QGIS/python/plugins/processing/algs/qgis/BasicStatisticsNumbers.py
Juergen E. Fischer 956c155e8f fix python pep8 warnings and fix some revealed errors
pep8 --ignore=E111,E128,E201,E202,E203,E211,E221,E222,E225,E226,E227,E231,E241,E261,E265,E272,E302,E303,E501,E701 \
     --exclude="ui_*.py,debian/*,python/ext-libs/*" \
     .
2015-02-01 20:46:47 +01:00

174 lines
6.2 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
BasicStatisticsNumbers.py
---------------------
Date : September 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Victor Olaya'
__date__ = 'September 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import math
from processing.core.GeoAlgorithm import GeoAlgorithm
from processing.core.parameters import ParameterVector
from processing.core.parameters import ParameterTableField
from processing.core.outputs import OutputHTML
from processing.core.outputs import OutputNumber
from processing.tools import dataobjects, vector
class BasicStatisticsNumbers(GeoAlgorithm):
INPUT_LAYER = 'INPUT_LAYER'
FIELD_NAME = 'FIELD_NAME'
OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE'
CV = 'CV'
MIN = 'MIN'
MAX = 'MAX'
SUM = 'SUM'
MEAN = 'MEAN'
COUNT = 'COUNT'
STD_DEV = 'STD_DEV'
RANGE = 'RANGE'
MEDIAN = 'MEDIAN'
UNIQUE = 'UNIQUE'
def defineCharacteristics(self):
self.name = 'Basic statistics for numeric fields'
self.group = 'Vector table tools'
self.addParameter(ParameterVector(self.INPUT_LAYER,
self.tr('Input vector layer'), ParameterVector.VECTOR_TYPE_ANY, False))
self.addParameter(ParameterTableField(self.FIELD_NAME,
self.tr('Field to calculate statistics on'),
self.INPUT_LAYER, ParameterTableField.DATA_TYPE_NUMBER))
self.addOutput(OutputHTML(self.OUTPUT_HTML_FILE,
self.tr('Statistics for numeric field')))
self.addOutput(OutputNumber(self.CV, self.tr('Coefficient of Variation')))
self.addOutput(OutputNumber(self.MIN, self.tr('Minimum value')))
self.addOutput(OutputNumber(self.MAX, self.tr('Maximum value')))
self.addOutput(OutputNumber(self.SUM, self.tr('Sum')))
self.addOutput(OutputNumber(self.MEAN, self.tr('Mean value')))
self.addOutput(OutputNumber(self.COUNT, self.tr('Count')))
self.addOutput(OutputNumber(self.RANGE, self.tr('Range')))
self.addOutput(OutputNumber(self.MEDIAN, self.tr('Median')))
self.addOutput(OutputNumber(self.UNIQUE, self.tr('Number of unique values')))
self.addOutput(OutputNumber(self.STD_DEV, self.tr('Standard deviation')))
def processAlgorithm(self, progress):
layer = dataobjects.getObjectFromUri(
self.getParameterValue(self.INPUT_LAYER))
fieldName = self.getParameterValue(self.FIELD_NAME)
outputFile = self.getOutputValue(self.OUTPUT_HTML_FILE)
index = layer.fieldNameIndex(fieldName)
cvValue = 0
minValue = 0
maxValue = 0
sumValue = 0
meanValue = 0
medianValue = 0
stdDevValue = 0
isFirst = True
values = []
features = vector.features(layer)
count = len(features)
total = 100.0 / float(count)
current = 0
for ft in features:
if ft.attributes()[index]:
value = float(ft.attributes()[index])
if isFirst:
minValue = value
maxValue = value
isFirst = False
else:
if value < minValue:
minValue = value
if value > maxValue:
maxValue = value
values.append(value)
sumValue += value
current += 1
progress.setPercentage(int(current * total))
# Calculate additional values
rValue = maxValue - minValue
uniqueValue = vector.getUniqueValuesCount(layer, index)
if count > 0:
meanValue = sumValue / count
if meanValue != 0.00:
for v in values:
stdDevValue += (v - meanValue) * (v - meanValue)
stdDevValue = math.sqrt(stdDevValue / count)
cvValue = stdDevValue / meanValue
if count > 1:
tmp = values
tmp.sort()
# Calculate median
if count % 2 == 0:
medianValue = 0.5 * (tmp[(count - 1) / 2] + tmp[count / 2])
else:
medianValue = tmp[(count + 1) / 2 - 1]
data = []
data.append('Count: ' + unicode(count))
data.append('Unique values: ' + unicode(uniqueValue))
data.append('Minimum value: ' + unicode(minValue))
data.append('Maximum value: ' + unicode(maxValue))
data.append('Range: ' + unicode(rValue))
data.append('Sum: ' + unicode(sumValue))
data.append('Mean value: ' + unicode(meanValue))
data.append('Median value: ' + unicode(medianValue))
data.append('Standard deviation: ' + unicode(stdDevValue))
data.append('Coefficient of Variation: ' + unicode(cvValue))
self.createHTML(outputFile, data)
self.setOutputValue(self.COUNT, count)
self.setOutputValue(self.UNIQUE, uniqueValue)
self.setOutputValue(self.MIN, minValue)
self.setOutputValue(self.MAX, maxValue)
self.setOutputValue(self.RANGE, rValue)
self.setOutputValue(self.SUM, sumValue)
self.setOutputValue(self.MEAN, meanValue)
self.setOutputValue(self.MEDIAN, medianValue)
self.setOutputValue(self.STD_DEV, stdDevValue)
self.setOutputValue(self.CV, cvValue)
def createHTML(self, outputFile, algData):
f = open(outputFile, 'w')
for s in algData:
f.write('<p>' + str(s) + '</p>')
f.close()