QGIS/python/core/auto_generated/geometry/qgsabstractgeometry.sip.in

1122 lines
33 KiB
Plaintext

/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsabstractgeometry.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/
typedef QVector< QgsPoint > QgsPointSequence;
typedef QVector< QVector< QgsPoint > > QgsRingSequence;
typedef QVector< QVector< QVector< QgsPoint > > > QgsCoordinateSequence;
class QgsAbstractGeometry
{
%Docstring(signature="appended")
Abstract base class for all geometries
.. note::
:py:class:`QgsAbstractGeometry` objects are inherently Cartesian/planar geometries. They have no concept of geodesy, and none
of the methods or properties exposed from the :py:class:`QgsAbstractGeometry` API (or :py:class:`QgsGeometry` API) utilize
geodesic calculations. Accordingly, properties like :py:func:`~length` and :py:func:`~area` and spatial operations like :py:func:`~centroid`
are always calculated using strictly Cartesian mathematics. In contrast, the :py:class:`QgsDistanceArea` class exposes
methods for working with geodesic calculations and spatial operations on geometries,
and should be used whenever calculations which account for the curvature of the Earth (or any other celestial body)
are required.
.. versionadded:: 2.10
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
%ConvertToSubClassCode
if ( qgsgeometry_cast<QgsPoint *>( sipCpp ) != nullptr )
sipType = sipType_QgsPoint;
else if ( qgsgeometry_cast<QgsLineString *>( sipCpp ) != nullptr )
sipType = sipType_QgsLineString;
else if ( qgsgeometry_cast<QgsCircularString *>( sipCpp ) != nullptr )
sipType = sipType_QgsCircularString;
else if ( qgsgeometry_cast<QgsCompoundCurve *>( sipCpp ) != nullptr )
sipType = sipType_QgsCompoundCurve;
else if ( qgsgeometry_cast<QgsTriangle *>( sipCpp ) != nullptr )
sipType = sipType_QgsTriangle;
else if ( qgsgeometry_cast<QgsPolygon *>( sipCpp ) != nullptr )
sipType = sipType_QgsPolygon;
else if ( qgsgeometry_cast<QgsCurvePolygon *>( sipCpp ) != nullptr )
sipType = sipType_QgsCurvePolygon;
else if ( qgsgeometry_cast<QgsMultiPoint *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiPoint;
else if ( qgsgeometry_cast<QgsMultiLineString *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiLineString;
else if ( qgsgeometry_cast<QgsMultiPolygon *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiPolygon;
else if ( qgsgeometry_cast<QgsMultiSurface *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiSurface;
else if ( qgsgeometry_cast<QgsMultiCurve *>( sipCpp ) != nullptr )
sipType = sipType_QgsMultiCurve;
else if ( qgsgeometry_cast<QgsGeometryCollection *>( sipCpp ) != nullptr )
sipType = sipType_QgsGeometryCollection;
else
sipType = 0;
%End
public:
static const QMetaObject staticMetaObject;
public:
enum SegmentationToleranceType
{
MaximumAngle,
MaximumDifference
};
enum AxisOrder
{
XY,
YX
};
QgsAbstractGeometry();
%Docstring
Constructor for QgsAbstractGeometry.
%End
virtual ~QgsAbstractGeometry();
QgsAbstractGeometry( const QgsAbstractGeometry &geom );
virtual bool operator==( const QgsAbstractGeometry &other ) const = 0;
virtual bool operator!=( const QgsAbstractGeometry &other ) const = 0;
virtual QgsAbstractGeometry *clone() const = 0 /Factory/;
%Docstring
Clones the geometry by performing a deep copy
%End
virtual int compareTo( const QgsAbstractGeometry *other ) const;
%Docstring
Comparator for sorting of geometry.
.. versionadded:: 3.20
%End
virtual void clear() = 0;
%Docstring
Clears the geometry, ie reset it to a null geometry
%End
virtual QgsRectangle boundingBox() const;
%Docstring
Returns the minimal bounding box for the geometry
%End
virtual QgsBox3D boundingBox3D() const = 0;
%Docstring
Returns the 3D bounding box for the geometry.
.. versionadded:: 3.34
%End
virtual int dimension() const = 0;
%Docstring
Returns the inherent dimension of the geometry. For example, this is 0 for a point geometry,
1 for a linestring and 2 for a polygon.
