mirror of
https://github.com/qgis/QGIS.git
synced 2025-03-03 00:02:25 -05:00
Include descriptive text with the specified parameter value in error, and always check that sources were loaded to avoid raw Python exceptions when they are not
279 lines
13 KiB
Python
279 lines
13 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
***************************************************************************
|
|
BasicStatistics.py
|
|
---------------------
|
|
Date : November 2016
|
|
Copyright : (C) 2016 by Nyall Dawson
|
|
Email : nyall dot dawson at gmail dot com
|
|
***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************
|
|
"""
|
|
|
|
__author__ = 'Nyall Dawson'
|
|
__date__ = 'November 2016'
|
|
__copyright__ = '(C) 2016, Nyall Dawson'
|
|
|
|
# This will get replaced with a git SHA1 when you do a git archive
|
|
|
|
__revision__ = '$Format:%H$'
|
|
|
|
import os
|
|
import codecs
|
|
|
|
from qgis.PyQt.QtCore import QVariant
|
|
from qgis.PyQt.QtGui import QIcon
|
|
|
|
from qgis.core import (QgsStatisticalSummary,
|
|
QgsStringStatisticalSummary,
|
|
QgsDateTimeStatisticalSummary,
|
|
QgsFeatureRequest,
|
|
QgsProcessingException,
|
|
QgsProcessingParameterFeatureSource,
|
|
QgsProcessingParameterField,
|
|
QgsProcessingParameterFileDestination,
|
|
QgsProcessingOutputNumber,
|
|
QgsProcessingFeatureSource)
|
|
|
|
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
|
|
|
|
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
|
|
|
|
|
|
class BasicStatisticsForField(QgisAlgorithm):
|
|
|
|
INPUT_LAYER = 'INPUT_LAYER'
|
|
FIELD_NAME = 'FIELD_NAME'
|
|
OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE'
|
|
|
|
MIN = 'MIN'
|
|
MAX = 'MAX'
|
|
COUNT = 'COUNT'
|
|
UNIQUE = 'UNIQUE'
|
|
EMPTY = 'EMPTY'
|
|
FILLED = 'FILLED'
|
|
MIN_LENGTH = 'MIN_LENGTH'
|
|
MAX_LENGTH = 'MAX_LENGTH'
|
|
MEAN_LENGTH = 'MEAN_LENGTH'
|
|
CV = 'CV'
|
|
SUM = 'SUM'
|
|
MEAN = 'MEAN'
|
|
STD_DEV = 'STD_DEV'
|
|
RANGE = 'RANGE'
|
|
MEDIAN = 'MEDIAN'
|
|
MINORITY = 'MINORITY'
|
|
MAJORITY = 'MAJORITY'
|
|
FIRSTQUARTILE = 'FIRSTQUARTILE'
|
|
THIRDQUARTILE = 'THIRDQUARTILE'
|
|
IQR = 'IQR'
|
|
|
|
def icon(self):
|
|
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'basic_statistics.png'))
|
|
|
|
def tags(self):
|
|
return self.tr('stats,statistics,date,time,datetime,string,number,text,table,layer,maximum,minimum,mean,average,standard,deviation,'
|
|
'count,distinct,unique,variance,median,quartile,range,majority,minority').split(',')
|
|
|
|
def group(self):
|
|
return self.tr('Vector analysis')
|
|
|
|
def groupId(self):
|
|
return 'vectoranalysis'
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def initAlgorithm(self, config=None):
|
|
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT_LAYER,
|
|
self.tr('Input layer')))
|
|
|
|
self.addParameter(QgsProcessingParameterField(self.FIELD_NAME,
|
|
self.tr('Field to calculate statistics on'),
|
|
None, self.INPUT_LAYER, QgsProcessingParameterField.Any))
|
|
|
|
self.addParameter(QgsProcessingParameterFileDestination(self.OUTPUT_HTML_FILE, self.tr('Statistics'), self.tr('HTML files (*.html)'), None, True))
|
|
|
|
self.addOutput(QgsProcessingOutputNumber(self.COUNT, self.tr('Count')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.UNIQUE, self.tr('Number of unique values')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.EMPTY, self.tr('Number of empty (null) values')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.FILLED, self.tr('Number of non-empty values')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MIN, self.tr('Minimum value')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MAX, self.tr('Maximum value')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MIN_LENGTH, self.tr('Minimum