Juergen E. Fischer 934d81c708 fix warnings
2020-09-17 08:12:14 +02:00

1333 lines
48 KiB
C++

//
// RTree.h
//
#ifndef RTREE_H
#define RTREE_H
#include <cassert>
#include <algorithm>
#include <functional>
#include <type_traits>
#include <cmath>
#define RTreeAssert assert // RTree uses RTreeAssert( condition )
#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems
// Because there is not stream support, this is a quick and dirty file I/O helper.
// Users will likely replace its usage with a Stream implementation from their favorite API.
class RTFileStream {
public:
RTFileStream() = default;
~RTFileStream() {
Close();
}
bool OpenRead(const char* a_fileName) {
m_file = fopen(a_fileName, "rb");
if (!m_file) {
return false;
}
return true;
}
bool OpenWrite(const char* a_fileName) {
m_file = fopen(a_fileName, "wb");
if (!m_file) {
return false;
}
return true;
}
void Close() {
if (m_file) {
fclose(m_file);
m_file = nullptr;
}
}
template< typename TYPE >
size_t Write(const TYPE& a_value) {
RTreeAssert(m_file);
return fwrite((void*)&a_value, sizeof(a_value), 1, m_file);
}
template< typename TYPE >
size_t WriteArray(const TYPE* a_array, int a_count) {
RTreeAssert(m_file);
return fwrite((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
}
template< typename TYPE >
size_t Read(TYPE& a_value) {
RTreeAssert(m_file);
return fread((void*)&a_value, sizeof(a_value), 1, m_file);
}
template< typename TYPE >
size_t ReadArray(TYPE* a_array, int a_count) {
RTreeAssert(m_file);
return fread((void*)a_array, sizeof(TYPE) * a_count, 1, m_file);
}
private:
FILE* m_file = nullptr;
};
/// \class RTree
/// Implementation of RTree, a multidimensional bounding rectangle tree.
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
///
/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
///
/// _DataType Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
/// _ElementType Type of element such as int or float
/// _NumDimensions Number of dimensions such as 2 or 3
/// _ElementTypeReal Type of element that allows fractional and large values such as float or double, for use in volume calcs
///
/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
/// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
/// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
/// array similar to MFC CArray or STL Vector for returning search query result.
///
template<class _DataType, class _ElementType, int _NumDimensions,
class _ElementTypeReal = _ElementType, int _MaxNodeCount = 8, int _MinNodeCount = _MaxNodeCount / 2>
class RTree
{
static_assert(1 < _NumDimensions, "_NumDimensions must be larger than 1");
static_assert(0 < _MinNodeCount, "_MinNodeCount must be larger than 0");
static_assert(_MinNodeCount < _MaxNodeCount, "_MaxNodeCount must be larger than _MinNodeCount");
static_assert(std::is_floating_point<_ElementTypeReal>::value, "_ElementTypeReal must be floating point type");
protected:
struct Node; // Fwd decl. Used by other internal structs and iterator
public:
using DataType = _DataType;
using ElementType = _ElementType;
using ElementTypeReal = _ElementTypeReal;
using Element = ElementType[_NumDimensions];
constexpr static const int kNumDimensions = _NumDimensions;
constexpr static const int kMaxNodeCount = _MaxNodeCount;
constexpr static const int kMinNodeCount = _MinNodeCount;
template<typename ValueType>
constexpr static ElementType CastElementType(const ValueType val) noexcept {
return static_cast<ElementType>(val);
}
template<typename ValueType>
constexpr static ElementTypeReal CastElementTypeReal(const ValueType val) noexcept {
return static_cast<ElementTypeReal>(val);
}
constexpr static const ElementTypeReal kElementTypeRealOne = CastElementTypeReal(1.0);
constexpr static const ElementTypeReal kElementTypeRealZero = CastElementTypeReal(0.0);
RTree() {
// Precomputed volumes of the unit spheres for the first few dimensions
constexpr const ElementTypeReal kUnitSphereVolumes[] = {
CastElementTypeReal(0.000000), CastElementTypeReal(2.000000), CastElementTypeReal(3.141593), // Dimension 0,1,2
CastElementTypeReal(4.188790), CastElementTypeReal(4.934802), CastElementTypeReal(5.263789), // Dimension 3,4,5
CastElementTypeReal(5.167713), CastElementTypeReal(4.724766), CastElementTypeReal(4.058712), // Dimension 6,7,8
CastElementTypeReal(3.298509), CastElementTypeReal(2.550164), CastElementTypeReal(1.884104), // Dimension 9,10,11
CastElementTypeReal(1.335263), CastElementTypeReal(0.910629), CastElementTypeReal(0.599265), // Dimension 12,13,14
CastElementTypeReal(0.381443), CastElementTypeReal(0.235331), CastElementTypeReal(0.140981), // Dimension 15,16,17
CastElementTypeReal(0.082146), CastElementTypeReal(0.046622), CastElementTypeReal(0.025807), // Dimension 18,19,20
};
this->m_root = this->AllocNode();
this->m_root->m_level = 0;
this->m_unitSphereVolume = kUnitSphereVolumes[kNumDimensions];
}
RTree(const RTree& other) : RTree() {
this->CopyRec(this->m_root, other.m_root);
}
~RTree() {
this->Reset();
}
/// Insert entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
void Insert(const Element& a_min, const Element& a_max, const DataType& a_dataId) {
#ifdef _DEBUG
for (int index = 0; index < kNumDimensions; ++index) {
RTreeAssert(a_min[index] <= a_max[index]);
}
#endif //_DEBUG
Branch branch;
branch.m_data = a_dataId;
branch.m_child = nullptr;
for (int axis = 0; axis < kNumDimensions; ++axis) {
branch.m_rect.m_min[axis] = a_min[axis];
branch.m_rect.m_max[axis] = a_max[axis];
}
InsertRect(branch, &m_root, 0);
}
/// Remove entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
void Remove(const Element& a_min, const Element& a_max, const DataType& a_dataId) {
#ifdef _DEBUG
for (int index = 0; index < kNumDimensions; ++index) {
RTreeAssert(a_min[index] <= a_max[index]);
}
#endif //_DEBUG
Rect rect;
for (int axis = 0; axis < kNumDimensions; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
RemoveRect(&rect, a_dataId, &m_root);
}
/// Find all within search rectangle
/// \param a_min Min of search bounding rect
/// \param a_max Max of search bounding rect
/// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array.