%End
virtual QString geometryType() const = 0;
%Docstring
Returns a unique string representing the geometry type.
.. seealso:: :py:func:`wkbType`
.. seealso:: :py:func:`wktTypeStr`
%End
Qgis::WkbType wkbType() const /HoldGIL/;
%Docstring
Returns the WKB type of the geometry.
.. seealso:: :py:func:`geometryType`
.. seealso:: :py:func:`wktTypeStr`
%End
QString wktTypeStr() const;
%Docstring
Returns the WKT type string of the geometry.
.. seealso:: :py:func:`geometryType`
.. seealso:: :py:func:`wkbType`
%End
bool is3D() const /HoldGIL/;
%Docstring
Returns ``True`` if the geometry is 3D and contains a z-value.
.. seealso:: :py:func:`isMeasure`
%End
bool isMeasure() const /HoldGIL/;
%Docstring
Returns ``True`` if the geometry contains m values.
.. seealso:: :py:func:`is3D`
%End
virtual QgsAbstractGeometry *boundary() const = 0 /Factory/;
%Docstring
Returns the closure of the combinatorial boundary of the geometry (ie the topological boundary of the geometry).
For instance, a polygon geometry will have a boundary consisting of the linestrings for each ring in the polygon.
:return: boundary for geometry. May be ``None`` for some geometry types.
.. versionadded:: 3.0
%End
virtual void normalize() = 0;
%Docstring
Reorganizes the geometry into a normalized form (or "canonical" form).
Polygon rings will be rearranged so that their starting vertex is the lower left and ring orientation follows the
right hand rule, collections are ordered by geometry type, and other normalization techniques are applied. The
resultant geometry will be geometrically equivalent to the original geometry.
.. versionadded:: 3.20
%End
virtual bool fromWkb( QgsConstWkbPtr &wkb ) = 0;
%Docstring
Sets the geometry from a WKB string.
After successful read the wkb argument will be at the position where the reading has stopped.
.. seealso:: :py:func:`fromWkt`
%End
virtual bool fromWkt( const QString &wkt ) = 0;
%Docstring
Sets the geometry from a WKT string.
.. seealso:: :py:func:`fromWkb`
%End
enum WkbFlag
{
FlagExportTrianglesAsPolygons,
FlagExportNanAsDoubleMin,
};
typedef QFlags<QgsAbstractGeometry::WkbFlag> WkbFlags;
virtual int wkbSize( QgsAbstractGeometry::WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const = 0;
%Docstring
Returns the length of the QByteArray returned by :py:func:`~QgsAbstractGeometry.asWkb`
The optional ``flags`` argument specifies flags controlling WKB export behavior
.. versionadded:: 3.16
%End
virtual QByteArray asWkb( WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const = 0;
%Docstring
Returns a WKB representation of the geometry.
The optional ``flags`` argument specifies flags controlling WKB export behavior (since QGIS 3.14).
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJson`
.. versionadded:: 3.0
%End
virtual QString asWkt( int precision = 17 ) const = 0;
%Docstring
Returns a WKT representation of the geometry.
:param precision: number of decimal places for coordinates
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJson`
%End
virtual QDomElement asGml2( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML2 representation of the geometry.
:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJson`
%End
virtual QDomElement asGml3( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML3 representation of the geometry.
:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asJson`
%End
QString asJson( int precision = 17 );
%Docstring
Returns a GeoJSON representation of the geometry as a QString.
:param precision: number of decimal places for coordinates
.. seealso:: :py:func:`asWkb`
.. seealso:: :py:func:`asWkt`
.. seealso:: :py:func:`asGml2`
.. seealso:: :py:func:`asGml3`
.. seealso:: :py:func:`asJsonObject`
%End
virtual QString asKml( int precision = 17 ) const = 0;
%Docstring
Returns a KML representation of the geometry.
.. versionadded:: 3.12
%End
virtual void transform( const QgsCoordinateTransform &ct, Qgis::TransformDirection d = Qgis::TransformDirection::Forward, bool transformZ = false ) throw( QgsCsException ) = 0;
%Docstring
Transforms the geometry using a coordinate transform
:param ct: coordinate transform
:param d: transformation direction
:param transformZ: set to ``True`` to also transform z coordinates. This requires that
the z coordinates in the geometry represent height relative to the vertical datum
of the source CRS (generally ellipsoidal heights) and are expressed in its vertical
units (generally meters). If ``False``, then z coordinates will not be changed by the
transform.
