QGIS/python/plugins/processing/algs/qgis/StatisticsByCategories.py
2015-08-22 14:29:41 +02:00

119 lines
4.4 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
StatisticsByCategories.py
---------------------
Date : September 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Victor Olaya'
__date__ = 'September 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import math
from processing.core.outputs import OutputTable
from processing.core.GeoAlgorithm import GeoAlgorithm
from processing.tools import dataobjects, vector
from processing.core.parameters import ParameterVector
from processing.core.parameters import ParameterTableField
class StatisticsByCategories(GeoAlgorithm):
INPUT_LAYER = 'INPUT_LAYER'
VALUES_FIELD_NAME = 'VALUES_FIELD_NAME'
CATEGORIES_FIELD_NAME = 'CATEGORIES_FIELD_NAME'
OUTPUT = 'OUTPUT'
def defineCharacteristics(self):
self.name, self.i18n_name = self.trAlgorithm('Statistics by categories')
self.group, self.i18n_group = self.trAlgorithm('Vector table tools')
self.addParameter(ParameterVector(self.INPUT_LAYER,
self.tr('Input vector layer'), [ParameterVector.VECTOR_TYPE_ANY], False))
self.addParameter(ParameterTableField(self.VALUES_FIELD_NAME,
self.tr('Field to calculate statistics on'),
self.INPUT_LAYER, ParameterTableField.DATA_TYPE_NUMBER))
self.addParameter(ParameterTableField(self.CATEGORIES_FIELD_NAME,
self.tr('Field with categories'),
self.INPUT_LAYER, ParameterTableField.DATA_TYPE_ANY))
self.addOutput(OutputTable(self.OUTPUT, self.tr('Statistics by category')))
def processAlgorithm(self, progress):
layer = dataobjects.getObjectFromUri(self.getParameterValue(self.INPUT_LAYER))
valuesFieldName = self.getParameterValue(self.VALUES_FIELD_NAME)
categoriesFieldName = self.getParameterValue(self.CATEGORIES_FIELD_NAME)
output = self.getOutputFromName(self.OUTPUT)
valuesField = layer.fieldNameIndex(valuesFieldName)
categoriesField = layer.fieldNameIndex(categoriesFieldName)
features = vector.features(layer)
nFeats = len(features)
values = {}
nFeat = 0
for feat in features:
nFeat += 1
progress.setPercentage(int(100 * nFeats / nFeat))
attrs = feat.attributes()
try:
value = float(attrs[valuesField])
cat = unicode(attrs[categoriesField])
if cat not in values:
values[cat] = []
values[cat].append(value)
except:
pass
fields = ['category', 'min', 'max', 'mean', 'stddev', 'sum', 'count']
writer = output.getTableWriter(fields)
for (cat, v) in values.items():
(min, max, mean, stddev, sum) = calculateStats(v)
record = [cat, min, max, mean, stddev, sum, len(v)]
writer.addRecord(record)
def calculateStats(values):
n = 0
sum = 0
mean = 0
M2 = 0
minvalue = None
maxvalue = None
for v in values:
sum += v
n = n + 1
delta = v - mean
mean = mean + delta / n
M2 = M2 + delta * (v - mean)
if minvalue is None:
minvalue = v
maxvalue = v
else:
minvalue = min(v, minvalue)
maxvalue = max(v, maxvalue)
if n > 1:
variance = M2 / (n - 1)
else:
variance = 0
stddev = math.sqrt(variance)
return (minvalue, maxvalue, mean, stddev, sum)