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
/// \param a_context User context to pass as parameter to a_resultCallback
/// \return Returns the number of entries found
int Search(const Element& a_min, const Element& a_max, std::function<bool(const DataType&)> callback) const {
#ifdef _DEBUG
for (int index = 0; index < kNumDimensions; ++index) {
RTreeAssert(a_min[index] <= a_max[index]);
}
#endif //_DEBUG
Rect rect;
for (int axis = 0; axis < kNumDimensions; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning the number of found elements here.
int foundCount = 0;
Search(m_root, &rect, foundCount, callback);
return foundCount;
}
/// Remove all entries from tree
void RemoveAll() {
// Delete all existing nodes
Reset();
m_root = AllocNode();
m_root->m_level = 0;
}
/// Count the data elements in this container. This is slow as no internal counter is maintained.
int Count() const {
int count = 0;
CountRec(m_root, count);
return count;
}
/// Load tree contents from file
bool Load(const char* a_fileName) {
RemoveAll(); // Clear existing tree
RTFileStream stream;
if (!stream.OpenRead(a_fileName)) {
return false;
}
bool result = Load(stream);
stream.Close();
return result;
}
/// Load tree contents from stream
bool Load(RTFileStream& a_stream) {
// Write some kind of header
int _dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
int _dataSize = sizeof(DataType);
int _dataNumDims = kNumDimensions;
int _dataElemSize = sizeof(ElementType);
int _dataElemRealSize = sizeof(ElementTypeReal);
int _dataMaxNodes = kMaxNodeCount;
int _dataMinNodes = kMinNodeCount;
int dataFileId = 0;
int dataSize = 0;
int dataNumDims = 0;
int dataElemSize = 0;
int dataElemRealSize = 0;
int dataMaxNodes = 0;
int dataMinNodes = 0;
a_stream.Read(dataFileId);
a_stream.Read(dataSize);
a_stream.Read(dataNumDims);
a_stream.Read(dataElemSize);
a_stream.Read(dataElemRealSize);
a_stream.Read(dataMaxNodes);
a_stream.Read(dataMinNodes);
bool result = false;
// Test if header was valid and compatible
if ((dataFileId == _dataFileId)
&& (dataSize == _dataSize)
&& (dataNumDims == _dataNumDims)
&& (dataElemSize == _dataElemSize)
&& (dataElemRealSize == _dataElemRealSize)
&& (dataMaxNodes == _dataMaxNodes)
&& (dataMinNodes == _dataMinNodes)
) {
// Recursively load tree
result = LoadRec(m_root, a_stream);
}
return result;
}
/// Save tree contents to file
bool Save(const char* a_fileName) {
RTFileStream stream;
if (!stream.OpenWrite(a_fileName)) {
return false;
}
bool result = Save(stream);
stream.Close();
return result;
}
/// Save tree contents to stream
bool Save(RTFileStream& a_stream) {
// Write some kind of header
int dataFileId = ('R' << 0) | ('T' << 8) | ('R' << 16) | ('E' << 24);
int dataSize = sizeof(DataType);
int dataNumDims = kNumDimensions;
int dataElemSize = sizeof(ElementType);
int dataElemRealSize = sizeof(ElementTypeReal);
int dataMaxNodes = kMaxNodeCount;
int dataMinNodes = kMinNodeCount;
a_stream.Write(dataFileId);
a_stream.Write(dataSize);
a_stream.Write(dataNumDims);
a_stream.Write(dataElemSize);
a_stream.Write(dataElemRealSize);
a_stream.Write(dataMaxNodes);
a_stream.Write(dataMinNodes);
// Recursively save tree
bool result = SaveRec(m_root, a_stream);
return result;
}
/// Iterator is not remove safe.
class Iterator
{
private:
constexpr static const int kMaxStackSize = 32; // Max stack size. Allows almost n^32 where n is number of branches in node
struct StackElement
{
Node* m_node = nullptr;
int m_branchIndex = 0;
};
public:
Iterator() { Init(); }
~Iterator() = default;
/// Is iterator invalid
bool IsNull() const noexcept { return (m_tos <= 0); }
/// Is iterator pointing to valid data
bool IsNotNull() const noexcept { return (m_tos > 0); }
/// Access the current data element. Caller must be sure iterator is not NULL first.
