QGIS/external/qwt-6.3.0/qwt_weeding_curve_fitter.cpp
Juergen E. Fischer 33fc476d89 * replace external qwtpolar with qwt 6.3
* require qwt >=6.2 (and fallback to internal 6.3 if system's qwt doesn't suffice)
* debian doesn't have qwt for Qt6 and won't have it for trixie
2025-07-23 07:11:51 +10:00

242 lines
5.8 KiB
C++

/******************************************************************************
* Qwt Widget Library
* Copyright (C) 1997 Josef Wilgen
* Copyright (C) 2002 Uwe Rathmann
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the Qwt License, Version 1.0
*****************************************************************************/
#include "qwt_weeding_curve_fitter.h"
#include "qwt_math.h"
#include <qpainterpath.h>
#include <qpolygon.h>
#include <qstack.h>
#include <qvector.h>
class QwtWeedingCurveFitter::PrivateData
{
public:
PrivateData()
: tolerance( 1.0 )
, chunkSize( 0 )
{
}
double tolerance;
uint chunkSize;
};
class QwtWeedingCurveFitter::Line
{
public:
Line( int i1 = 0, int i2 = 0 )
: from( i1 )
, to( i2 )
{
}
int from;
int to;
};
/*!
Constructor
\param tolerance Tolerance
\sa setTolerance(), tolerance()
*/
QwtWeedingCurveFitter::QwtWeedingCurveFitter( double tolerance )
: QwtCurveFitter( QwtCurveFitter::Polygon )
{
m_data = new PrivateData;
setTolerance( tolerance );
}
//! Destructor
QwtWeedingCurveFitter::~QwtWeedingCurveFitter()
{
delete m_data;
}
/*!
Assign the tolerance
The tolerance is the maximum distance, that is acceptable
between the original curve and the smoothed curve.
Increasing the tolerance will reduce the number of the
resulting points.
\param tolerance Tolerance
\sa tolerance()
*/
void QwtWeedingCurveFitter::setTolerance( double tolerance )
{
m_data->tolerance = qwtMaxF( tolerance, 0.0 );
}
/*!
\return Tolerance
\sa setTolerance()
*/
double QwtWeedingCurveFitter::tolerance() const
{
return m_data->tolerance;
}
/*!
Limit the number of points passed to a run of the algorithm
The runtime of the Douglas Peucker algorithm increases non linear
with the number of points. For a chunk size > 0 the polygon
is split into pieces passed to the algorithm one by one.
\param numPoints Maximum for the number of points passed to the algorithm
\sa chunkSize()
*/
void QwtWeedingCurveFitter::setChunkSize( uint numPoints )
{
if ( numPoints > 0 )
numPoints = qMax( numPoints, 3U );
m_data->chunkSize = numPoints;
}
/*!
\return Maximum for the number of points passed to a run
of the algorithm - or 0, when unlimited
\sa setChunkSize()
*/
uint QwtWeedingCurveFitter::chunkSize() const
{
return m_data->chunkSize;
}
/*!
\param points Series of data points
\return Curve points
\sa fitCurvePath()
*/
QPolygonF QwtWeedingCurveFitter::fitCurve( const QPolygonF& points ) const
{
if ( points.isEmpty() )
return points;
QPolygonF fittedPoints;
if ( m_data->chunkSize == 0 )
{
fittedPoints = simplify( points );
}
else
{
for ( int i = 0; i < points.size(); i += m_data->chunkSize )
{
const QPolygonF p = points.mid( i, m_data->chunkSize );
fittedPoints += simplify( p );
}
}
return fittedPoints;
}
/*!
\param points Series of data points
\return Curve path
\sa fitCurve()
*/
QPainterPath QwtWeedingCurveFitter::fitCurvePath( const QPolygonF& points ) const
{
QPainterPath path;
path.addPolygon( fitCurve( points ) );
return path;
}
QPolygonF QwtWeedingCurveFitter::simplify( const QPolygonF& points ) const
{
const double toleranceSqr = m_data->tolerance * m_data->tolerance;
QStack< Line > stack;
stack.reserve( 500 );
const QPointF* p = points.data();
const int nPoints = points.size();
QVector< bool > usePoint( nPoints, false );
stack.push( Line( 0, nPoints - 1 ) );
while ( !stack.isEmpty() )
{
const Line r = stack.pop();
// initialize line segment
const double vecX = p[r.to].x() - p[r.from].x();
const double vecY = p[r.to].y() - p[r.from].y();
const double vecLength = std::sqrt( vecX * vecX + vecY * vecY );
const double unitVecX = ( vecLength != 0.0 ) ? vecX / vecLength : 0.0;
const double unitVecY = ( vecLength != 0.0 ) ? vecY / vecLength : 0.0;
double maxDistSqr = 0.0;
int nVertexIndexMaxDistance = r.from + 1;
for ( int i = r.from + 1; i < r.to; i++ )
{
//compare to anchor
const double fromVecX = p[i].x() - p[r.from].x();
const double fromVecY = p[i].y() - p[r.from].y();
double distToSegmentSqr;
if ( fromVecX * unitVecX + fromVecY * unitVecY < 0.0 )
{
distToSegmentSqr = fromVecX * fromVecX + fromVecY * fromVecY;
}
else
{
const double toVecX = p[i].x() - p[r.to].x();
const double toVecY = p[i].y() - p[r.to].y();
const double toVecLength = toVecX * toVecX + toVecY * toVecY;
const double s = toVecX * ( -unitVecX ) + toVecY * ( -unitVecY );
if ( s < 0.0 )
{
distToSegmentSqr = toVecLength;
}
else
{
distToSegmentSqr = std::fabs( toVecLength - s * s );
}
}
if ( maxDistSqr < distToSegmentSqr )
{
maxDistSqr = distToSegmentSqr;
nVertexIndexMaxDistance = i;
}
}
if ( maxDistSqr <= toleranceSqr )
{
usePoint[r.from] = true;
usePoint[r.to] = true;
}
else
{
stack.push( Line( r.from, nVertexIndexMaxDistance ) );
stack.push( Line( nVertexIndexMaxDistance, r.to ) );
}
}
QPolygonF stripped;
for ( int i = 0; i < nPoints; i++ )
{
if ( usePoint[i] )
stripped += p[i];
}
return stripped;
}