2017-08-22 23:36:42 +10:00

178 lines
6.6 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
MeanCoords.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from builtins import str
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
from qgis.PyQt.QtGui import QIcon
from qgis.PyQt.QtCore import QVariant
from qgis.core import (QgsField,
QgsFeature,
QgsGeometry,
QgsPointXY,
QgsWkbTypes,
QgsFeatureRequest,
QgsFeatureSink,
QgsFields,
QgsProcessing,
QgsProcessingParameterFeatureSink,
QgsProcessingParameterField,
QgsProcessingParameterFeatureSource,
QgsProcessingException)
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
from processing.tools import vector
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class MeanCoords(QgisAlgorithm):
INPUT = 'INPUT'
WEIGHT = 'WEIGHT'
OUTPUT = 'OUTPUT'
UID = 'UID'
WEIGHT = 'WEIGHT'
def icon(self):
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'mean.png'))
def group(self):
return self.tr('Vector analysis')
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
self.tr('Input layer')))
self.addParameter(QgsProcessingParameterField(self.WEIGHT, self.tr('Weight field'),
parentLayerParameterName=MeanCoords.INPUT,
type=QgsProcessingParameterField.Numeric,
optional=True))
self.addParameter(QgsProcessingParameterField(self.UID,
self.tr('Unique ID field'),
parentLayerParameterName=MeanCoords.INPUT,
optional=True))
self.addParameter(QgsProcessingParameterFeatureSink(MeanCoords.OUTPUT, self.tr('Mean coordinates'),
QgsProcessing.TypeVectorPoint))
def name(self):
return 'meancoordinates'
def displayName(self):
return self.tr('Mean coordinate(s)')
def processAlgorithm(self, parameters, context, feedback):
source = self.parameterAsSource(parameters, self.INPUT, context)
weight_field = self.parameterAsString(parameters, self.WEIGHT, context)
unique_field = self.parameterAsString(parameters, self.UID, context)
attributes = []
if not weight_field:
weight_index = -1
else:
weight_index = source.fields().lookupField(weight_field)
if weight_index >= 0:
attributes.append(weight_index)
if not unique_field:
unique_index = -1
else:
unique_index = source.fields().lookupField(unique_field)
if unique_index >= 0:
attributes.append(unique_index)
field_list = QgsFields()
field_list.append(QgsField('MEAN_X', QVariant.Double, '', 24, 15))
field_list.append(QgsField('MEAN_Y', QVariant.Double, '', 24, 15))
if unique_index >= 0:
field_list.append(QgsField('UID', QVariant.String, '', 255))
(sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
field_list, QgsWkbTypes.Point, source.sourceCrs())
features = source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes(attributes))
total = 100.0 / source.featureCount() if source.featureCount() else 0
means = {}
for current, feat in enumerate(features):
if feedback.isCanceled():
break
feedback.setProgress(int(current * total))
if unique_index == -1:
clazz = "Single class"
else:
clazz = str(feat.attributes()[unique_index]).strip()
if weight_index == -1:
weight = 1.00
else:
try:
weight = float(feat.attributes()[weight_index])
except:
weight = 1.00
if weight < 0:
raise QgsProcessingException(
self.tr('Negative weight value found. Please fix your data and try again.'))
if clazz not in means:
means[clazz] = (0, 0, 0)
(cx, cy, totalweight) = means[clazz]
geom = QgsGeometry(feat.geometry())
geom = vector.extractPoints(geom)
for i in geom:
cx += i.x() * weight
cy += i.y() * weight
totalweight += weight
means[clazz] = (cx, cy, totalweight)
current = 0
total = 100.0 / len(means) if means else 1
for (clazz, values) in list(means.items()):
if feedback.isCanceled():
break
outFeat = QgsFeature()
cx = values[0] / values[2]
cy = values[1] / values[2]
meanPoint = QgsPointXY(cx, cy)
outFeat.setGeometry(QgsGeometry.fromPoint(meanPoint))
attributes = [cx, cy]
if unique_index >= 0:
attributes.append(clazz)
outFeat.setAttributes(attributes)
sink.addFeature(outFeat, QgsFeatureSink.FastInsert)
current += 1
feedback.setProgress(int(current * total))
return {self.OUTPUT: dest_id}