DataType& operator*()
{
RTreeAssert(IsNotNull());
auto& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Access the current data element. Caller must be sure iterator is not NULL first.
const DataType& operator*() const
{
RTreeAssert(IsNotNull());
auto& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Find the next data element
bool operator++() { return FindNextData(); }
/// Get the bounds for this node
void GetBounds(Element& a_min, Element& a_max)
{
RTreeAssert(IsNotNull());
auto& curTos = m_stack[m_tos - 1];
auto& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
for (int index = 0; index < kNumDimensions; ++index)
{
a_min[index] = curBranch.m_rect.m_min[index];
a_max[index] = curBranch.m_rect.m_max[index];
}
}
private:
/// Reset iterator
void Init() { m_tos = 0; }
/// Find the next data element in the tree (For internal use only)
bool FindNextData()
{
for (;;)
{
if (m_tos <= 0)
{
return false;
}
auto curTos = Pop(); // Copy stack top cause it may change as we use it
if (curTos.m_node->IsLeaf())
{
// Keep walking through data while we can
if (curTos.m_branchIndex + 1 < curTos.m_node->m_count)
{
// There is more data, just point to the next one
Push(curTos.m_node, curTos.m_branchIndex + 1);
return true;
}
// No more data, so it will fall back to previous level
}
else
{
if (curTos.m_branchIndex + 1 < curTos.m_node->m_count)
{
// Push sibling on for future tree walk
// This is the 'fall back' node when we finish with the current level
Push(curTos.m_node, curTos.m_branchIndex + 1);
}
// Since cur node is not a leaf, push first of next level to get deeper into the tree
auto nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
Push(nextLevelnode, 0);
// If we pushed on a new leaf, exit as the data is ready at TOS
if (nextLevelnode->IsLeaf())
{
return true;
}
}
}
}
/// Push node and branch onto iteration stack (For internal use only)
void Push(Node* a_node, int a_branchIndex)
{
m_stack[m_tos].m_node = a_node;
m_stack[m_tos].m_branchIndex = a_branchIndex;
++m_tos;
RTreeAssert(m_tos <= kMaxStackSize);
}
/// Pop element off iteration stack (For internal use only)
StackElement& Pop()
{
RTreeAssert(m_tos > 0);
--m_tos;
return m_stack[m_tos];
}
StackElement m_stack[kMaxStackSize]; ///< Stack as we are doing iteration instead of recursion
int m_tos = 0; ///< Top Of Stack index
friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner
};
/// Get 'first' for iteration
void GetFirst(Iterator& a_it) const
{
a_it.Init();
auto first = m_root;
while (first)
{
if (first->IsInternalNode() && first->m_count > 1)
{
a_it.Push(first, 1); // Descend sibling branch later
}
else if (first->IsLeaf())
{
if (first->m_count)
{
a_it.Push(first, 0);
}
break;
}
first = first->m_branch[0].m_child;
}
}
/// Get Next for iteration
void GetNext(Iterator& a_it) const { ++a_it; }
/// Is iterator NULL, or at end?
bool IsNull(const Iterator& a_it) const { return a_it.IsNull(); }
/// Get object at iterator position
DataType& GetAt(Iterator& a_it) { return *a_it; }
protected:
/// Minimal bounding rectangle (n-dimensional)
struct Rect
{
ElementType m_min[kNumDimensions] = { 0, }; ///< Min dimensions of bounding box
ElementType m_max[kNumDimensions] = { 0, }; ///< Max dimensions of bounding box
};
/// May be data or may be another subtree
/// The parents level determines this.
