QGIS/python/plugins/processing/algs/otb/description/5.0.0/doc/FusionOfClassifications.html
Juergen E. Fischer 00633811c9 spelling fixes
2016-01-21 10:42:25 +01:00

9 lines
5.1 KiB
HTML

<html><head>
<style type="text/css">
dl { border: 3px double #ccc; padding: 0.5em; } dt { float: left; clear: left; text-align: left; font-weight: bold; color: green; } dt:after { content: ":"; } dd { margin: 0 0 0 220px; padding: 0 0 0.5em 0; }
</style>
</head><body><h1>FusionOfClassifications</h1><h2>Brief Description</h2>Fuses several classifications maps of the same image on the basis of class labels.<h2>Tags</h2>Learning,Image Analysis<h2>Long Description</h2>This application allows fusing several classification maps and produces a single more robust classification map. Fusion is done either by mean of Majority Voting, or with the Dempster Shafer combination method on class labels.
-MAJORITY VOTING: for each pixel, the class with the highest number of votes is selected.
-DEMPSTER SHAFER: for each pixel, the class label for which the Belief Function is maximal is selected. This Belief Function is calculated by mean of the Dempster Shafer combination of Masses of Belief, and indicates the belief that each input classification map presents for each label value. Moreover, the Masses of Belief are based on the input confusion matrices of each classification map, either by using the PRECISION or RECALL rates, or the OVERALL ACCURACY, or the KAPPA coefficient. Thus, each input classification map needs to be associated with its corresponding input confusion matrix file for the Dempster Shafer fusion.
-Input pixels with the NODATA label are not handled in the fusion of classification maps. Moreover, pixels for which all the input classifiers are set to NODATA keep this value in the output fused image.
-In case of number of votes equality, the UNDECIDED label is attributed to the pixel.<h2>Parameters</h2><ul><li><b>[param] -il</b> &lt;string&gt; List of input classification maps to fuse. Labels in each classification image must represent the same class.. Mandatory: True. Default Value: &quot;0&quot;</li><li><b>[param] -nodatalabel</b> &lt;int32&gt; Label for the NoData class. Such input pixels keep their NoData label in the output image and are not handled in the fusion process. By default, 'nodatalabel = 0'.. Mandatory: True. Default Value: &quot;0&quot;</li><li><b>[param] -undecidedlabel</b> &lt;int32&gt; Label for the Undecided class. Pixels with more than 1 fused class are marked as Undecided. Please note that the Undecided value must be different from existing labels in the input classifications. By default, 'undecidedlabel = 0'.. Mandatory: True. Default Value: &quot;0&quot;</li><li><b>[param] -out</b> &lt;string&gt; The output classification image resulting from the fusion of the input classification images.. Mandatory: True. Default Value: &quot;&quot;</li><li><b>[param] -inxml</b> &lt;string&gt; Load otb application from xml file. Mandatory: False. Default Value: &quot;&quot;</li><li><b>[param] -outxml</b> &lt;string&gt; Save otb application to xml file. Mandatory: False. Default Value: &quot;&quot;</li><b>[choice] -method</b> Selection of the fusion method and its parameters. majorityvoting,dempstershafer. Mandatory: True. Default Value: &quot;majorityvoting&quot;<ul><li><b>[group] -majorityvoting</b></li><ul></ul><li><b>[group] -dempstershafer</b></li><ul><li><b>[param] -method.dempstershafer.cmfl</b> &lt;string&gt; A list of confusion matrix files (*.CSV format) to define the masses of belief and the class labels. Each file should be formatted the following way: the first line, beginning with a '#' symbol, should be a list of the class labels present in the corresponding input classification image, organized in the same order as the confusion matrix rows/columns.. Mandatory: True. Default Value: &quot;0&quot;</li><li><b>[param] -method.dempstershafer.mob</b> &lt;string&gt; Type of confusion matrix measurement used to compute the masses of belief of each classifier.. Mandatory: True. Default Value: &quot;precision&quot;</li></ul></ul></ul><h2>Limitations</h2>None<h2>Authors</h2>OTB-Team<h2>See Also</h2>ImageClassifier application<h2>Example of use</h2><ul><li><p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">il: classification1.tif classification2.tif classification3.tif</p></li><li><p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">method: dempstershafer</p></li><li><p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">method.dempstershafer.cmfl: classification1.csv classification2.csv classification3.csv</p></li><li><p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">method.dempstershafer.mob: precision</p></li><li><p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">nodatalabel: 0</p></li><li><p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">undecidedlabel: 10</p></li><li><p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">out: classification_fused.tif</p></li></ul></body></html>