%End
virtual void transform( const QTransform &t, double zTranslate = 0.0, double zScale = 1.0,
double mTranslate = 0.0, double mScale = 1.0 ) = 0;
%Docstring
Transforms the x and y components of the geometry using a QTransform object ``t``.
Optionally, the geometry's z values can be scaled via ``zScale`` and translated via ``zTranslate``.
Similarly, m-values can be scaled via ``mScale`` and translated via ``mTranslate``.
%End
virtual void draw( QPainter &p ) const = 0;
%Docstring
Draws the geometry using the specified QPainter.
:param p: destination QPainter
%End
virtual QPainterPath asQPainterPath() const = 0;
%Docstring
Returns the geometry represented as a QPainterPath.
.. warning::
not all geometry subclasses can be represented by a QPainterPath, e.g.
points and multipoint geometries will return an empty path.
.. versionadded:: 3.16
%End
virtual int vertexNumberFromVertexId( QgsVertexId id ) const = 0;
%Docstring
Returns the vertex number corresponding to a vertex ``id``.
The vertex numbers start at 0, so a return value of 0 corresponds
to the first vertex.
Returns -1 if a corresponding vertex could not be found.
.. versionadded:: 3.0
%End
virtual bool nextVertex( QgsVertexId &id, QgsPoint &vertex /Out/ ) const = 0;
%Docstring
Returns next vertex id and coordinates
:param id: initial value should be the starting vertex id. The next vertex id will be stored
in this variable if found.
:return: - ``False`` if at end
- vertex: container for found node
%End
virtual void adjacentVertices( QgsVertexId vertex, QgsVertexId &previousVertex /Out/, QgsVertexId &nextVertex /Out/ ) const = 0;
%Docstring
Returns the vertices adjacent to a specified ``vertex`` within a geometry.
.. versionadded:: 3.0
%End
virtual QgsCoordinateSequence coordinateSequence() const = 0;
%Docstring
Retrieves the sequence of geometries, rings and nodes.
:return: coordinate sequence
%End
virtual int nCoordinates() const;
%Docstring
Returns the number of nodes contained in the geometry
%End
virtual QgsPoint vertexAt( QgsVertexId id ) const = 0;
%Docstring
Returns the point corresponding to a specified vertex id
%End
virtual double closestSegment( const QgsPoint &pt, QgsPoint &segmentPt /Out/,
QgsVertexId &vertexAfter /Out/,
int *leftOf /Out/ = 0, double epsilon = 4 * DBL_EPSILON ) const = 0;
%Docstring
Searches for the closest segment of the geometry to a given point.
:param pt: specifies the point to find closest segment to
:param segmentPt: storage for the closest point within the geometry
:param vertexAfter: storage for the ID of the vertex at the end of the closest segment
:param epsilon: epsilon for segment snapping
:return: - squared distance to closest segment or negative value on error
- leftOf: indicates whether the point lies on the left side of the geometry (-1 if point is to the left of the geometry, +1 if the point is to the right of the geometry, or 0 for cases where left/right could not be determined, e.g. point exactly on a line) ``False`` if point is to right of segment)
%End
virtual bool insertVertex( QgsVertexId position, const QgsPoint &vertex ) = 0;
%Docstring
Inserts a vertex into the geometry
:param position: vertex id for position of inserted vertex
:param vertex: vertex to insert
:return: ``True`` if insert was successful
.. seealso:: :py:func:`moveVertex`
.. seealso:: :py:func:`deleteVertex`
%End
virtual bool moveVertex( QgsVertexId position, const QgsPoint &newPos ) = 0;
%Docstring
Moves a vertex within the geometry
:param position: vertex id for vertex to move
:param newPos: new position of vertex
:return: ``True`` if move was successful
.. seealso:: :py:func:`insertVertex`
.. seealso:: :py:func:`deleteVertex`
%End
virtual bool deleteVertex( QgsVertexId position ) = 0;
%Docstring
Deletes a vertex within the geometry
:param position: vertex id for vertex to delete
:return: ``True`` if delete was successful
.. seealso:: :py:func:`insertVertex`
.. seealso:: :py:func:`moveVertex`
%End
virtual double length() const;
%Docstring
Returns the planar, 2-dimensional length of the geometry.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the length
returned by this method is calculated using strictly Cartesian mathematics. In contrast,
the :py:class:`QgsDistanceArea` class exposes methods for calculating the lengths of geometries using
geodesic calculations which account for the curvature of the Earth (or any other
celestial body).