/// If the parents level is 0, then this is data
struct Branch
{
Rect m_rect; ///< Bounds
Node* m_child = nullptr; ///< Child node
DataType m_data; ///< Data Id
};
/// Node for each branch level
struct Node
{
bool IsInternalNode() const noexcept { return (m_level > 0); } // Not a leaf, but a internal node
bool IsLeaf() const noexcept { return (m_level == 0); } // A leaf, contains data
int m_count = 0; ///< Count
int m_level = 0; ///< Leaf is zero, others positive
Branch m_branch[_MaxNodeCount]; ///< Branch
};
/// A link list of nodes for reinsertion after a delete operation
struct ListNode
{
ListNode* m_next = nullptr; ///< Next in list
Node* m_node = nullptr; ///< Node
};
/// Variables for finding a split partition
struct PartitionVars
{
constexpr static const int kNotTaken = -1; // indicates that position
int m_partition[_MaxNodeCount + 1] = { 0, };
int m_total = 0;
int m_minFill = 0;
int m_count[2] = { 0, };
Rect m_cover[2];
ElementTypeReal m_area[2] = { kElementTypeRealZero, };
Branch m_branchBuf[_MaxNodeCount + 1];
int m_branchCount = 0;
Rect m_coverSplit;
ElementTypeReal m_coverSplitArea = kElementTypeRealZero;
};
Node* AllocNode() {
Node* newNode;
#ifdef RTREE_DONT_USE_MEMPOOLS
newNode = new Node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
InitNode(newNode);
return newNode;
}
void FreeNode(Node* a_node) {
RTreeAssert(a_node);
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
void InitNode(Node* a_node) {
a_node->m_count = 0;
a_node->m_level = -1;
}
void InitRect(Rect* a_rect) {
for (int index = 0; index < kNumDimensions; ++index) {
a_rect->m_min[index] = CastElementType(0);
a_rect->m_max[index] = CastElementType(0);
}
}
// Inserts a new data rectangle into the index structure.
// Recursively descends tree, propagates splits back up.
// Returns 0 if node was not split. Old node updated.
// If node was split, returns 1 and sets the pointer pointed to by
// new_node to point to the new node. Old node updated to become one of two.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
bool InsertRectRec(const Branch& a_branch, Node* a_node, Node** a_newNode, int a_level) {
RTreeAssert(a_node && a_newNode);
RTreeAssert(a_level >= 0 && a_level <= a_node->m_level);
// recurse until we reach the correct level for the new record. data records
// will always be called with a_level == 0 (leaf)
if (a_node->m_level > a_level) {
// Still above level for insertion, go down tree recursively
Node* otherNode;
// find the optimal branch for this record
int index = PickBranch(&a_branch.m_rect, a_node);
// recursively insert this record into the picked branch
bool childWasSplit = InsertRectRec(a_branch, a_node->m_branch[index].m_child, &otherNode, a_level);
if (!childWasSplit) {
// Child was not split. Merge the bounding box of the new record with the
// existing bounding box
a_node->m_branch[index].m_rect = CombineRect(&a_branch.m_rect, &(a_node->m_branch[index].m_rect));
return false;
} else {
// Child was split. The old branches are now re-partitioned to two nodes
// so we have to re-calculate the bounding boxes of each node
a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
Branch branch;
branch.m_child = otherNode;
branch.m_rect = NodeCover(otherNode);
// The old node is already a child of a_node. Now add the newly-created
// node to a_node as well. a_node might be split because of that.
return AddBranch(&branch, a_node, a_newNode);
}
} else if (a_node->m_level == a_level) {
// We have reached level for insertion. Add rect, split if necessary
return AddBranch(&a_branch, a_node, a_newNode);
} else {
// Should never occur
RTreeAssert(0);
return false;
}
}
// Insert a data rectangle into an index structure.
// InsertRect provides for splitting the root;
// returns 1 if root was split, 0 if it was not.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
// InsertRect2 does the recursion.
bool InsertRect(const Branch& a_branch, Node** a_root, int a_level) {
RTreeAssert(a_root);
RTreeAssert(a_level >= 0 && a_level <= (*a_root)->m_level);
#ifdef _DEBUG
for (int index = 0; index < kNumDimensions; ++index) {
RTreeAssert(a_branch.m_rect.m_min[index] <= a_branch.m_rect.m_max[index]);
}
#endif //_DEBUG
Node* newNode;
if (InsertRectRec(a_branch, *a_root, &newNode, a_level)) // Root split
{
// Grow tree taller and new root
Node* newRoot = AllocNode();
newRoot->m_level = (*a_root)->m_level + 1;
Branch branch;
// add old root node as a child of the new root
branch.m_rect = NodeCover(*a_root);
branch.m_child = *a_root;
AddBranch(&branch, newRoot, nullptr);
// add the split node as a child of the new root
branch.m_rect = NodeCover(newNode);
branch.m_child = newNode;
AddBranch(&branch, newRoot, nullptr);
// set the new root as the root node
*a_root = newRoot;
return true;
}
return false;
}
// Find the smallest rectangle that includes all rectangles in branches of a node.
Rect NodeCover(Node* a_node) {
RTreeAssert(a_node);
Rect rect = a_node->m_branch[0].m_rect;
for (int index = 1; index < a_node->m_count; ++index) {
rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
}
return rect;
}
// Add a branch to a node. Split the node if necessary.
// Returns 0 if node not split. Old node updated.
// Returns 1 if node split, sets *new_node to address of new node.
// Old node updated, becomes one of two.
bool AddBranch(const Branch* a_branch, Node* a_node, Node** a_newNode) {
RTreeAssert(a_branch);
RTreeAssert(a_node);
if (a_node->m_count < _MaxNodeCount) // Split won't be necessary
{
a_node->m_branch[a_node->m_count] = *a_branch;
++a_node->m_count;
return false;
} else {
RTreeAssert(a_newNode);
SplitNode(a_node, a_branch, a_newNode);
return true;
}
}
// Disconnect a dependent node.
