Juergen E. Fischer 956c155e8f fix python pep8 warnings and fix some revealed errors
pep8 --ignore=E111,E128,E201,E202,E203,E211,E221,E222,E225,E226,E227,E231,E241,E261,E265,E272,E302,E303,E501,E701 \
     --exclude="ui_*.py,debian/*,python/ext-libs/*" \
     .
2015-02-01 20:46:47 +01:00

230 lines
8.6 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
SpatialJoin.py
---------------------
Date : October 2013
Copyright : (C) 2013 by Joshua Arnott
Email : josh at snorfalorpagus dot net
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Joshua Arnott'
__date__ = 'October 2013'
__copyright__ = '(C) 2013, Joshua Arnott'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
from PyQt4.QtCore import QVariant
from qgis.core import QGis, QgsFields, QgsField, QgsFeature, QgsGeometry, NULL
from processing.core.GeoAlgorithm import GeoAlgorithm
from processing.core.parameters import ParameterVector
from processing.core.parameters import ParameterSelection
from processing.core.parameters import ParameterString
from processing.core.outputs import OutputVector
from processing.tools import dataobjects, vector
class SpatialJoin(GeoAlgorithm):
TARGET = "TARGET"
JOIN = "JOIN"
SUMMARY = "SUMMARY"
STATS = "STATS"
KEEP = "KEEP"
OUTPUT = "OUTPUT"
SUMMARYS = [
'Take attributes of the first located feature',
'Take summary of intersecting features'
]
KEEPS = [
'Only keep matching records',
'Keep all records (including non-matching target records)'
]
def defineCharacteristics(self):
self.name = "Join attributes by location"
self.group = "Vector general tools"
self.addParameter(ParameterVector(self.TARGET,
'Target vector layer', [ParameterVector.VECTOR_TYPE_ANY]))
self.addParameter(ParameterVector(self.JOIN,
'Join vector layer', [ParameterVector.VECTOR_TYPE_ANY]))
self.addParameter(ParameterSelection(self.SUMMARY,
'Attribute summary', self.SUMMARYS))
self.addParameter(ParameterString(self.STATS,
'Statistics for summary (comma separated)',
'sum,mean,min,max,median'))
self.addParameter(ParameterSelection(self.KEEP,
'Output table', self.KEEPS))
self.addOutput(OutputVector(self.OUTPUT, 'Output layer'))
def processAlgorithm(self, progress):
target = dataobjects.getObjectFromUri(
self.getParameterValue(self.TARGET))
join = dataobjects.getObjectFromUri(
self.getParameterValue(self.JOIN))
summary = self.getParameterValue(self.SUMMARY) == 1
keep = self.getParameterValue(self.KEEP) == 1
sumList = self.getParameterValue(self.STATS).lower().split(',')
targetProvider = target.dataProvider()
joinProvider = join.dataProvider()
targetFields = targetProvider.fields()
joinFields = joinProvider.fields()
fieldList = QgsFields()
if not summary:
joinFields = vector.testForUniqueness(targetFields, joinFields)
seq = range(0, len(targetFields) + len(joinFields))
targetFields.extend(joinFields)
targetFields = dict(zip(seq, targetFields))
else:
numFields = {}
for j in xrange(len(joinFields)):
if joinFields[j].type() in [QVariant.Int, QVariant.Double]:
numFields[j] = []
for i in sumList:
field = QgsField(i + unicode(joinFields[j].name()), QVariant.Double, '', 24, 16)
fieldList.append(field)
field = QgsField('count', QVariant.Double, '', 24, 16)
fieldList.append(field)
joinFields = vector.testForUniqueness(targetFields, fieldList)
targetFields.extend(fieldList)
seq = range(0, len(targetFields))
targetFields = dict(zip(seq, targetFields))
fields = QgsFields()
for f in targetFields.values():
fields.append(f)
writer = self.getOutputFromName(self.OUTPUT).getVectorWriter(
fields, targetProvider.geometryType(), targetProvider.crs())
outFeat = QgsFeature()
inFeatB = QgsFeature()
inGeom = QgsGeometry()
index = vector.spatialindex(join)
mapP2 = dict()
features = vector.features(join)
for f in features:
mapP2[f.id()] = QgsFeature(f)
features = vector.features(target)
total = 100.0 / len(features)
for c, f in enumerate(features):
inGeom = f.geometry()
atMap1 = f.attributes()
outFeat.setGeometry(inGeom)
none = True
joinList = []
if inGeom.type() == QGis.Point:
joinList = index.intersects(inGeom.buffer(10, 2).boundingBox())
if len(joinList) > 0:
check = 0
else:
check = 1
else:
joinList = index.intersects(inGeom.boundingBox())
if len(joinList) > 0:
check = 0
else:
check = 1
if check == 0:
count = 0
for i in joinList:
inFeatB = mapP2[i]
if inGeom.intersects(inFeatB.geometry()):
count = count + 1
none = False
atMap2 = inFeatB.attributes()
if not summary:
atMap = atMap1
atMap2 = atMap2
atMap.extend(atMap2)
atMap = dict(zip(seq, atMap))
break
else:
for j in numFields.keys():
numFields[j].append(atMap2[j])
if summary and not none:
atMap = atMap1
for j in numFields.keys():
for k in sumList:
if k == 'sum':
atMap.append(sum(self._filterNull(numFields[j])))
elif k == 'mean':
try:
nn_count = sum( 1 for _ in self._filterNull(numFields[j]) )
atMap.append(sum(self._filterNull(numFields[j])) / nn_count)
except ZeroDivisionError:
atMap.append(NULL)
elif k == 'min':
try:
atMap.append(min(self._filterNull(numFields[j])))
except ValueError:
atMap.append(NULL)
elif k == 'median':
atMap.append(self._median(numFields[j]))
else:
try:
atMap.append(max(self._filterNull(numFields[j])))
except ValueError:
atMap.append(NULL)
numFields[j] = []
atMap.append(count)
atMap = dict(zip(seq, atMap))
if none:
outFeat.setAttributes(atMap1)
else:
outFeat.setAttributes(atMap.values())
if keep:
writer.addFeature(outFeat)
else:
if not none:
writer.addFeature(outFeat)
progress.setPercentage(int(c * total))
del writer
def _filterNull(self, values):
"""Takes an iterator of values and returns a new iterator
returning the same values but skipping any NULL values"""
return (v for v in values if v != NULL)
def _median(self, data):
count = len(data)
if count == 1:
return data[0]
data.sort()
median = 0
if count > 1:
if ( count % 2 ) == 0:
median = 0.5 * ((data[count / 2 - 1]) + (data[count / 2]))
else:
median = data[(count + 1) / 2 - 1]
return median