QGIS/python/plugins/processing/algs/qgis/NearestNeighbourAnalysis.py
2017-08-22 23:36:42 +10:00

156 lines
6.0 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
NearestNeighbourAnalysis.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from builtins import next
from builtins import str
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
import math
import codecs
from qgis.PyQt.QtGui import QIcon
from qgis.core import (QgsFeatureRequest,
QgsDistanceArea,
QgsProject,
QgsProcessing,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterFileDestination,
QgsProcessingOutputHtml,
QgsProcessingOutputNumber,
QgsSpatialIndex)
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class NearestNeighbourAnalysis(QgisAlgorithm):
INPUT = 'INPUT'
OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE'
OBSERVED_MD = 'OBSERVED_MD'
EXPECTED_MD = 'EXPECTED_MD'
NN_INDEX = 'NN_INDEX'
POINT_COUNT = 'POINT_COUNT'
Z_SCORE = 'Z_SCORE'
def icon(self):
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png'))
def group(self):
return self.tr('Vector analysis')
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
self.tr('Input layer'), [QgsProcessing.TypeVectorPoint]))
self.addParameter(QgsProcessingParameterFileDestination(self.OUTPUT_HTML_FILE, self.tr('Nearest neighbour'), self.tr('HTML files (*.html)'), None, True))
self.addOutput(QgsProcessingOutputHtml(self.OUTPUT_HTML_FILE, self.tr('Nearest neighbour')))
self.addOutput(QgsProcessingOutputNumber(self.OBSERVED_MD,
self.tr('Observed mean distance')))
self.addOutput(QgsProcessingOutputNumber(self.EXPECTED_MD,
self.tr('Expected mean distance')))
self.addOutput(QgsProcessingOutputNumber(self.NN_INDEX,
self.tr('Nearest neighbour index')))
self.addOutput(QgsProcessingOutputNumber(self.POINT_COUNT,
self.tr('Number of points')))
self.addOutput(QgsProcessingOutputNumber(self.Z_SCORE, self.tr('Z-Score')))
def name(self):
return 'nearestneighbouranalysis'
def displayName(self):
return self.tr('Nearest neighbour analysis')
def processAlgorithm(self, parameters, context, feedback):
source = self.parameterAsSource(parameters, self.INPUT, context)
output_file = self.parameterAsFileOutput(parameters, self.OUTPUT_HTML_FILE, context)
spatialIndex = QgsSpatialIndex(source, feedback)
distance = QgsDistanceArea()
distance.setSourceCrs(source.sourceCrs())
distance.setEllipsoid(context.project().ellipsoid())
sumDist = 0.00
A = source.sourceExtent()
A = float(A.width() * A.height())
features = source.getFeatures()
count = source.featureCount()
total = 100.0 / count if count else 1
for current, feat in enumerate(features):
if feedback.isCanceled():
break
neighbourID = spatialIndex.nearestNeighbor(
feat.geometry().asPoint(), 2)[1]
request = QgsFeatureRequest().setFilterFid(neighbourID).setSubsetOfAttributes([])
neighbour = next(source.getFeatures(request))
sumDist += distance.measureLine(neighbour.geometry().asPoint(),
feat.geometry().asPoint())
feedback.setProgress(int(current * total))
do = float(sumDist) / count
de = float(0.5 / math.sqrt(count / A))
d = float(do / de)
SE = float(0.26136 / math.sqrt(count ** 2 / A))
zscore = float((do - de) / SE)
results = {}
results[self.OBSERVED_MD] = do
results[self.EXPECTED_MD] = de
results[self.NN_INDEX] = d
results[self.POINT_COUNT] = count
results[self.Z_SCORE] = zscore
if output_file:
data = []
data.append('Observed mean distance: ' + str(do))
data.append('Expected mean distance: ' + str(de))
data.append('Nearest neighbour index: ' + str(d))
data.append('Number of points: ' + str(count))
data.append('Z-Score: ' + str(zscore))
self.createHTML(output_file, data)
results[self.OUTPUT_HTML_FILE] = output_file
return results
def createHTML(self, outputFile, algData):
with codecs.open(outputFile, 'w', encoding='utf-8') as f:
f.write('<html><head>')
f.write('<meta http-equiv="Content-Type" content="text/html; \
charset=utf-8" /></head><body>')
for s in algData:
f.write('<p>' + str(s) + '</p>')
f.write('</body></html>')