// Caller must return (or stop using iteration index) after this as count has changed
void DisconnectBranch(Node* a_node, int a_index) {
RTreeAssert(a_node && (a_index >= 0) && (a_index < _MaxNodeCount));
RTreeAssert(a_node->m_count > 0);
// Remove element by swapping with the last element to prevent gaps in array
a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
--a_node->m_count;
}
// Pick a branch. Pick the one that will need the smallest increase
// in area to accomodate the new rectangle. This will result in the
// least total area for the covering rectangles in the current node.
// In case of a tie, pick the one which was smaller before, to get
// the best resolution when searching.
int PickBranch(const Rect* a_rect, Node* a_node) {
RTreeAssert(a_rect && a_node);
bool firstTime = true;
ElementTypeReal increase;
ElementTypeReal bestIncr = CastElementTypeReal(-1);
ElementTypeReal area;
ElementTypeReal bestArea = CastElementTypeReal(-1);
int best = 0;
Rect tempRect;
for (int index = 0; index < a_node->m_count; ++index) {
Rect* curRect = &a_node->m_branch[index].m_rect;
area = CalcRectVolume(curRect);
tempRect = CombineRect(a_rect, curRect);
increase = CalcRectVolume(&tempRect) - area;
if ((increase < bestIncr) || firstTime) {
best = index;
bestArea = area;
bestIncr = increase;
firstTime = false;
} else if ((increase == bestIncr) && (area < bestArea)) {
best = index;
bestArea = area;
bestIncr = increase;
}
}
return best;
}
// Combine two rectangles into larger one containing both
Rect CombineRect(const Rect* a_rectA, const Rect* a_rectB) {
RTreeAssert(a_rectA && a_rectB);
Rect newRect;
for (int index = 0; index < kNumDimensions; ++index) {
newRect.m_min[index] = (std::min)(a_rectA->m_min[index], a_rectB->m_min[index]);
newRect.m_max[index] = (std::max)(a_rectA->m_max[index], a_rectB->m_max[index]);
}
return newRect;
}
// Split a node.
// Divides the nodes branches and the extra one between two nodes.
// Old node is one of the new ones, and one really new one is created.
// Tries more than one method for choosing a partition, uses best result.
void SplitNode(Node* a_node, const Branch* a_branch, Node** a_newNode) {
RTreeAssert(a_node);
RTreeAssert(a_branch);
// Could just use local here, but member or external is faster since it is reused
PartitionVars localVars;
PartitionVars* parVars = &localVars;
// Load all the branches into a buffer, initialize old node
GetBranches(a_node, a_branch, parVars);
// Find partition
ChoosePartition(parVars, _MinNodeCount);
// Create a new node to hold (about) half of the branches
*a_newNode = AllocNode();
(*a_newNode)->m_level = a_node->m_level;
// Put branches from buffer into 2 nodes according to the chosen partition
a_node->m_count = 0;
LoadNodes(a_node, *a_newNode, parVars);
RTreeAssert((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
}
// The exact volume of the bounding sphere for the given Rect
ElementTypeReal RectSphericalVolume(Rect* a_rect) {
RTreeAssert(a_rect);
ElementTypeReal sumOfSquares = kElementTypeRealZero;
for (int index = 0; index < kNumDimensions; ++index) {
const auto halfExtent = ((ElementTypeReal)a_rect->m_max[index] - (ElementTypeReal)a_rect->m_min[index]) * 0.5f;
sumOfSquares += halfExtent * halfExtent;
}
const auto radius = CastElementTypeReal(sqrt(sumOfSquares));
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
if (kNumDimensions == 3) {
return (radius * radius * radius * m_unitSphereVolume);
} else if (kNumDimensions == 2) {
return (radius * radius * m_unitSphereVolume);
} else {
return CastElementTypeReal(pow(radius, kNumDimensions) * m_unitSphereVolume);
}
}
// Calculate the n-dimensional volume of a rectangle
ElementTypeReal RectVolume(Rect* a_rect) {
RTreeAssert(a_rect);
auto volume = kElementTypeRealOne;
for (int index = 0; index < kNumDimensions; ++index) {
volume *= a_rect->m_max[index] - a_rect->m_min[index];
}
RTreeAssert(volume >= kElementTypeRealZero);
return volume;
}
// Use one of the methods to calculate retangle volume
ElementTypeReal CalcRectVolume(Rect* a_rect) {
#ifdef RTREE_USE_SPHERICAL_VOLUME
return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
#else // RTREE_USE_SPHERICAL_VOLUME
return RectVolume(a_rect); // Faster but can cause poor merges
#endif // RTREE_USE_SPHERICAL_VOLUME
}
// Load branch buffer with branches from full node plus the extra branch.