length')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MAX_LENGTH, self.tr('Maximum length')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MEAN_LENGTH, self.tr('Mean length')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.CV, self.tr('Coefficient of Variation')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.SUM, self.tr('Sum')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MEAN, self.tr('Mean value')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.STD_DEV, self.tr('Standard deviation')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.RANGE, self.tr('Range')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MEDIAN, self.tr('Median')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MINORITY, self.tr('Minority (rarest occurring value)')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.MAJORITY, self.tr('Majority (most frequently occurring value)')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.FIRSTQUARTILE, self.tr('First quartile')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.THIRDQUARTILE, self.tr('Third quartile')))
|
|
self.addOutput(QgsProcessingOutputNumber(self.IQR, self.tr('Interquartile Range (IQR)')))
|
|
|
|
def name(self):
|
|
return 'basicstatisticsforfields'
|
|
|
|
def displayName(self):
|
|
return self.tr('Basic statistics for fields')
|
|
|
|
def processAlgorithm(self, parameters, context, feedback):
|
|
source = self.parameterAsSource(parameters, self.INPUT_LAYER, context)
|
|
if source is None:
|
|
raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT))
|
|
|
|
field_name = self.parameterAsString(parameters, self.FIELD_NAME, context)
|
|
field = source.fields().at(source.fields().lookupField(field_name))
|
|
|
|
output_file = self.parameterAsFileOutput(parameters, self.OUTPUT_HTML_FILE, context)
|
|
|
|
request = QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry).setSubsetOfAttributes([field_name], source.fields())
|
|
features = source.getFeatures(request, QgsProcessingFeatureSource.FlagSkipGeometryValidityChecks)
|
|
count = source.featureCount()
|
|
|
|
data = []
|
|
data.append(self.tr('Analyzed field: {}').format(field_name))
|
|
results = {}
|
|
|
|
if field.isNumeric():
|
|
d, results = self.calcNumericStats(features, feedback, field, count)
|
|
data.extend(d)
|
|
elif field.type() in (QVariant.Date, QVariant.Time, QVariant.DateTime):
|
|
d, results = self.calcDateTimeStats(features, feedback, field, count)
|
|
data.extend(d)
|
|
else:
|
|
d, results = self.calcStringStats(features, feedback, field, count)
|
|
data.extend(d)
|
|
|
|
if output_file:
|
|
self.createHTML(output_file, data)
|
|
results[self.OUTPUT_HTML_FILE] = output_file
|
|
|
|
return results
|
|
|
|
def calcNumericStats(self, features, feedback, field, count):
|
|
total = 100.0 / count if count else 0
|
|
stat = QgsStatisticalSummary()
|
|
for current, ft in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
stat.addVariant(ft[field.name()])
|
|
feedback.setProgress(int(current * total))
|
|
stat.finalize()
|
|
|
|
cv = stat.stDev() / stat.mean() if stat.mean() != 0 else 0
|
|
|
|
results = {self.COUNT: stat.count(),
|
|
self.UNIQUE: stat.variety(),
|
|
self.EMPTY: stat.countMissing(),
|
|
self.FILLED: count - stat.countMissing(),
|
|
self.MIN: stat.min(),
|
|
self.MAX: stat.max(),
|
|
self.RANGE: stat.range(),
|
|
self.SUM: stat.sum(),
|
|
self.MEAN: stat.mean(),
|
|
self.MEDIAN: stat.median(),
|
|
self.STD_DEV: stat.stDev(),
|
|
self.CV: cv,
|
|
self.MINORITY: stat.minority(),
|
|
self.MAJORITY: stat.majority(),
|
|
self.FIRSTQUARTILE: stat.firstQuartile(),
|
|
self.THIRDQUARTILE: stat.thirdQuartile(),
|
|
self.IQR: stat.interQuartileRange()}
|
|
|
|
data = []
|
|
data.append(self.tr('Count: {}').format(stat.count()))
|
|
