mirror of
https://github.com/qgis/QGIS.git
synced 2025-02-28 00:17:30 -05:00
273 lines
12 KiB
Python
273 lines
12 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
***************************************************************************
|
|
BasicStatistics.py
|
|
---------------------
|
|
Date : November 2016
|
|
Copyright : (C) 2016 by Nyall Dawson
|
|
Email : nyall dot dawson at gmail dot com
|
|
***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************
|
|
"""
|
|
|
|
__author__ = 'Nyall Dawson'
|
|
__date__ = 'November 2016'
|
|
__copyright__ = '(C) 2016, Nyall Dawson'
|
|
|
|
# This will get replaced with a git SHA1 when you do a git archive
|
|
|
|
__revision__ = '$Format:%H$'
|
|
|
|
import os
|
|
import codecs
|
|
|
|
from qgis.PyQt.QtCore import QVariant
|
|
from qgis.PyQt.QtGui import QIcon
|
|
|
|
from qgis.core import (QgsStatisticalSummary,
|
|
QgsStringStatisticalSummary,
|
|
QgsDateTimeStatisticalSummary,
|
|
QgsFeatureRequest,
|
|
QgsProcessingParameterFeatureSource,
|
|
QgsProcessingParameterField,
|
|
QgsProcessingParameterFileDestination,
|
|
QgsProcessingOutputHtml,
|
|
QgsProcessingOutputNumber)
|
|
|
|
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
|
|
|
|
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
|
|
|
|
|
|
class BasicStatisticsForField(QgisAlgorithm):
|
|
|
|
INPUT_LAYER = 'INPUT_LAYER'
|
|
FIELD_NAME = 'FIELD_NAME'
|
|
OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE'
|
|
|
|
MIN = 'MIN'
|
|
MAX = 'MAX'
|
|
COUNT = 'COUNT'
|
|
UNIQUE = 'UNIQUE'
|
|
EMPTY = 'EMPTY'
|
|
FILLED = 'FILLED'
|
|
MIN_LENGTH = 'MIN_LENGTH'
|
|
MAX_LENGTH = 'MAX_LENGTH'
|
|
MEAN_LENGTH = 'MEAN_LENGTH'
|
|
CV = 'CV'
|
|
SUM = 'SUM'
|
|
MEAN = 'MEAN'
|
|
STD_DEV = 'STD_DEV'
|
|
RANGE = 'RANGE'
|
|
MEDIAN = 'MEDIAN'
|
|
MINORITY = 'MINORITY'
|
|
MAJORITY = 'MAJORITY'
|
|
FIRSTQUARTILE = 'FIRSTQUARTILE'
|
|
THIRDQUARTILE = 'THIRDQUARTILE'
|
|
IQR = 'IQR'
|
|
|
|
def icon(self):
|
|
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'basic_statistics.png'))
|
|
|
|
def tags(self):
|
|
return self.tr('stats,statistics,date,time,datetime,string,number,text,table,layer,maximum,minimum,mean,average,standard,deviation,'
|
|
'count,distinct,unique,variance,median,quartile,range,majority,minority').split(',')
|
|
|
|
def group(self):
|
|
return self.tr('Vector analysis')
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def initAlgorithm(self, config=None):
|
|
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT_LAYER,
|
|
self.tr('Input layer')))
|
|
|
|
self.addParameter(QgsProcessingParameterField(self.FIELD_NAME,
|
|
self.tr('Field to calculate statistics on'),
|
|
None, self.INPUT_LAYER, QgsProcessingParameterField.Any))
|
|
|
|
self.addParameter(QgsProcessingParameterFileDestination(self.OUTPUT_HTML_FILE, self.tr('Statistics'), self.tr('HTML files (*.html)'), None, True))
|
|
self.addOutput(QgsProcessingOutputHtml(self.OUTPUT_HTML_FILE, self.tr('Statistics')))
|
|
|
|
self.addOutput(QgsProcessingOutputNumber(self.COUNT, self.tr('Count')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.UNIQUE, self.tr('Number of unique values')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.EMPTY, self.tr('Number of empty (null) values')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.FILLED, self.tr('Number of non-empty values')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MIN, self.tr('Minimum value')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MAX, self.tr('Maximum value')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MIN_LENGTH, self.tr('Minimum length')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MAX_LENGTH, self.tr('Maximum