QGIS/python/plugins/processing/algs/otb/description/TrainImagesClassifier-gbt.xml
Juergen E. Fischer 7c75ffa3b0 spelling fixes
2014-05-17 22:02:03 +02:00

155 lines
7.0 KiB
XML

<root>
<key>TrainImagesClassifier-gbt</key>
<exec>otbcli_TrainImagesClassifier</exec>
<longname>TrainImagesClassifier (gbt)</longname>
<group>Learning</group>
<description>Train a classifier from multiple pairs of images and training vector data.</description>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
<key>io.il</key>
<name>Input Image List</name>
<description>A list of input images.</description>
<datatype />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputVectorDataList">ParameterMultipleInput</parameter_type>
<key>io.vd</key>
<name>Input Vector Data List</name>
<description>A list of vector data to select the training samples.</description>
<datatype />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
<key>io.imstat</key>
<name>Input XML image statistics file</name>
<description>Input XML file containing the mean and the standard deviation of the input images.</description>
<isFolder />
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
<key>io.confmatout</key>
<name>Output confusion matrix</name>
<description>Output file containing the confusion matrix (.csv format).</description>
<hidden />
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
<key>io.out</key>
<name>Output model</name>
<description>Output file containing the model estimated (.txt format).</description>
<hidden />
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>elev.default</key>
<name>Default elevation</name>
<description>This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.</description>
<minValue />
<maxValue />
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mt</key>
<name>Maximum training sample size per class</name>
<description>Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.</description>
<minValue />
<maxValue />
<default>1000</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mv</key>
<name>Maximum validation sample size per class</name>
<description>Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.</description>
<minValue />
<maxValue />
<default>1000</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Empty">ParameterBoolean</parameter_type>
<key>sample.edg</key>
<name>On edge pixel inclusion</name>
<description>Takes pixels on polygon edge into consideration when building training and validation samples.</description>
<default>True</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>sample.vtr</key>
<name>Training and validation sample ratio</name>
<description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
<minValue />
<maxValue />
<default>0.5</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_String">ParameterString</parameter_type>
<key>sample.vfn</key>
<name>Name of the discrimination field</name>
<description>Name of the field used to discriminate class labels in the input vector data files.</description>
<default>Class</default>
<multiline />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier</key>
<name>Classifier to use for the training</name>
<description>Choice of the classifier to use for the training.</description>
<options>
<choices>
<choice>gbt</choice>
</choices>
</options>
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.gbt.w</key>
<name>Number of boosting algorithm iterations</name>
<description>Number "w" of boosting algorithm iterations, with w*K being the total number of trees in the GBT model, where K is the output number of classes.</description>
<minValue />
<maxValue />
<default>200</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.gbt.s</key>
<name>Regularization parameter</name>
<description>Regularization parameter.</description>
<minValue />
<maxValue />
<default>0.01</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.gbt.p</key>
<name>Portion of the whole training set used for each algorithm iteration</name>
<description>Portion of the whole training set used for each algorithm iteration. The subset is generated randomly.</description>
<minValue />
<maxValue />
<default>0.8</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.gbt.max</key>
<name>Maximum depth of the tree</name>
<description>The training algorithm attempts to split each node while its depth is smaller than the maximum possible depth of the tree. The actual depth may be smaller if the other termination criteria are met, and/or if the tree is pruned.</description>
<minValue />
<maxValue />
<default>3</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>rand</key>
<name>set user defined seed</name>
<description>Set specific seed. with integer value.</description>
<minValue />
<maxValue />
<default>0</default>
</parameter>
</root>