QGIS/python/core/geometry/qgsgeometryutils.sip
2017-06-26 08:21:11 +02:00

358 lines
13 KiB
Plaintext

/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsgeometryutils.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/
class QgsGeometryUtils
{
%Docstring
Contains various geometry utility functions.
.. versionadded:: 2.10
%End
%TypeHeaderCode
#include "qgsgeometryutils.h"
%End
public:
static QList<QgsLineString *> extractLineStrings( const QgsAbstractGeometry *geom ) /Factory/;
%Docstring
Returns list of linestrings extracted from the passed geometry. The returned objects
have to be deleted by the caller.
:rtype: list of QgsLineString
%End
static QgsPoint closestVertex( const QgsAbstractGeometry &geom, const QgsPoint &pt, QgsVertexId &id /Out/ );
%Docstring
Returns the closest vertex to a geometry for a specified point.
On error null point will be returned and "id" argument will be invalid.
:rtype: QgsPoint
%End
static QgsPoint closestPoint( const QgsAbstractGeometry &geometry, const QgsPoint &point );
%Docstring
Returns the nearest point on a segment of a ``geometry``
for the specified ``point``. The z and m values will be linearly interpolated between
the two neighbouring vertices.
:rtype: QgsPoint
%End
static double distanceToVertex( const QgsAbstractGeometry &geom, QgsVertexId id );
%Docstring
Returns the distance along a geometry from its first vertex to the specified vertex.
\param geom geometry
\param id vertex id to find distance to
:return: distance to vertex (following geometry)
.. versionadded:: 2.16
:rtype: float
%End
static bool verticesAtDistance( const QgsAbstractGeometry &geometry,
double distance,
QgsVertexId &previousVertex /Out/,
QgsVertexId &nextVertex /Out/ );
%Docstring
Retrieves the vertices which are before and after the interpolated point at a specified distance along a linestring
(or polygon boundary).
\param geometry line or polygon geometry
\param distance distance to traverse along geometry
\param previousVertex will be set to previous vertex ID
\param nextVertex will be set to next vertex ID
.. note::
if the distance coincides exactly with a vertex, then both previousVertex and nextVertex will be set to this vertex
:return: true if vertices were successfully retrieved
.. versionadded:: 3.0
:rtype: bool
%End
static void adjacentVertices( const QgsAbstractGeometry &geom, QgsVertexId atVertex, QgsVertexId &beforeVertex /Out/, QgsVertexId &afterVertex /Out/ );
%Docstring
Returns vertices adjacent to a specified vertex within a geometry.
%End
static double sqrDistance2D( const QgsPoint &pt1, const QgsPoint &pt2 );
%Docstring
Returns the squared 2D distance between two points.
:rtype: float
%End
static double sqrDistToLine( double ptX, double ptY, double x1, double y1, double x2, double y2, double &minDistX /Out/, double &minDistY /Out/, double epsilon );
%Docstring
Returns the squared distance between a point and a line.
:rtype: float
%End
static bool lineIntersection( const QgsPoint &p1, QgsVector v, const QgsPoint &q1, QgsVector w, QgsPoint &inter /Out/ );
%Docstring
Compute the intersection between two lines
\param p1 Point on the first line
\param v Direction vector of the first line
\param q1 Point on the second line
\param w Direction vector of the second line
\param inter Output parameter, the intersection point
:return: Whether the lines intersect
:rtype: bool
%End
static bool segmentIntersection( const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &q1, const QgsPoint &q2, QgsPoint &inter /Out/, double tolerance );
%Docstring
Compute the intersection between two segments
\param p1 First segment start point
\param p2 First segment end point
\param q1 Second segment start point
\param q2 Second segment end point
\param inter Output parameter, the intersection point
\param tolerance The tolerance to use
:return: Whether the segments intersect
:rtype: bool
%End
static QgsPoint projPointOnSegment( const QgsPoint &p, const QgsPoint &s1, const QgsPoint &s2 );
%Docstring
Project the point on a segment
\param p The point
\param s1 The segment start point
\param s2 The segment end point
:return: The projection of the point on the segment
:rtype: QgsPoint
%End
static double leftOfLine( double x, double y, double x1, double y1, double x2, double y2 );
%Docstring
Returns < 0 if point(x/y) is left of the line x1,y1 -> x2,y2
:rtype: float
%End
static QgsPoint pointOnLineWithDistance( const QgsPoint &startPoint, const QgsPoint &directionPoint, double distance );
%Docstring
Returns a point a specified distance toward a second point.