length')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MEAN_LENGTH, self.tr('Mean length')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.CV, self.tr('Coefficient of Variation')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.SUM, self.tr('Sum')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MEAN, self.tr('Mean value')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.STD_DEV, self.tr('Standard deviation')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.RANGE, self.tr('Range')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MEDIAN, self.tr('Median')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MINORITY, self.tr('Minority (rarest occurring value)')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MAJORITY, self.tr('Majority (most frequently occurring value)')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.FIRSTQUARTILE, self.tr('First quartile')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.THIRDQUARTILE, self.tr('Third quartile')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.IQR, self.tr('Interquartile Range (IQR)')))
|
|
|
|
def name(self):
|
|
return 'basicstatisticsforfields'
|
|
|
|
def displayName(self):
|
|
return self.tr('Basic statistics for fields')
|
|
|
|
def processAlgorithm(self, parameters, context, feedback):
|
|
source = self.parameterAsSource(parameters, self.INPUT_LAYER, context)
|
|
field_name = self.parameterAsString(parameters, self.FIELD_NAME, context)
|
|
field = source.fields().at(source.fields().lookupField(field_name))
|
|
|
|
output_file = self.parameterAsFileOutput(parameters, self.OUTPUT_HTML_FILE, context)
|
|
|
|
request = QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry).setSubsetOfAttributes([field_name], source.fields())
|
|
features = source.getFeatures(request)
|
|
count = source.featureCount()
|
|
|
|
data = []
|
|
data.append(self.tr('Analyzed field: {}').format(field_name))
|
|
results = {}
|
|
|
|
if field.isNumeric():
|
|
d, results = self.calcNumericStats(features, feedback, field, count)
|
|
data.extend(d)
|
|
elif field.type() in (QVariant.Date, QVariant.Time, QVariant.DateTime):
|
|
d, results = self.calcDateTimeStats(features, feedback, field, count)
|
|
data.extend(d)
|
|
else:
|
|
d, results = self.calcStringStats(features, feedback, field, count)
|
|
data.extend(d)
|
|
|
|
if output_file:
|
|
self.createHTML(output_file, data)
|
|
results[self.OUTPUT_HTML_FILE] = output_file
|
|
|
|
return results
|
|
|
|
def calcNumericStats(self, features, feedback, field, count):
|
|
total = 100.0 / count if count else 0
|
|
stat = QgsStatisticalSummary()
|
|
for current, ft in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
stat.addVariant(ft[field.name()])
|
|
feedback.setProgress(int(current * total))
|
|
stat.finalize()
|
|
|
|
cv = stat.stDev() / stat.mean() if stat.mean() != 0 else 0
|
|
|
|
results = {self.COUNT: stat.count(),
|
|
self.UNIQUE: stat.variety(),
|
|
self.EMPTY: stat.countMissing(),
|
|
self.FILLED: count - stat.countMissing(),
|
|
self.MIN: stat.min(),
|
|
self.MAX: stat.max(),
|
|
self.RANGE: stat.range(),
|
|
self.SUM: stat.sum(),
|
|
self.MEAN: stat.mean(),
|
|
self.MEDIAN: stat.median(),
|
|
self.STD_DEV: stat.stDev(),
|
|
self.CV: cv,
|
|
self.MINORITY: stat.minority(),
|
|
self.MAJORITY: stat.majority(),
|
|
self.FIRSTQUARTILE: stat.firstQuartile(),
|
|
self.THIRDQUARTILE: stat.thirdQuartile(),
|
|
self.IQR: stat.interQuartileRange()}
|
|
|
|
data = []
|
|
data.append(self.tr('Count: {}').format(stat.count()))
|
|
data.append(self.tr('Unique values: {}').format(stat.variety()))
|
|
data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing()))
