QGIS/python/plugins/processing/algs/qgis/RandomExtractWithinSubsets.py
Nyall Dawson b1cadb1822 Use generic algorithm icon for qgis algorithms which do not
have specific icons, instead of generic qgis icon

We consider these 'top level' algorithms, and using the
standard algorithm icon should help reflect this and
differentiate them from 3rd party algorithms.
2017-06-24 12:01:20 +10:00

132 lines
5.4 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
RandomSelectionWithinSubsets.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from builtins import range
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import random
from qgis.core import (QgsApplication,
QgsFeatureSink,
QgsProcessingUtils,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterEnum,
QgsProcessingParameterField,
QgsProcessingParameterNumber,
QgsProcessingParameterFeatureSink,
QgsProcessingOutputVectorLayer)
from collections import defaultdict
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException
class RandomExtractWithinSubsets(QgisAlgorithm):
INPUT = 'INPUT'
METHOD = 'METHOD'
NUMBER = 'NUMBER'
FIELD = 'FIELD'
OUTPUT = 'OUTPUT'
def group(self):
return self.tr('Vector selection tools')
def __init__(self):
super().__init__()
self.methods = [self.tr('Number of selected features'),
self.tr('Percentage of selected features')]
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
self.tr('Input layer')))
self.addParameter(QgsProcessingParameterField(self.FIELD,
self.tr('ID field'), None, self.INPUT))
self.addParameter(QgsProcessingParameterEnum(self.METHOD,
self.tr('Method'), self.methods, False, 0))
self.addParameter(QgsProcessingParameterNumber(self.NUMBER,
self.tr('Number/percentage of selected features'), QgsProcessingParameterNumber.Integer,
10, False, 0.0, 999999999999.0))
self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Extracted (random stratified)')))
self.addOutput(QgsProcessingOutputVectorLayer(self.OUTPUT, self.tr('Extracted (random stratified)')))
def name(self):
return 'randomextractwithinsubsets'
def displayName(self):
return self.tr('Random extract within subsets')
def processAlgorithm(self, parameters, context, feedback):
source = self.parameterAsSource(parameters, self.INPUT, context)
method = self.parameterAsEnum(parameters, self.METHOD, context)
field = self.parameterAsString(parameters, self.FIELD, context)
index = source.fields().lookupField(field)
features = source.getFeatures()
featureCount = source.featureCount()
unique = source.uniqueValues(index)
value = self.parameterAsInt(parameters, self.NUMBER, context)
if method == 0:
if value > featureCount:
raise GeoAlgorithmExecutionException(
self.tr('Selected number is greater that feature count. '
'Choose lesser value and try again.'))
else:
if value > 100:
raise GeoAlgorithmExecutionException(
self.tr("Percentage can't be greater than 100. Set "
"correct value and try again."))
value = value / 100.0
(sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
source.fields(), source.wkbType(), source.sourceCrs())
selran = []
total = 100.0 / (featureCount * len(unique)) if featureCount else 1
classes = defaultdict(list)
for i, feature in enumerate(features):
if feedback.isCanceled():
break
attrs = feature.attributes()
classes[attrs[index]].append(feature)
feedback.setProgress(int(i * total))
for subset in classes.values():
selValue = value if method != 1 else int(round(value * len(subset), 0))
selran.extend(random.sample(subset, selValue))
total = 100.0 / featureCount if featureCount else 1
for (i, feat) in enumerate(selran):
if feedback.isCanceled():
break
sink.addFeature(feat, QgsFeatureSink.FastInsert)
feedback.setProgress(int(i * total))
return {self.OUTPUT: dest_id}