:rtype: QgsPoint
%End
static double ccwAngle( double dy, double dx );
%Docstring
Returns the counter clockwise angle between a line with components dx, dy and the line with dx > 0 and dy = 0
:rtype: float
%End
static void circleCenterRadius( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double &radius /Out/,
double &centerX /Out/, double &centerY /Out/ );
%Docstring
Returns radius and center of the circle through pt1, pt2, pt3
%End
static bool circleClockwise( double angle1, double angle2, double angle3 );
%Docstring
Returns true if circle is ordered clockwise
:rtype: bool
%End
static bool circleAngleBetween( double angle, double angle1, double angle2, bool clockwise );
%Docstring
Returns true if, in a circle, angle is between angle1 and angle2
:rtype: bool
%End
static bool angleOnCircle( double angle, double angle1, double angle2, double angle3 );
%Docstring
Returns true if an angle is between angle1 and angle3 on a circle described by
angle1, angle2 and angle3.
:rtype: bool
%End
static double circleLength( double x1, double y1, double x2, double y2, double x3, double y3 );
%Docstring
Length of a circular string segment defined by pt1, pt2, pt3
:rtype: float
%End
static double sweepAngle( double centerX, double centerY, double x1, double y1, double x2, double y2, double x3, double y3 );
%Docstring
Calculates angle of a circular string part defined by pt1, pt2, pt3
:rtype: float
%End
static bool segmentMidPoint( const QgsPoint &p1, const QgsPoint &p2, QgsPoint &result /Out/, double radius, const QgsPoint &mousePos );
%Docstring
Calculates midpoint on circle passing through p1 and p2, closest to given coordinate
:rtype: bool
%End
static double circleTangentDirection( const QgsPoint &tangentPoint, const QgsPoint &cp1, const QgsPoint &cp2, const QgsPoint &cp3 );
%Docstring
Calculates the direction angle of a circle tangent (clockwise from north in radians)
:rtype: float
%End
static void segmentizeArc( const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &p3,
QList<QgsPoint> &points /Out/, double tolerance = M_PI_2 / 90,
QgsAbstractGeometry::SegmentationToleranceType toleranceType = QgsAbstractGeometry::MaximumAngle,
bool hasZ = false, bool hasM = false );
%Docstring
Convert circular arc defined by p1, p2, p3 (p1/p3 being start resp. end point, p2 lies on the arc) into a sequence of points.
.. versionadded:: 3.0
:rtype: QgsPointSequence
%End
static int segmentSide( const QgsPoint &pt1, const QgsPoint &pt3, const QgsPoint &pt2 );
%Docstring
For line defined by points pt1 and pt3, find out on which side of the line is point pt3.
Returns -1 if pt3 on the left side, 1 if pt3 is on the right side or 0 if pt3 lies on the line.
.. versionadded:: 3.0
:rtype: int
%End
static double interpolateArcValue( double angle, double a1, double a2, double a3, double zm1, double zm2, double zm3 );
%Docstring
Interpolate a value at given angle on circular arc given values (zm1, zm2, zm3) at three different angles (a1, a2, a3).
.. versionadded:: 3.0
:rtype: float
%End
static double normalizedAngle( double angle );
%Docstring
Ensures that an angle is in the range 0 <= angle < 2 pi.
\param angle angle in radians
:return: equivalent angle within the range [0, 2 pi)
:rtype: float
%End
static double lineAngle( double x1, double y1, double x2, double y2 );
%Docstring
Calculates the direction of line joining two points in radians, clockwise from the north direction.