.. seealso:: :py:func:`area`
.. seealso:: :py:func:`perimeter`
%End
virtual double perimeter() const;
%Docstring
Returns the planar, 2-dimensional perimeter of the geometry.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the perimeter
returned by this method is calculated using strictly Cartesian mathematics. In contrast,
the :py:class:`QgsDistanceArea` class exposes methods for calculating the perimeters of geometries using
geodesic calculations which account for the curvature of the Earth (or any other
celestial body).
.. seealso:: :py:func:`area`
.. seealso:: :py:func:`length`
%End
virtual double area() const;
%Docstring
Returns the planar, 2-dimensional area of the geometry.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the area
returned by this method is calculated using strictly Cartesian mathematics. In contrast,
the :py:class:`QgsDistanceArea` class exposes methods for calculating the areas of geometries using
geodesic calculations which account for the curvature of the Earth (or any other
celestial body).
.. seealso:: :py:func:`length`
.. seealso:: :py:func:`perimeter`
%End
virtual double segmentLength( QgsVertexId startVertex ) const = 0;
%Docstring
Returns the length of the segment of the geometry which begins at ``startVertex``.
.. warning::
QgsAbstractGeometry objects are inherently Cartesian/planar geometries, and the lengths
returned by this method are calculated using strictly Cartesian mathematics.
.. versionadded:: 3.0
%End
virtual QgsPoint centroid() const;
%Docstring
Returns the centroid of the geometry
%End
virtual bool isEmpty() const;
%Docstring
Returns ``True`` if the geometry is empty
%End
virtual bool hasCurvedSegments() const;
%Docstring
Returns ``True`` if the geometry contains curved segments
%End
virtual bool boundingBoxIntersects( const QgsRectangle &rectangle ) const /HoldGIL/;
%Docstring
Returns ``True`` if the bounding box of this geometry intersects with a ``rectangle``.
Since this test only considers the bounding box of the geometry, is is very fast to
calculate and handles invalid geometries.
.. versionadded:: 3.20
%End
virtual bool boundingBoxIntersects( const QgsBox3D &box3d ) const /HoldGIL/;
%Docstring
Returns ``True`` if the bounding box of this geometry intersects with a ``box3d``.
Since this test only considers the bounding box of the geometry, is is very fast to
calculate and handles invalid geometries.
.. versionadded:: 3.34
%End
virtual QgsAbstractGeometry *segmentize( double tolerance = M_PI / 180., SegmentationToleranceType toleranceType = MaximumAngle ) const /Factory/;
%Docstring
Returns a version of the geometry without curves. Caller takes ownership of
the returned geometry.
:param tolerance: segmentation tolerance
:param toleranceType: maximum segmentation angle or maximum difference between approximation and curve
%End
virtual QgsAbstractGeometry *toCurveType() const = 0 /Factory/;
%Docstring
Returns the geometry converted to the more generic curve type.
E.g. :py:class:`QgsLineString` -> :py:class:`QgsCompoundCurve`, :py:class:`QgsPolygon` -> :py:class:`QgsCurvePolygon`,
:py:class:`QgsMultiLineString` -> :py:class:`QgsMultiCurve`, :py:class:`QgsMultiPolygon` -> :py:class:`QgsMultiSurface`
:return: the converted geometry. Caller takes ownership
%End
virtual QgsAbstractGeometry *snappedToGrid( double hSpacing, double vSpacing, double dSpacing = 0, double mSpacing = 0 ) const = 0 /Factory/;
%Docstring
Makes a new geometry with all the points or vertices snapped to the closest point of the grid.
Ownership is transferred to the caller.
If the gridified geometry could not be calculated ``None`` will be returned.
It may generate an invalid geometry (in some corner cases).
It can also be thought as rounding the edges and it may be useful for removing errors.
Example:
.. code-block:: python
geometry.snappedToGrid(1, 1)
In this case we use a 2D grid of 1x1 to gridify.
In this case, it can be thought like rounding the x and y of all the points/vertices to full units (remove all decimals).