void GetBranches(Node* a_node, const Branch* a_branch, PartitionVars* a_parVars) {
RTreeAssert(a_node);
RTreeAssert(a_branch);
RTreeAssert(a_node->m_count == _MaxNodeCount);
// Load the branch buffer
for (int index = 0; index < _MaxNodeCount; ++index) {
a_parVars->m_branchBuf[index] = a_node->m_branch[index];
}
a_parVars->m_branchBuf[_MaxNodeCount] = *a_branch;
a_parVars->m_branchCount = _MaxNodeCount + 1;
// Calculate rect containing all in the set
a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
for (int index = 1; index < _MaxNodeCount + 1; ++index) {
a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit, &a_parVars->m_branchBuf[index].m_rect);
}
a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);
}
// Method #0 for choosing a partition:
// As the seeds for the two groups, pick the two rects that would waste the
// most area if covered by a single rectangle, i.e. evidently the worst pair
// to have in the same group.
// Of the remaining, one at a time is chosen to be put in one of the two groups.
// The one chosen is the one with the greatest difference in area expansion
// depending on which group - the rect most strongly attracted to one group
// and repelled from the other.
// If one group gets too full (more would force other group to violate min
// fill requirement) then other group gets the rest.
// These last are the ones that can go in either group most easily.
void ChoosePartition(PartitionVars* a_parVars, int a_minFill) {
RTreeAssert(a_parVars);
ElementTypeReal biggestDiff;
int group, chosen = 0, betterGroup = 0;
InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
PickSeeds(a_parVars);
while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
&& (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
&& (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill))) {
biggestDiff = CastElementTypeReal(-1);
for (int index = 0; index < a_parVars->m_total; ++index) {
if (PartitionVars::kNotTaken == a_parVars->m_partition[index]) {
Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
ElementTypeReal growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
ElementTypeReal growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
ElementTypeReal diff = growth1 - growth0;
if (diff >= 0) {
group = 0;
} else {
group = 1;
diff = -diff;
}
if (diff > biggestDiff) {
biggestDiff = diff;
chosen = index;
betterGroup = group;
} else if ((diff == biggestDiff) && (a_parVars->m_count[group] < a_parVars->m_count[betterGroup])) {
chosen = index;
betterGroup = group;
}
}
}
Classify(chosen, betterGroup, a_parVars);
}
// If one group too full, put remaining rects in the other
if ((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) {
if (a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill) {
group = 1;
} else {
group = 0;
}
for (int index = 0; index < a_parVars->m_total; ++index) {
if (PartitionVars::kNotTaken == a_parVars->m_partition[index]) {
Classify(index, group, a_parVars);
}
}
}
RTreeAssert((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
RTreeAssert((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
(a_parVars->m_count[1] >= a_parVars->m_minFill));
}
// Copy branches from the buffer into two nodes according to the partition.
void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars) {
RTreeAssert(a_nodeA);
RTreeAssert(a_nodeB);
RTreeAssert(a_parVars);
for (int index = 0; index < a_parVars->m_total; ++index) {
RTreeAssert(a_parVars->m_partition[index] == 0 || a_parVars->m_partition[index] == 1);
int targetNodeIndex = a_parVars->m_partition[index];
Node* targetNodes[] = { a_nodeA, a_nodeB };
// It is assured that AddBranch here will not cause a node split.
bool nodeWasSplit = AddBranch(&a_parVars->m_branchBuf[index], targetNodes[targetNodeIndex], nullptr);
(void)nodeWasSplit;
RTreeAssert(!nodeWasSplit);
}
}
// Initialize a PartitionVars structure.
void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill) {
RTreeAssert(a_parVars);
a_parVars->m_count[0] = a_parVars->m_count[1] = 0;
a_parVars->m_area[0] = a_parVars->m_area[1] = kElementTypeRealZero;
a_parVars->m_total = a_maxRects;
a_parVars->m_minFill = a_minFill;
for (int index = 0; index < a_maxRects; ++index) {
a_parVars->m_partition[index] = PartitionVars::kNotTaken;
}
}
void PickSeeds(PartitionVars* a_parVars) {
int seed0 = 0, seed1 = 0;
_ElementTypeReal worst{ 0.0 }, waste{ 0.0 };
_ElementTypeReal area[_MaxNodeCount + 1] = { 0.0, };
for (int index = 0; index < a_parVars->m_total; ++index) {
area[index] = CalcRectVolume(&a_parVars->m_branchBuf[index].m_rect);
}
worst = -a_parVars->m_coverSplitArea - 1;
for (int indexA = 0; indexA < a_parVars->m_total - 1; ++indexA) {
for (int indexB = indexA + 1; indexB < a_parVars->m_total; ++indexB) {
auto oneRect = CombineRect(&a_parVars->m_branchBuf[indexA].m_rect, &a_parVars->m_branchBuf[indexB].m_rect);
waste = CalcRectVolume(&oneRect) - area[indexA] - area[indexB];
if (waste > worst) {
worst = waste;
seed0 = indexA;
seed1 = indexB;
}
}
}
Classify(seed0, 0, a_parVars);
Classify(seed1, 1, a_parVars);
}
// Put a branch in one of the groups.
