QGIS/python/plugins/processing/algs/qgis/NearestNeighbourAnalysis.py
Nyall Dawson 1e13d733c2 Move declaration of algorithm parameters/outputs to a new virtual
initAlgorithm() method

This allows 2 benefits:
- algorithms can be subclassed and have subclasses add additional
parameters/outputs to the algorithm. With the previous approach
of declaring parameters/outputs in the constructor, it's not
possible to call virtual methods to add additional parameters/
outputs (since you can't call virtual methods from a constructor).

- initAlgorithm takes a variant map argument, allowing the algorithm
to dynamically adjust its declared parameters and outputs according
to this configuration map. This potentially allows model algorithms which
can be configured to have variable numbers of parameters and
outputs at run time. E.g. a "router" algorithm which directs
features to one of any number of output sinks depending on some
user configured criteria.
2017-07-10 16:31:14 +10:00

143 lines
5.4 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
NearestNeighbourAnalysis.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from builtins import next
from builtins import str
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
import math
import codecs
from qgis.PyQt.QtGui import QIcon
from qgis.core import QgsFeatureRequest, QgsFeature, QgsDistanceArea, QgsProcessingUtils
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
from processing.core.parameters import ParameterVector
from processing.core.outputs import OutputHTML
from processing.core.outputs import OutputNumber
from processing.tools import dataobjects
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class NearestNeighbourAnalysis(QgisAlgorithm):
POINTS = 'POINTS'
OUTPUT = 'OUTPUT'
OBSERVED_MD = 'OBSERVED_MD'
EXPECTED_MD = 'EXPECTED_MD'
NN_INDEX = 'NN_INDEX'
POINT_COUNT = 'POINT_COUNT'
Z_SCORE = 'Z_SCORE'
def icon(self):
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png'))
def group(self):
return self.tr('Vector analysis tools')
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.addParameter(ParameterVector(self.POINTS,
self.tr('Points'), [dataobjects.TYPE_VECTOR_POINT]))
self.addOutput(OutputHTML(self.OUTPUT, self.tr('Nearest neighbour')))
self.addOutput(OutputNumber(self.OBSERVED_MD,
self.tr('Observed mean distance')))
self.addOutput(OutputNumber(self.EXPECTED_MD,
self.tr('Expected mean distance')))
self.addOutput(OutputNumber(self.NN_INDEX,
self.tr('Nearest neighbour index')))
self.addOutput(OutputNumber(self.POINT_COUNT,
self.tr('Number of points')))
self.addOutput(OutputNumber(self.Z_SCORE, self.tr('Z-Score')))
def name(self):
return 'nearestneighbouranalysis'
def displayName(self):
return self.tr('Nearest neighbour analysis')
def processAlgorithm(self, parameters, context, feedback):
layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.POINTS), context)
output = self.getOutputValue(self.OUTPUT)
spatialIndex = QgsProcessingUtils.createSpatialIndex(layer, context)
neighbour = QgsFeature()
distance = QgsDistanceArea()
sumDist = 0.00
A = layer.extent()
A = float(A.width() * A.height())
features = QgsProcessingUtils.getFeatures(layer, context)
count = QgsProcessingUtils.featureCount(layer, context)
total = 100.0 / count if count else 1
for current, feat in enumerate(features):
neighbourID = spatialIndex.nearestNeighbor(
feat.geometry().asPoint(), 2)[1]
request = QgsFeatureRequest().setFilterFid(neighbourID).setSubsetOfAttributes([])
neighbour = next(layer.getFeatures(request))
sumDist += distance.measureLine(neighbour.geometry().asPoint(),
feat.geometry().asPoint())
feedback.setProgress(int(current * total))
do = float(sumDist) / count
de = float(0.5 / math.sqrt(count / A))
d = float(do / de)
SE = float(0.26136 / math.sqrt(count ** 2 / A))
zscore = float((do - de) / SE)
data = []
data.append('Observed mean distance: ' + str(do))
data.append('Expected mean distance: ' + str(de))
data.append('Nearest neighbour index: ' + str(d))
data.append('Number of points: ' + str(count))
data.append('Z-Score: ' + str(zscore))
self.createHTML(output, data)
self.setOutputValue(self.OBSERVED_MD, float(data[0].split(': ')[1]))
self.setOutputValue(self.EXPECTED_MD, float(data[1].split(': ')[1]))
self.setOutputValue(self.NN_INDEX, float(data[2].split(': ')[1]))
self.setOutputValue(self.POINT_COUNT, float(data[3].split(': ')[1]))
self.setOutputValue(self.Z_SCORE, float(data[4].split(': ')[1]))
def createHTML(self, outputFile, algData):
with codecs.open(outputFile, 'w', encoding='utf-8') as f:
f.write('<html><head>')
f.write('<meta http-equiv="Content-Type" content="text/html; \
charset=utf-8" /></head><body>')
for s in algData:
f.write('<p>' + str(s) + '</p>')
f.write('</body></html>')