:param hSpacing: Horizontal spacing of the grid (x axis). 0 to disable.
:param vSpacing: Vertical spacing of the grid (y axis). 0 to disable.
:param dSpacing: Depth spacing of the grid (z axis). 0 (default) to disable.
:param mSpacing: Custom dimension spacing of the grid (m axis). 0 (default) to disable.
.. versionadded:: 3.0
%End
virtual bool removeDuplicateNodes( double epsilon = 4 * DBL_EPSILON, bool useZValues = false ) = 0;
%Docstring
Removes duplicate nodes from the geometry, wherever removing the nodes does not result in a
degenerate geometry.
The ``epsilon`` parameter specifies the tolerance for coordinates when determining that
vertices are identical.
By default, z values are not considered when detecting duplicate nodes. E.g. two nodes
with the same x and y coordinate but different z values will still be considered
duplicate and one will be removed. If ``useZValues`` is ``True``, then the z values are
also tested and nodes with the same x and y but different z will be maintained.
Note that duplicate nodes are not tested between different parts of a multipart geometry. E.g.
a multipoint geometry with overlapping points will not be changed by this method.
The function will return ``True`` if nodes were removed, or ``False`` if no duplicate nodes
were found.
.. versionadded:: 3.0
%End
virtual double vertexAngle( QgsVertexId vertex ) const = 0;
%Docstring
Returns approximate angle at a vertex. This is usually the average angle between adjacent
segments, and can be pictured as the orientation of a line following the curvature of the
geometry at the specified vertex.
:param vertex: the vertex id
:return: rotation in radians, clockwise from north
%End
virtual int vertexCount( int part = 0, int ring = 0 ) const = 0;
%Docstring
Returns the number of vertices of which this geometry is built.
%End
virtual int ringCount( int part = 0 ) const = 0;
%Docstring
Returns the number of rings of which this geometry is built.
%End
virtual int partCount() const = 0;
%Docstring
Returns count of parts contained in the geometry.
.. seealso:: :py:func:`vertexCount`
.. seealso:: :py:func:`ringCount`
%End
virtual bool addZValue( double zValue = 0 ) = 0;
%Docstring
Adds a z-dimension to the geometry, initialized to a preset value.
:param zValue: initial z-value for all nodes
:return: ``True`` on success
.. seealso:: :py:func:`dropZValue`
.. seealso:: :py:func:`addMValue`
.. versionadded:: 2.12
%End
virtual bool addMValue( double mValue = 0 ) = 0;
%Docstring
Adds a measure to the geometry, initialized to a preset value.
:param mValue: initial m-value for all nodes
:return: ``True`` on success
.. seealso:: :py:func:`dropMValue`
.. seealso:: :py:func:`addZValue`
.. versionadded:: 2.12
%End
virtual bool dropZValue() = 0;
%Docstring
Drops any z-dimensions which exist in the geometry.
:return: ``True`` if Z values were present and have been removed
.. seealso:: :py:func:`addZValue`
.. seealso:: :py:func:`dropMValue`
.. versionadded:: 2.14
%End
virtual bool dropMValue() = 0;
%Docstring
Drops any measure values which exist in the geometry.
:return: ``True`` if m-values were present and have been removed
.. seealso:: :py:func:`addMValue`
.. seealso:: :py:func:`dropZValue`
.. versionadded:: 2.14
%End
virtual void swapXy() = 0;
%Docstring
Swaps the x and y coordinates from the geometry. This can be used
to repair geometries which have accidentally had their latitude and longitude
coordinates reversed.
.. versionadded:: 3.2
%End
virtual bool convertTo( Qgis::WkbType type );
%Docstring
Converts the geometry to a specified type.
:return: ``True`` if conversion was successful
.. versionadded:: 2.14
%End
virtual const QgsAbstractGeometry *simplifiedTypeRef() const /HoldGIL/;
%Docstring
Returns a reference to the simplest lossless representation of this geometry,
e.g. if the geometry is a multipart geometry type with a single member geometry,
a reference to that part will be returned.
This method employs the following logic:
- For multipart geometries containing a single part only a direct reference to that part will be returned.
- For compound curve geometries containing a single curve only a direct reference to that curve will be returned.
This method returns a reference only, and does not involve any geometry cloning.