void Classify(int a_index, int a_group, PartitionVars* a_parVars) {
RTreeAssert(a_parVars);
RTreeAssert(PartitionVars::kNotTaken == a_parVars->m_partition[a_index]);
a_parVars->m_partition[a_index] = a_group;
// Calculate combined rect
if (a_parVars->m_count[a_group] == 0) {
a_parVars->m_cover[a_group] = a_parVars->m_branchBuf[a_index].m_rect;
} else {
a_parVars->m_cover[a_group] = CombineRect(&a_parVars->m_branchBuf[a_index].m_rect, &a_parVars->m_cover[a_group]);
}
// Calculate volume of combined rect
a_parVars->m_area[a_group] = CalcRectVolume(&a_parVars->m_cover[a_group]);
++a_parVars->m_count[a_group];
}
// Delete a data rectangle from an index structure.
// Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
// Returns 1 if record not found, 0 if success.
// RemoveRect provides for eliminating the root.
bool RemoveRect(Rect* a_rect, const DataType& a_id, Node** a_root) {
RTreeAssert(a_rect && a_root);
RTreeAssert(*a_root);
ListNode* reInsertList{ nullptr };
if (!RemoveRectRec(a_rect, a_id, *a_root, &reInsertList)) {
// Found and deleted a data item
// Reinsert any branches from eliminated nodes
while (reInsertList) {
Node* tempNode = reInsertList->m_node;
for (int index = 0; index < tempNode->m_count; ++index) {
// TODO go over this code. should I use (tempNode->m_level - 1)?
InsertRect(tempNode->m_branch[index],
a_root,
tempNode->m_level);
}
ListNode* remLNode = reInsertList;
reInsertList = reInsertList->m_next;
FreeNode(remLNode->m_node);
FreeListNode(remLNode);
}
// Check for redundant root (not leaf, 1 child) and eliminate TODO replace
// if with while? In case there is a whole branch of redundant roots...
if ((*a_root)->m_count == 1 && (*a_root)->IsInternalNode()) {
auto tempNode = (*a_root)->m_branch[0].m_child;
RTreeAssert(tempNode);
FreeNode(*a_root);
*a_root = tempNode;
}
return false;
} else {
return true;
}
}
// Delete a rectangle from non-root part of an index structure.
// Called by RemoveRect. Descends tree recursively,
// merges branches on the way back up.
// Returns 1 if record not found, 0 if success.
bool RemoveRectRec(Rect* a_rect, const DataType& a_id, Node* a_node, ListNode** a_listNode) {
RTreeAssert(a_rect && a_node && a_listNode);
RTreeAssert(a_node->m_level >= 0);
if (a_node->IsInternalNode()) // not a leaf node
{
for (int index = 0; index < a_node->m_count; ++index) {
if (Overlap(a_rect, &(a_node->m_branch[index].m_rect))) {
if (!RemoveRectRec(a_rect, a_id, a_node->m_branch[index].m_child, a_listNode)) {
if (a_node->m_branch[index].m_child->m_count >= _MinNodeCount) {
// child removed, just resize parent rect
a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
} else {
// child removed, not enough entries in node, eliminate node
ReInsert(a_node->m_branch[index].m_child, a_listNode);
DisconnectBranch(a_node, index); // Must return after this call as count has changed
}
return false;
}
}
}
return true;
} else // A leaf node
{
for (int index = 0; index < a_node->m_count; ++index) {
if (a_node->m_branch[index].m_data == a_id) {
DisconnectBranch(a_node, index); // Must return after this call as count has changed
return false;
}
}
return true;
}
}
// Allocate space for a node in the list used in DeletRect to
// store Nodes that are too empty.
ListNode* AllocListNode() {
#ifdef RTREE_DONT_USE_MEMPOOLS
return new ListNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
void FreeListNode(ListNode* a_listNode) {
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_listNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
// Decide whether two rectangles overlap.
bool Overlap(Rect* a_rectA, Rect* a_rectB) const {
RTreeAssert(a_rectA && a_rectB);
for (int index = 0; index < kNumDimensions; ++index) {
if (a_rectA->m_min[index] > a_rectB->m_max[index] ||
a_rectB->m_min[index] > a_rectA->m_max[index]) {
return false;
}
}
return true;
}
// Add a node to the reinsertion list. All its branches will later
// be reinserted into the index structure.
void ReInsert(Node* a_node, ListNode** a_listNode) {
ListNode* newListNode;
newListNode = AllocListNode();
newListNode->m_node = a_node;
newListNode->m_next = *a_listNode;
*a_listNode = newListNode;
}
// Search in an index tree or subtree for all data retangles that overlap the argument rectangle.