|
|
data.append(self.tr('Minimum value: {}').format(stat.min()))
|
|
data.append(self.tr('Maximum value: {}').format(stat.max()))
|
|
data.append(self.tr('Range: {}').format(stat.range()))
|
|
data.append(self.tr('Sum: {}').format(stat.sum()))
|
|
data.append(self.tr('Mean value: {}').format(stat.mean()))
|
|
data.append(self.tr('Median value: {}').format(stat.median()))
|
|
data.append(self.tr('Standard deviation: {}').format(stat.stDev()))
|
|
data.append(self.tr('Coefficient of Variation: {}').format(cv))
|
|
data.append(self.tr('Minority (rarest occurring value): {}').format(stat.minority()))
|
|
data.append(self.tr('Majority (most frequently occurring value): {}').format(stat.majority()))
|
|
data.append(self.tr('First quartile: {}').format(stat.firstQuartile()))
|
|
data.append(self.tr('Third quartile: {}').format(stat.thirdQuartile()))
|
|
data.append(self.tr('Interquartile Range (IQR): {}').format(stat.interQuartileRange()))
|
|
return data, results
|
|
|
|
def calcStringStats(self, features, feedback, field, count):
|
|
total = 100.0 / count if count else 1
|
|
stat = QgsStringStatisticalSummary()
|
|
for current, ft in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
stat.addValue(ft[field.name()])
|
|
feedback.setProgress(int(current * total))
|
|
stat.finalize()
|
|
|
|
results = {self.COUNT: stat.count(),
|
|
self.UNIQUE: stat.countDistinct(),
|
|
self.EMPTY: stat.countMissing(),
|
|
self.FILLED: stat.count() - stat.countMissing(),
|
|
self.MIN: stat.min(),
|
|
self.MAX: stat.max(),
|
|
self.MIN_LENGTH: stat.minLength(),
|
|
self.MAX_LENGTH: stat.maxLength(),
|
|
self.MEAN_LENGTH: stat.meanLength()}
|
|
|
|
data = []
|
|
data.append(self.tr('Count: {}').format(count))
|
|
data.append(self.tr('Unique values: {}').format(stat.countDistinct()))
|
|
data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing()))
|
|
data.append(self.tr('Minimum value: {}').format(stat.min()))
|
|
data.append(self.tr('Maximum value: {}').format(stat.max()))
|
|
data.append(self.tr('Minimum length: {}').format(stat.minLength()))
|
|
data.append(self.tr('Maximum length: {}').format(stat.maxLength()))
|
|
data.append(self.tr('Mean length: {}').format(stat.meanLength()))
|
|
|
|
return data, results
|
|
|
|
def calcDateTimeStats(self, features, feedback, field, count):
|
|
total = 100.0 / count if count else 1
|
|
stat = QgsDateTimeStatisticalSummary()
|
|
for current, ft in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
stat.addValue(ft[field.name()])
|
|
feedback.setProgress(int(current * total))
|
|
stat.finalize()
|
|
|
|
results = {self.COUNT: stat.count(),
|
|
self.UNIQUE: stat.countDistinct(),
|
|
self.EMPTY: stat.countMissing(),
|
|
self.FILLED: stat.count() - stat.countMissing(),
|
|
self.MIN: stat.statistic(QgsDateTimeStatisticalSummary.Min),
|
|
self.MAX: stat.statistic(QgsDateTimeStatisticalSummary.Max)}
|
|
|
|
data = []
|
|
data.append(self.tr('Count: {}').format(count))
|
|
data.append(self.tr('Unique values: {}').format(stat.countDistinct()))
|
|
data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing()))
|
|
data.append(self.tr('Minimum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Min))))
|
|
data.append(self.tr('Maximum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Max))))
|
|
|
|
return data, results
|
|
|
|
def createHTML(self, outputFile, algData):
|
|
with codecs.open(outputFile, 'w', encoding='utf-8') as f:
|
|
f.write('<html><head>\n')
|
|
f.write('<meta http-equiv="Content-Type" content="text/html; \
|
|
charset=utf-8" /></head><body>\n')
|
|
for s in algData:
|
|
f.write('<p>' + str(s) + '</p>\n')
|
|
f.write('</body></html>\n')
|