.. note::
Ownership of the returned geometry is NOT transferred, and remains with the original
geometry object. Callers must take care to ensure that the original geometry object
exists for the lifespan of the returned object.
.. versionadded:: 3.20
%End
virtual bool isValid( QString &error /Out/, Qgis::GeometryValidityFlags flags = Qgis::GeometryValidityFlags() ) const = 0;
%Docstring
Checks validity of the geometry, and returns ``True`` if the geometry is valid.
:param flags: indicates optional flags which control the type of validity checking performed
(corresponding to :py:class:`Qgis`.GeometryValidityFlags).
:return: - ``True`` if geometry is valid
- error: will be set to the validity error message
.. versionadded:: 3.8
%End
virtual bool transform( QgsAbstractGeometryTransformer *transformer, QgsFeedback *feedback = 0 ) = 0;
%Docstring
Transforms the vertices from the geometry in place, using the specified geometry ``transformer``
object.
Depending on the ``transformer`` used, this may result in an invalid geometry.
The optional ``feedback`` argument can be used to cancel the transformation before it completes.
If this is done, the geometry will be left in a semi-transformed state.
:return: ``True`` if the geometry was successfully transformed.
.. versionadded:: 3.18
%End
QgsGeometryPartIterator parts();
%Docstring
Returns Java-style iterator for traversal of parts of the geometry. This iterator
can safely be used to modify parts of the geometry.
Example
.. code-block:: python
# print the WKT representation of each part in a multi-point geometry
geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
for part in geometry.parts():
print(part.asWkt())
# single part geometries only have one part - this loop will iterate once only
geometry = QgsLineString.fromWkt( 'LineString( 0 0, 10 10 )' )
for part in geometry.parts():
print(part.asWkt())
# parts can be modified during the iteration
geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
for part in geometry.parts():
part.transform(ct)
# part iteration can also be combined with vertex iteration
geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
for part in geometry.parts():
for v in part.vertices():
print(v.x(), v.y())
.. seealso:: :py:func:`vertices`
.. versionadded:: 3.6
%End
QgsVertexIterator vertices() const;
%Docstring
Returns a read-only, Java-style iterator for traversal of vertices of all the geometry, including all geometry parts and rings.
.. warning::
The iterator returns a copy of individual vertices, and accordingly geometries cannot be
modified using the iterator. See :py:func:`~QgsAbstractGeometry.transformVertices` for a safe method to modify vertices "in-place".
Example
.. code-block:: python
# print the x and y coordinate for each vertex in a LineString
geometry = QgsLineString.fromWkt( 'LineString( 0 0, 1 1, 2 2)' )
for v in geometry.vertices():
print(v.x(), v.y())
# vertex iteration includes all parts and rings
geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
for v in geometry.vertices():
print(v.x(), v.y())
.. seealso:: :py:func:`parts`
.. versionadded:: 3.0
%End
virtual QgsAbstractGeometry *createEmptyWithSameType() const = 0 /Factory/;
%Docstring
Creates a new geometry with the same class and same WKB type as the original and transfers ownership.
To create it, the geometry is default constructed and then the WKB is changed.
.. seealso:: :py:func:`clone`
.. versionadded:: 3.0
%End
protected:
int sortIndex() const;
%Docstring
Returns the sort index for the geometry, used in the :py:func:`~QgsAbstractGeometry.compareTo` method to compare
geometries of different types.
.. versionadded:: 3.20
%End
virtual int compareToSameClass( const QgsAbstractGeometry *other ) const = 0;
%Docstring
Compares to an ``other`` geometry of the same class, and returns a integer
for sorting of the two geometries.
.. note::
The actual logic for the sorting is an internal detail only and is subject to change
between QGIS versions. The result should only be used for direct comparison of geometries
and not stored for later use.
.. versionadded:: 3.20
%End
virtual bool hasChildGeometries() const;
%Docstring
Returns whether the geometry has any child geometries (``False`` for point / curve, ``True`` otherwise)
.. note::
used for vertex_iterator implementation
.. versionadded:: 3.0
%End
virtual int childCount() const;
%Docstring
Returns number of child geometries (for geometries with child geometries) or child points (for geometries without child geometries - i.e. curve / point)
.. note::
used for vertex_iterator implementation
.. versionadded:: 3.0
%End
virtual QgsAbstractGeometry *childGeometry( int index ) const;
%Docstring
Returns pointer to child geometry (for geometries with child geometries - i.e. geom. collection / polygon)
.. note::
used for vertex_iterator implementation
.. versionadded:: 3.0
%End
virtual QgsPoint childPoint( int index ) const;
%Docstring
Returns point at index (for geometries without child geometries - i.e. curve / point)
.. note::
used for vertex_iterator implementation
.. versionadded:: 3.0
%End
protected:
void setZMTypeFromSubGeometry( const QgsAbstractGeometry *subggeom, Qgis::WkbType baseGeomType );
%Docstring
Updates the geometry type based on whether sub geometries contain z or m values.