data.append(self.tr('Unique values: {}').format(stat.variety()))
|
|
data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing()))
|
|
data.append(self.tr('Minimum value: {}').format(stat.min()))
|
|
data.append(self.tr('Maximum value: {}').format(stat.max()))
|
|
data.append(self.tr('Range: {}').format(stat.range()))
|
|
data.append(self.tr('Sum: {}').format(stat.sum()))
|
|
data.append(self.tr('Mean value: {}').format(stat.mean()))
|
|
data.append(self.tr('Median value: {}').format(stat.median()))
|
|
data.append(self.tr('Standard deviation: {}').format(stat.stDev()))
|
|
data.append(self.tr('Coefficient of Variation: {}').format(cv))
|
|
data.append(self.tr('Minority (rarest occurring value): {}').format(stat.minority()))
|
|
data.append(self.tr('Majority (most frequently occurring value): {}').format(stat.majority()))
|
|
data.append(self.tr('First quartile: {}').format(stat.firstQuartile()))
|
|
data.append(self.tr('Third quartile: {}').format(stat.thirdQuartile()))
|
|
data.append(self.tr('Interquartile Range (IQR): {}').format(stat.interQuartileRange()))
|
|
return data, results
|
|
|
|
def calcStringStats(self, features, feedback, field, count):
|
|
total = 100.0 / count if count else 1
|
|
stat = QgsStringStatisticalSummary()
|
|
for current, ft in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
stat.addValue(ft[field.name()])
|
|
feedback.setProgress(int(current * total))
|
|
stat.finalize()
|
|
|
|
results = {self.COUNT: stat.count(),
|
|
self.UNIQUE: stat.countDistinct(),
|
|
self.EMPTY: stat.countMissing(),
|
|
self.FILLED: stat.count() - stat.countMissing(),
|
|
self.MIN: stat.min(),
|
|
self.MAX: stat.max(),
|
|
self.MIN_LENGTH: stat.minLength(),
|
|
self.MAX_LENGTH: stat.maxLength(),
|
|
self.MEAN_LENGTH: stat.meanLength()}
|
|
|
|
data = []
|
|
data.append(self.tr('Count: {}').format(count))
|
|
data.append(self.tr('Unique values: {}').format(stat.countDistinct()))
|
|
data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing()))
|
|
data.append(self.tr('Minimum value: {}').format(stat.min()))
|
|
data.append(self.tr('Maximum value: {}').format(stat.max()))
|
|
data.append(self.tr('Minimum length: {}').format(stat.minLength()))
|
|
data.append(self.tr('Maximum length: {}').format(stat.maxLength()))
|
|
data.append(self.tr('Mean length: {}').format(stat.meanLength()))
|
|
|
|
return data, results
|
|
|
|
def calcDateTimeStats(self, features, feedback, field, count):
|
|
total = 100.0 / count if count else 1
|
|
stat = QgsDateTimeStatisticalSummary()
|
|
for current, ft in enumerate(features):
|
|
if feedback.isCanceled():
|
|
break
|
|
stat.addValue(ft[field.name()])
|
|
feedback.setProgress(int(current * total))
|
|
stat.finalize()
|
|
|
|
results = {self.COUNT: stat.count(),
|
|
self.UNIQUE: stat.countDistinct(),
|
|
self.EMPTY: stat.countMissing(),
|
|
self.FILLED: stat.count() - stat.countMissing(),
|
|
self.MIN: stat.statistic(QgsDateTimeStatisticalSummary.Min),
|
|
self.MAX: stat.statistic(QgsDateTimeStatisticalSummary.Max)}
|
|
|
|
data = []
|
|
data.append(self.tr('Count: {}').format(count))
|
|
data.append(self.tr('Unique values: {}').format(stat.countDistinct()))
|
|
data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing()))
|
|
data.append(self.tr('Minimum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Min))))
|
|
data.append(self.tr('Maximum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Max))))
|
|
|
|
return data, results
|
|
|
|
def createHTML(self, outputFile, algData):
|
|
with codecs.open(outputFile, 'w', encoding='utf-8') as f:
|
|
f.write('<html><head>\n')
|
|
f.write('<meta http-equiv="Content-Type" content="text/html; \
|
|
charset=utf-8" /></head><body>\n')
|
|
for s in algData:
|
|
f.write('<p>' + str(s) + '</p>\n')
|
|
f.write('</body></html>\n')
|