\param x1 x-coordinate of line start
\param y1 y-coordinate of line start
\param x2 x-coordinate of line end
\param y2 y-coordinate of line end
:return: angle in radians. Returned value is undefined if start and end point are the same.
:rtype: float
%End
static double angleBetweenThreePoints( double x1, double y1, double x2, double y2,
double x3, double y3 );
%Docstring
Calculates the angle between the lines AB and BC, where AB and BC described
by points a, b and b, c.
\param x1 x-coordinate of point a
\param y1 y-coordinate of point a
\param x2 x-coordinate of point b
\param y2 y-coordinate of point b
\param x3 x-coordinate of point c
\param y3 y-coordinate of point c
:return: angle between lines in radians. Returned value is undefined if two or more points are equal.
:rtype: float
%End
static double linePerpendicularAngle( double x1, double y1, double x2, double y2 );
%Docstring
Calculates the perpendicular angle to a line joining two points. Returned angle is in radians,
clockwise from the north direction.
\param x1 x-coordinate of line start
\param y1 y-coordinate of line start
\param x2 x-coordinate of line end
\param y2 y-coordinate of line end
:return: angle in radians. Returned value is undefined if start and end point are the same.
:rtype: float
%End
static double averageAngle( double x1, double y1, double x2, double y2, double x3, double y3 );
%Docstring
Angle between two linear segments
:rtype: float
%End
static double averageAngle( double a1, double a2 );
%Docstring
Averages two angles, correctly handling negative angles and ensuring the result is between 0 and 2 pi.
\param a1 first angle (in radians)
\param a2 second angle (in radians)
:return: average angle (in radians)
:rtype: float
%End
static QgsPoint midpoint( const QgsPoint &pt1, const QgsPoint &pt2 );
%Docstring
Returns a middle point between points pt1 and pt2.
Z value is computed if one of this point have Z.
M value is computed if one of this point have M.
\param pt1 first point.
\param pt2 second point.
:return: New point at middle between points pt1 and pt2.
* Example:
\code{.py}
p = QgsPoint( 4, 6 ) # 2D point
pr = midpoint ( p, QgsPoint( 2, 2 ) )
# pr is a 2D point: 'Point (3 4)'
pr = midpoint ( p, QgsPoint( QgsWkbTypes.PointZ, 2, 2, 2 ) )
# pr is a 3D point: 'PointZ (3 4 1)'
pr = midpoint ( p, QgsPoint( QgsWkbTypes.PointM, 2, 2, 0, 2 ) )
# pr is a 3D point: 'PointM (3 4 1)'
pr = midpoint ( p, QgsPoint( QgsWkbTypes.PointZM, 2, 2, 2, 2 ) )
# pr is a 3D point: 'PointZM (3 4 1 1)'
\endcode
.. versionadded:: 3.0
:rtype: QgsPoint
%End
static double gradient( const QgsPoint &pt1, const QgsPoint &pt2 );
%Docstring
Return the gradient of a line defined by points ``pt1`` and ``pt2``.
\param pt1 first point.
\param pt2 second point.
:return: The gradient of this linear entity, or infinity if vertical
.. versionadded:: 3.0
:rtype: float
%End
static void coefficients( const QgsPoint &pt1, const QgsPoint &pt2,
double &a /Out/, double &b /Out/, double &c /Out/ );
%Docstring
Return the coefficients (a, b, c for equation "ax + by + c = 0") of a line defined by points ``pt1`` and ``pt2``.
\param pt1 first point.
\param pt2 second point.
\param a Output parameter, a coefficient of the equation.
\param b Output parameter, b coefficient of the equation.
\param c Output parameter, c coefficient of the equation.
.. versionadded:: 3.0
%End
static QgsLineString perpendicularSegment( const QgsPoint &p, const QgsPoint &s1, const QgsPoint &s2 );
%Docstring
Create a perpendicular line segment from p to segment [s1, s2]
\param p The point
\param s1 The segment start point
\param s2 The segment end point
:return: A line (segment) from p to perpendicular point on segment [s1, s2]
:rtype: QgsLineString
%End
};
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsgeometryutils.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/