mirror of
https://github.com/qgis/QGIS.git
synced 2025-02-28 00:17:30 -05:00
pep8 --ignore=E111,E128,E201,E202,E203,E211,E221,E222,E225,E226,E227,E231,E241,E261,E265,E272,E302,E303,E501,E701 \ --exclude="ui_*.py,debian/*,python/ext-libs/*" \ .
174 lines
6.2 KiB
Python
174 lines
6.2 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
***************************************************************************
|
|
BasicStatisticsNumbers.py
|
|
---------------------
|
|
Date : September 2012
|
|
Copyright : (C) 2012 by Victor Olaya
|
|
Email : volayaf at gmail dot com
|
|
***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************
|
|
"""
|
|
|
|
__author__ = 'Victor Olaya'
|
|
__date__ = 'September 2012'
|
|
__copyright__ = '(C) 2012, Victor Olaya'
|
|
|
|
# This will get replaced with a git SHA1 when you do a git archive
|
|
|
|
__revision__ = '$Format:%H$'
|
|
|
|
import math
|
|
|
|
from processing.core.GeoAlgorithm import GeoAlgorithm
|
|
from processing.core.parameters import ParameterVector
|
|
from processing.core.parameters import ParameterTableField
|
|
from processing.core.outputs import OutputHTML
|
|
from processing.core.outputs import OutputNumber
|
|
from processing.tools import dataobjects, vector
|
|
|
|
|
|
class BasicStatisticsNumbers(GeoAlgorithm):
|
|
|
|
INPUT_LAYER = 'INPUT_LAYER'
|
|
FIELD_NAME = 'FIELD_NAME'
|
|
OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE'
|
|
|
|
CV = 'CV'
|
|
MIN = 'MIN'
|
|
MAX = 'MAX'
|
|
SUM = 'SUM'
|
|
MEAN = 'MEAN'
|
|
COUNT = 'COUNT'
|
|
STD_DEV = 'STD_DEV'
|
|
RANGE = 'RANGE'
|
|
MEDIAN = 'MEDIAN'
|
|
UNIQUE = 'UNIQUE'
|
|
|
|
def defineCharacteristics(self):
|
|
self.name = 'Basic statistics for numeric fields'
|
|
self.group = 'Vector table tools'
|
|
|
|
self.addParameter(ParameterVector(self.INPUT_LAYER,
|
|
self.tr('Input vector layer'), ParameterVector.VECTOR_TYPE_ANY, False))
|
|
self.addParameter(ParameterTableField(self.FIELD_NAME,
|
|
self.tr('Field to calculate statistics on'),
|
|
self.INPUT_LAYER, ParameterTableField.DATA_TYPE_NUMBER))
|
|
|
|
self.addOutput(OutputHTML(self.OUTPUT_HTML_FILE,
|
|
self.tr('Statistics for numeric field')))
|
|
|
|
self.addOutput(OutputNumber(self.CV, self.tr('Coefficient of Variation')))
|
|
self.addOutput(OutputNumber(self.MIN, self.tr('Minimum value')))
|
|
self.addOutput(OutputNumber(self.MAX, self.tr('Maximum value')))
|
|
self.addOutput(OutputNumber(self.SUM, self.tr('Sum')))
|
|
self.addOutput(OutputNumber(self.MEAN, self.tr('Mean value')))
|
|
self.addOutput(OutputNumber(self.COUNT, self.tr('Count')))
|
|
self.addOutput(OutputNumber(self.RANGE, self.tr('Range')))
|
|
self.addOutput(OutputNumber(self.MEDIAN, self.tr('Median')))
|
|
self.addOutput(OutputNumber(self.UNIQUE, self.tr('Number of unique values')))
|
|
self.addOutput(OutputNumber(self.STD_DEV, self.tr('Standard deviation')))
|
|
|
|
def processAlgorithm(self, progress):
|
|
layer = dataobjects.getObjectFromUri(
|
|
self.getParameterValue(self.INPUT_LAYER))
|
|
fieldName = self.getParameterValue(self.FIELD_NAME)
|
|
|
|
outputFile = self.getOutputValue(self.OUTPUT_HTML_FILE)
|
|
|
|
index = layer.fieldNameIndex(fieldName)
|
|
|
|
cvValue = 0
|
|
minValue = 0
|
|
maxValue = 0
|
|
sumValue = 0
|
|
meanValue = 0
|
|
medianValue = 0
|
|
stdDevValue = 0
|
|
|
|
isFirst = True
|
|
values = []
|
|
|
|
features = vector.features(layer)
|
|
count = len(features)
|
|
total = 100.0 / float(count)
|
|
current = 0
|
|
for ft in features:
|
|
if ft.attributes()[index]:
|
|
value = float(ft.attributes()[index])
|
|
if isFirst:
|
|
minValue = value
|
|
maxValue = value
|
|
isFirst = False
|
|
else:
|
|
if value < minValue:
|
|
minValue = value
|
|
if value > maxValue:
|
|
maxValue = value
|
|
|
|
values.append(value)
|
|
sumValue += value
|
|
|
|
current += 1
|
|
progress.setPercentage(int(current * total))
|
|
|
|
# Calculate additional values
|
|
rValue = maxValue - minValue
|
|
uniqueValue = vector.getUniqueValuesCount(layer, index)
|
|
|
|
if count > 0:
|
|
meanValue = sumValue / count
|
|
if meanValue != 0.00:
|
|
for v in values:
|
|
stdDevValue += (v - meanValue) * (v - meanValue)
|
|
stdDevValue = math.sqrt(stdDevValue / count)
|
|
cvValue = stdDevValue / meanValue
|
|
|
|
if count > 1:
|
|
tmp = values
|
|
tmp.sort()
|
|
|
|
# Calculate median
|
|
if count % 2 == 0:
|
|
medianValue = 0.5 * (tmp[(count - 1) / 2] + tmp[count / 2])
|
|
else:
|
|
medianValue = tmp[(count + 1) / 2 - 1]
|
|
|
|
data = []
|
|
data.append('Count: ' + unicode(count))
|
|
data.append('Unique values: ' + unicode(uniqueValue))
|
|
data.append('Minimum value: ' + unicode(minValue))
|
|
data.append('Maximum value: ' + unicode(maxValue))
|
|
data.append('Range: ' + unicode(rValue))
|
|
data.append('Sum: ' + unicode(sumValue))
|
|
data.append('Mean value: ' + unicode(meanValue))
|
|
data.append('Median value: ' + unicode(medianValue))
|
|
data.append('Standard deviation: ' + unicode(stdDevValue))
|
|
data.append('Coefficient of Variation: ' + unicode(cvValue))
|
|
|
|
self.createHTML(outputFile, data)
|
|
|
|
self.setOutputValue(self.COUNT, count)
|
|
self.setOutputValue(self.UNIQUE, uniqueValue)
|
|
self.setOutputValue(self.MIN, minValue)
|
|
self.setOutputValue(self.MAX, maxValue)
|
|
self.setOutputValue(self.RANGE, rValue)
|
|
self.setOutputValue(self.SUM, sumValue)
|
|
self.setOutputValue(self.MEAN, meanValue)
|
|
self.setOutputValue(self.MEDIAN, medianValue)
|
|
self.setOutputValue(self.STD_DEV, stdDevValue)
|
|
self.setOutputValue(self.CV, cvValue)
|
|
|
|
def createHTML(self, outputFile, algData):
|
|
f = open(outputFile, 'w')
|
|
for s in algData:
|
|
f.write('<p>' + str(s) + '</p>')
|
|
f.close()
|