
if not self.algs[alg].active:
return False
self.algs[algName].active = True
return True
def getSafeNameForOutput(self, algName, outName):
return outName + '_ALG' + algName
def resolveValue(self, value):
if value is None:
return None
if isinstance(value, list):
return ";".join([self.resolveValue(v) for v in value])
if isinstance(value, ValueFromInput):
return self.getParameterFromName(value.name).value
elif isinstance(value, ValueFromOutput):
return self.algs[value.alg].algorithm.getOutputFromName(value.output).value
else:
return value
def getMinCoveringExtent(self):
first = True
found = False
for param in self.parameters:
if param.value:
if isinstance(param, (ParameterRaster, ParameterVector)):
found = True
if isinstance(param.value, (QgsRasterLayer, QgsVectorLayer)):
layer = param.value
else:
layer = dataobjects.getObjectFromUri(param.value)
self.addToRegion(layer, first)
first = False
elif isinstance(param, ParameterMultipleInput):
found = True
layers = param.value.split(';')
for layername in layers:
layer = dataobjects.getObjectFromUri(layername)
self.addToRegion(layer, first)
first = False
if found:
return ','.join([unicode(v) for v in [self.xmin, self.xmax, self.ymin, self.ymax]])
else:
return None
def addToRegion(self, layer, first):
if first:
self.xmin = layer.extent().xMinimum()
self.xmax = layer.extent().xMaximum()
self.ymin = layer.extent().yMinimum()
self.ymax = layer.extent().yMaximum()
else:
self.xmin = min(self.xmin, layer.extent().xMinimum())
self.xmax = max(self.xmax, layer.extent().xMaximum())
self.ymin = min(self.ymin, layer.extent().yMinimum())
self.ymax = max(self.ymax, layer.extent().yMaximum())
def processAlgorithm(self, progress):
executed = []
toExecute = [alg for alg in self.algs.values() if alg.active]
while len(executed) < len(toExecute):
for alg in toExecute:
if alg.name not in executed:
canExecute = True
required = self.getDependsOnAlgorithms(alg.name)
for requiredAlg in required:
if requiredAlg != alg.name and requiredAlg not in executed:
canExecute = False
break
if canExecute:
try:
progress.setDebugInfo(
self.tr('Prepare algorithm: %s', 'ModelerAlgorithm') % alg.name)
self.prepareAlgorithm(alg)
progress.setText(
self.tr('Running %s [%i/%i]', 'ModelerAlgorithm') % (alg.description, len(executed) + 1, len(toExecute)))
progress.setDebugInfo('Parameters: ' + ', '.join([unicode(p).strip()
+ '=' + unicode(p.value) for p in alg.algorithm.parameters]))
t0 = time.time()
alg.algorithm.execute(progress, self)
dt = time.time() - t0
executed.append(alg.name)
progress.setDebugInfo(
self.tr('OK. Execution took %0.3f ms (%i outputs).', 'ModelerAlgorithm') % (dt, len(alg.algorithm.outputs)))
except GeoAlgorithmExecutionException as e:
progress.setDebugInfo(self.tr('Failed', 'ModelerAlgorithm'))
raise GeoAlgorithmExecutionException(
self.tr('Error executing algorithm %s\n%s', 'ModelerAlgorithm') % (alg.description, e.msg))
progress.setDebugInfo(
self.tr('Model processed ok. Executed %i algorithms total', 'ModelerAlgorithm') % len(executed))
def getAsCommand(self):
if self.descriptionFile:
return GeoAlgorithm.getAsCommand(self)
else:
return None
def commandLineName(self):
if self.descriptionFile is None:
return ''
else:
return 'modeler:' + os.path.basename(self.descriptionFile)[:-6].lower()
def checkBeforeOpeningParametersDialog(self):
for alg in self.algs.values():
algInstance = algList.getAlgorithm(alg.consoleName)
if algInstance is None:
return "The model you are trying to run contains an algorithm that is not available: <i>%s</i>" % alg.consoleName
def setModelerView(self, dialog):
self.modelerdialog = dialog
def updateModelerView(self):
if self.modelerdialog:
self.modelerdialog.repaintModel()
def help(self):
try:
return True, getHtmlFromDescriptionsDict(self, self.helpContent)
except:
return False, None
def shortHelp(self):
if 'ALG_DESC' in self.helpContent:
return self._formatHelp(unicode(self.helpContent['ALG_DESC']))
return None
def getParameterDescriptions(self):
descs = {}
descriptions = self.helpContent
for param in self.parameters:
if param.name in descriptions:
descs[param.name] = unicode(descriptions[param.name])
return descs
def todict(self):
keys = ["inputs", "group", "name", "algs", "helpContent"]
return {k: v for k, v in self.__dict__.iteritems() if k in keys}
def toJson(self):
def todict(o):
if isinstance(o, QPointF):
return {"class": "point", "values": {"x": o.x(), "y": o.y()}}
try:
d = o.todict()
return {"class": o.__class__.__module__ + "." + o.__class__.__name__, "values": d}
except Exception:
pass
return json.dumps(self, default=todict, indent=4)
@staticmethod
def fromJson(s):
def fromdict(d):
try:
fullClassName = d["class"]
tokens = fullClassName.split(".")