bool Search(Node* a_node, Rect* a_rect, int& a_foundCount, std::function<bool(const DataType&)> callback) const {
RTreeAssert(a_node);
RTreeAssert(a_node->m_level >= 0);
RTreeAssert(a_rect);
if (a_node->IsInternalNode()) {
// This is an internal node in the tree
for (int index = 0; index < a_node->m_count; ++index) {
if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) {
if (!Search(a_node->m_branch[index].m_child, a_rect, a_foundCount, callback)) {
// The callback indicated to stop searching
return false;
}
}
}
} else {
// This is a leaf node
for (int index = 0; index < a_node->m_count; ++index) {
if (Overlap(a_rect, &a_node->m_branch[index].m_rect)) {
const auto& id = a_node->m_branch[index].m_data;
++a_foundCount;
if (callback && !callback(id)) {
return false; // Don't continue searching
}
}
}
}
return true; // Continue searching
}
void RemoveAllRec(Node* a_node) {
RTreeAssert(a_node);
RTreeAssert(a_node->m_level >= 0);
if (a_node->IsInternalNode()) // This is an internal node in the tree
{
for (int index = 0; index < a_node->m_count; ++index) {
RemoveAllRec(a_node->m_branch[index].m_child);
}
}
FreeNode(a_node);
}
void Reset() {
#ifdef RTREE_DONT_USE_MEMPOOLS
// Delete all existing nodes
RemoveAllRec(m_root);
#else // RTREE_DONT_USE_MEMPOOLS
// Just reset memory pools. We are not using complex types
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
void CountRec(Node* a_node, int& a_count) const {
if (a_node->IsInternalNode()) // not a leaf node
{
for (int index = 0; index < a_node->m_count; ++index) {
CountRec(a_node->m_branch[index].m_child, a_count);
}
} else // A leaf node
{
a_count += a_node->m_count;
}
}
bool SaveRec(Node* a_node, RTFileStream& a_stream) {
a_stream.Write(a_node->m_level);
a_stream.Write(a_node->m_count);
if (a_node->IsInternalNode()) // not a leaf node
{
for (int index = 0; index < a_node->m_count; ++index) {
const auto& curBranch = a_node->m_branch[index];
a_stream.WriteArray(curBranch->m_rect.m_min, kNumDimensions);
a_stream.WriteArray(curBranch->m_rect.m_max, kNumDimensions);
SaveRec(curBranch->m_child, a_stream);
}
} else // A leaf node
{
for (int index = 0; index < a_node->m_count; ++index) {
const auto& curBranch = &a_node->m_branch[index];
a_stream.WriteArray(curBranch->m_rect.m_min, kNumDimensions);
a_stream.WriteArray(curBranch->m_rect.m_max, kNumDimensions);
a_stream.Write(curBranch->m_data);
}
}
return true; // Should do more error checking on I/O operations
}
bool LoadRec(Node* a_node, RTFileStream& a_stream) {
a_stream.Read(a_node->m_level);
a_stream.Read(a_node->m_count);
if (a_node->IsInternalNode()) // not a leaf node
{
for (int index = 0; index < a_node->m_count; ++index) {
Branch* curBranch = &a_node->m_branch[index];
a_stream.ReadArray(curBranch->m_rect.m_min, kNumDimensions);
a_stream.ReadArray(curBranch->m_rect.m_max, kNumDimensions);
curBranch->m_child = AllocNode();
LoadRec(curBranch->m_child, a_stream);
}
} else // A leaf node
{
for (int index = 0; index < a_node->m_count; ++index) {
Branch* curBranch = &a_node->m_branch[index];
a_stream.ReadArray(curBranch->m_rect.m_min, kNumDimensions);
a_stream.ReadArray(curBranch->m_rect.m_max, kNumDimensions);
a_stream.Read(curBranch->m_data);
}
}
return true; // Should do more error checking on I/O operations
}
void CopyRec(Node* current, Node* other) {
current->m_level = other->m_level;
current->m_count = other->m_count;
if (current->IsInternalNode()) // not a leaf node
{
for (int index = 0; index < current->m_count; ++index) {
auto& currentBranch = current->m_branch[index];
const auto& otherBranch = other->m_branch[index];
std::copy(otherBranch.m_rect.m_min,
otherBranch.m_rect.m_min + kNumDimensions,
currentBranch.m_rect.m_min);
std::copy(otherBranch.m_rect.m_max,
otherBranch.m_rect.m_max + kNumDimensions,
currentBranch.m_rect.m_max);
currentBranch.m_child = AllocNode();
CopyRec(currentBranch.m_child, otherBranch.m_child);
}
} else // A leaf node
{
for (int index = 0; index < current->m_count; ++index) {
auto& currentBranch = current->m_branch[index];
const auto& otherBranch = other->m_branch[index];
std::copy(otherBranch.m_rect.m_min,
otherBranch.m_rect.m_min + kNumDimensions,
currentBranch.m_rect.m_min);
std::copy(otherBranch.m_rect.m_max,
otherBranch.m_rect.m_max + kNumDimensions,
currentBranch.m_rect.m_max);
currentBranch.m_data = otherBranch.m_data;
}
}
}
Node* m_root = nullptr; ///< Root of tree
ElementTypeReal m_unitSphereVolume = kElementTypeRealZero; ///< Unit sphere constant for required number of dimensions
};
#endif //RTREE_H