%End
virtual QgsRectangle calculateBoundingBox() const;
%Docstring
Default calculator for the minimal bounding box for the geometry. Derived classes should override this method
if a more efficient bounding box calculation is available.
%End
virtual QgsBox3D calculateBoundingBox3D() const;
%Docstring
Calculates the minimal 3D bounding box for the geometry.
.. seealso:: :py:func:`calculateBoundingBox`
.. versionadded:: 3.34
%End
virtual void clearCache() const;
%Docstring
Clears any cached parameters associated with the geometry, e.g., bounding boxes
%End
};
class QgsVertexIterator
{
%Docstring(signature="appended")
Java-style iterator for traversal of vertices of a geometry
.. versionadded:: 3.0
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
public:
QgsVertexIterator();
%Docstring
Constructor for QgsVertexIterator
%End
QgsVertexIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End
bool hasNext() const;
%Docstring
Find out whether there are more vertices
%End
QgsPoint next();
%Docstring
Returns next vertex of the geometry (undefined behavior if :py:func:`~QgsVertexIterator.hasNext` returns ``False`` before calling :py:func:`~QgsVertexIterator.next`)
%End
QgsVertexIterator *__iter__();
%MethodCode
sipRes = sipCpp;
%End
SIP_PYOBJECT __next__() /TypeHint="QgsPoint"/;
%MethodCode
if ( sipCpp->hasNext() )
sipRes = sipConvertFromType( new QgsPoint( sipCpp->next() ), sipType_QgsPoint, Py_None );
else
PyErr_SetString( PyExc_StopIteration, "" );
%End
};
class QgsGeometryPartIterator
{
%Docstring(signature="appended")
Java-style iterator for traversal of parts of a geometry
.. versionadded:: 3.6
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
public:
QgsGeometryPartIterator();
%Docstring
Constructor for QgsGeometryPartIterator
%End
QgsGeometryPartIterator( QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End
bool hasNext() const /HoldGIL/;
%Docstring
Find out whether there are more parts
%End
QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if :py:func:`~QgsGeometryPartIterator.hasNext` returns ``False`` before calling :py:func:`~QgsGeometryPartIterator.next`)
%End
QgsGeometryPartIterator *__iter__();
%MethodCode
sipRes = sipCpp;
%End
SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
if ( sipCpp->hasNext() )
sipRes = sipConvertFromType( sipCpp->next(), sipType_QgsAbstractGeometry, NULL );
else
PyErr_SetString( PyExc_StopIteration, "" );
%End
};
class QgsGeometryConstPartIterator
{
%Docstring(signature="appended")
Java-style iterator for const traversal of parts of a geometry
.. versionadded:: 3.6
%End
%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
public:
QgsGeometryConstPartIterator();
%Docstring
Constructor for QgsGeometryConstPartIterator
%End
QgsGeometryConstPartIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End
bool hasNext() const /HoldGIL/;
%Docstring
Find out whether there are more parts
%End
const QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if :py:func:`~QgsGeometryConstPartIterator.hasNext` returns ``False`` before calling :py:func:`~QgsGeometryConstPartIterator.next`)
%End
QgsGeometryConstPartIterator *__iter__();
%MethodCode
sipRes = sipCpp;
%End
SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
if ( sipCpp->hasNext() )
sipRes = sipConvertFromType( const_cast< QgsAbstractGeometry * >( sipCpp->next() ), sipType_QgsAbstractGeometry, NULL );
else
PyErr_SetString( PyExc_StopIteration, "" );
%End
};
QFlags<QgsAbstractGeometry::WkbFlag> operator|(QgsAbstractGeometry::WkbFlag f1, QFlags<QgsAbstractGeometry::WkbFlag> f2);
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsabstractgeometry.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/