className = tokens[-1]
moduleName = ".".join(tokens[:-1])
values = d["values"]
if className == "point":
return QPointF(values["x"], values["y"])
def _import(name):
__import__(name)
return sys.modules[name]
if moduleName.startswith("processing.parameters"):
moduleName = "processing.core.parameters"
module = _import(moduleName)
clazz = getattr(module, className)
instance = clazz()
for k, v in values.iteritems():
instance.__dict__[k] = v
return instance
except KeyError:
return d
except Exception as e:
raise e
try:
model = json.loads(s, object_hook=fromdict)
except Exception as e:
raise WrongModelException(e.args[0])
return model
@staticmethod
def fromJsonFile(filename):
with open(filename) as f:
s = f.read()
alg = ModelerAlgorithm.fromJson(s)
alg.descriptionFile = filename
return alg
############LEGACY METHOD TO SUPPORT OLD FORMAT###########
LINE_BREAK_STRING = '%%%'
@staticmethod
def fromFile(filename):
try:
alg = ModelerAlgorithm.fromJsonFile(filename)
return alg
except WrongModelException:
alg = ModelerAlgorithm.fromOldFormatFile(filename)
return alg
@staticmethod
def fromOldFormatFile(filename):
def _tr(s):
return QCoreApplication.translate('ModelerAlgorithm', s)
hardcodedValues = {}
modelParameters = []
modelAlgs = []
model = ModelerAlgorithm()
model.descriptionFile = filename
lines = codecs.open(filename, 'r', encoding='utf-8')
line = lines.readline().strip('\n').strip('\r')
try:
while line != '':
if line.startswith('PARAMETER:'):
paramLine = line[len('PARAMETER:'):]
param = getParameterFromString(paramLine)
if param:
pass
else:
raise WrongModelException(
_tr('Error in parameter line: %s', 'ModelerAlgorithm') % line)
line = lines.readline().strip('\n')
tokens = line.split(',')
model.addParameter(ModelerParameter(param,
QPointF(float(tokens[0]), float(tokens[1]))))
modelParameters.append(param.name)
elif line.startswith('VALUE:'):
valueLine = line[len('VALUE:'):]
tokens = valueLine.split('===')
name = tokens[0]
value = tokens[1].replace(ModelerAlgorithm.LINE_BREAK_STRING, '\n')
hardcodedValues[name] = value
elif line.startswith('NAME:'):
model.name = line[len('NAME:'):]
elif line.startswith('GROUP:'):
model.group = line[len('GROUP:'):]
elif line.startswith('ALGORITHM:'):
algLine = line[len('ALGORITHM:'):]
alg = algList.getAlgorithm(algLine)
if alg is not None:
modelAlg = Algorithm(alg.commandLineName())
modelAlg.description = alg.name
posline = lines.readline().strip('\n').strip('\r')
tokens = posline.split(',')
modelAlg.pos = QPointF(float(tokens[0]), float(tokens[1]))
# dependenceline = lines.readline().strip('\n').strip('\r')
for param in alg.parameters:
if not param.hidden:
line = lines.readline().strip('\n').strip('\r')
if line == unicode(None):
modelAlg.params[param.name] = None
else:
tokens = line.split('|')
try:
algIdx = int(tokens[0])
except:
raise WrongModelException(
_tr('Number of parameters in the '
'{} algorithm does not match '
'current Processing '
'implementation'.format(alg.name)))
if algIdx == -1:
if tokens[1] in modelParameters:
modelAlg.params[param.name] = ValueFromInput(tokens[1])
else:
modelAlg.params[param.name] = hardcodedValues[tokens[1]]
else:
modelAlg.params[param.name] = ValueFromOutput(algIdx, tokens[1])
for out in alg.outputs:
if not out.hidden:
line = lines.readline().strip('\n').strip('\r')
if unicode(None) != line:
if '|' in line:
tokens = line.split('|')
name = tokens[0]
tokens = tokens[1].split(',')
pos = QPointF(float(tokens[0]), float(tokens[1]))
else:
name = line
pos = None
modelerOutput = ModelerOutput(name)
modelerOutput.pos = pos
modelAlg.outputs[out.name] = modelerOutput
model.addAlgorithm(modelAlg)
modelAlgs.append(modelAlg.name)
else:
raise WrongModelException(
_tr('Error in algorithm name: %s',) % algLine)
line = lines.readline().strip('\n').strip('\r')
for modelAlg in model.algs.values():
for name, value in modelAlg.params.iteritems():
if isinstance(value, ValueFromOutput):
value.alg = modelAlgs[value.alg]
return model
except Exception as e:
if isinstance(e, WrongModelException):
raise e
else:
raise WrongModelException(_tr('Error in model definition line: ') + '%s\n%s' % (line.strip(), traceback.format_exc()))
def toPython(self):
s = ['##%s=name' % self.name]
for param in self.inputs.values():
s.append(param.param.getAsScriptCode())
for alg in self.algs.values():
for name, out in alg.outputs.iteritems():
s.append('##%s=%s' % (safeName(out.description).lower(), alg.getOutputType(name)))
executed = []
toExecute = [alg for alg in self.algs.values() if alg.active]
while len(executed) < len(toExecute):
for alg in toExecute:
if alg.name not in executed:
canExecute = True
required = self.getDependsOnAlgorithms(alg.name)
for requiredAlg in required:
if requiredAlg != alg.name and requiredAlg not in executed:
canExecute = False
break
if canExecute:
s.extend(alg.toPython())
executed.append(alg.name)
return '\n'.join(s)
def safeName(name):
validChars = 'abcdefghijklmnopqrstuvwxyz'
return ''.join(c for c in name.lower() if c in validChars)