QGIS/python/plugins/processing/algs/qgis/NearestNeighbourAnalysis.py
Nyall Dawson 5339d62715 [processing] More helpful errors when sources cannot be loaded
Include descriptive text with the specified parameter value
in error, and always check that sources were loaded to avoid
raw Python exceptions when they are not
2018-04-28 05:50:47 +10:00

159 lines
6.0 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
NearestNeighbourAnalysis.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
import math
import codecs
from qgis.PyQt.QtGui import QIcon
from qgis.core import (QgsFeatureRequest,
QgsDistanceArea,
QgsProject,
QgsProcessing,
QgsProcessingException,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterFileDestination,
QgsProcessingOutputNumber,
QgsSpatialIndex)
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class NearestNeighbourAnalysis(QgisAlgorithm):
INPUT = 'INPUT'
OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE'
OBSERVED_MD = 'OBSERVED_MD'
EXPECTED_MD = 'EXPECTED_MD'
NN_INDEX = 'NN_INDEX'
POINT_COUNT = 'POINT_COUNT'
Z_SCORE = 'Z_SCORE'
def icon(self):
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png'))
def group(self):
return self.tr('Vector analysis')
def groupId(self):
return 'vectoranalysis'
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
self.tr('Input layer'), [QgsProcessing.TypeVectorPoint]))
self.addParameter(QgsProcessingParameterFileDestination(self.OUTPUT_HTML_FILE, self.tr('Nearest neighbour'), self.tr('HTML files (*.html)'), None, True))
self.addOutput(QgsProcessingOutputNumber(self.OBSERVED_MD,
self.tr('Observed mean distance')))
self.addOutput(QgsProcessingOutputNumber(self.EXPECTED_MD,
self.tr('Expected mean distance')))
self.addOutput(QgsProcessingOutputNumber(self.NN_INDEX,
self.tr('Nearest neighbour index')))
self.addOutput(QgsProcessingOutputNumber(self.POINT_COUNT,
self.tr('Number of points')))
self.addOutput(QgsProcessingOutputNumber(self.Z_SCORE, self.tr('Z-Score')))
def name(self):
return 'nearestneighbouranalysis'
def displayName(self):
return self.tr('Nearest neighbour analysis')
def processAlgorithm(self, parameters, context, feedback):
source = self.parameterAsSource(parameters, self.INPUT, context)
if source is None:
raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT))
output_file = self.parameterAsFileOutput(parameters, self.OUTPUT_HTML_FILE, context)
spatialIndex = QgsSpatialIndex(source, feedback)
distance = QgsDistanceArea()
distance.setSourceCrs(source.sourceCrs(), context.transformContext())
distance.setEllipsoid(context.project().ellipsoid())
sumDist = 0.00
A = source.sourceExtent()
A = float(A.width() * A.height())
features = source.getFeatures()
count = source.featureCount()
total = 100.0 / count if count else 1
for current, feat in enumerate(features):
if feedback.isCanceled():
break
neighbourID = spatialIndex.nearestNeighbor(
feat.geometry().asPoint(), 2)[1]
request = QgsFeatureRequest().setFilterFid(neighbourID).setSubsetOfAttributes([])
neighbour = next(source.getFeatures(request))
sumDist += distance.measureLine(neighbour.geometry().asPoint(),
feat.geometry().asPoint())
feedback.setProgress(int(current * total))
do = float(sumDist) / count
de = float(0.5 / math.sqrt(count / A))
d = float(do / de)
SE = float(0.26136 / math.sqrt(count ** 2 / A))
zscore = float((do - de) / SE)
results = {}
results[self.OBSERVED_MD] = do
results[self.EXPECTED_MD] = de
results[self.NN_INDEX] = d
results[self.POINT_COUNT] = count
results[self.Z_SCORE] = zscore
if output_file:
data = []
data.append('Observed mean distance: ' + str(do))
data.append('Expected mean distance: ' + str(de))
data.append('Nearest neighbour index: ' + str(d))
data.append('Number of points: ' + str(count))
data.append('Z-Score: ' + str(zscore))
self.createHTML(output_file, data)
results[self.OUTPUT_HTML_FILE] = output_file
return results
def createHTML(self, outputFile, algData):
with codecs.open(outputFile, 'w', encoding='utf-8') as f:
f.write('<html><head>')
f.write('<meta http-equiv="Content-Type" content="text/html; \
charset=utf-8" /></head><body>')
for s in algData:
f.write('<p>' + str(s) + '</p>')
f.write('</body></html>')