QGIS/python/plugins/processing/algs/qgis/RandomSelectionWithinSubsets.py
2024-11-29 15:38:02 +01:00

185 lines
6.0 KiB
Python

"""
***************************************************************************
RandomSelectionWithinSubsets.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = "Victor Olaya"
__date__ = "August 2012"
__copyright__ = "(C) 2012, Victor Olaya"
import os
import random
from qgis.PyQt.QtGui import QIcon
from qgis.core import (
QgsApplication,
QgsFeatureRequest,
QgsProcessingException,
QgsProcessingUtils,
QgsProcessingAlgorithm,
QgsProcessingParameterVectorLayer,
QgsProcessingParameterEnum,
QgsProcessingParameterField,
QgsProcessingParameterNumber,
QgsProcessingParameterFeatureSink,
QgsProcessingOutputVectorLayer,
)
from collections import defaultdict
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class RandomSelectionWithinSubsets(QgisAlgorithm):
INPUT = "INPUT"
METHOD = "METHOD"
NUMBER = "NUMBER"
FIELD = "FIELD"
OUTPUT = "OUTPUT"
def icon(self):
return QgsApplication.getThemeIcon("/algorithms/mAlgorithmSelectRandom.svg")
def svgIconPath(self):
return QgsApplication.iconPath("/algorithms/mAlgorithmSelectRandom.svg")
def group(self):
return self.tr("Vector selection")
def groupId(self):
return "vectorselection"
def __init__(self):
super().__init__()
def flags(self):
return (
super().flags()
| QgsProcessingAlgorithm.Flag.FlagNoThreading
| QgsProcessingAlgorithm.Flag.FlagNotAvailableInStandaloneTool
)
def initAlgorithm(self, config=None):
self.methods = [
self.tr("Number of selected features"),
self.tr("Percentage of selected features"),
]
self.addParameter(
QgsProcessingParameterVectorLayer(self.INPUT, self.tr("Input layer"))
)
self.addParameter(
QgsProcessingParameterField(
self.FIELD, self.tr("ID field"), None, self.INPUT
)
)
self.addParameter(
QgsProcessingParameterEnum(
self.METHOD, self.tr("Method"), self.methods, False, 0
)
)
self.addParameter(
QgsProcessingParameterNumber(
self.NUMBER,
self.tr("Number/percentage of selected features"),
QgsProcessingParameterNumber.Type.Integer,
10,
False,
0.0,
)
)
self.addOutput(
QgsProcessingOutputVectorLayer(
self.OUTPUT, self.tr("Selected (stratified random)")
)
)
def name(self):
return "randomselectionwithinsubsets"
def displayName(self):
return self.tr("Random selection within subsets")
def processAlgorithm(self, parameters, context, feedback):
layer = self.parameterAsVectorLayer(parameters, self.INPUT, context)
method = self.parameterAsEnum(parameters, self.METHOD, context)
field = self.parameterAsString(parameters, self.FIELD, context)
index = layer.fields().lookupField(field)
unique = layer.uniqueValues(index)
featureCount = layer.featureCount()
value = self.parameterAsInt(parameters, self.NUMBER, context)
if method == 0:
if value > featureCount:
raise QgsProcessingException(
self.tr(
"Selected number is greater that feature count. "
"Choose lesser value and try again."
)
)
else:
if value > 100:
raise QgsProcessingException(
self.tr(
"Percentage can't be greater than 100. Set a "
"different value and try again."
)
)
value = value / 100.0
total = 100.0 / (featureCount * len(unique)) if featureCount else 1
if len(unique) != featureCount:
classes = defaultdict(list)
features = layer.getFeatures(
QgsFeatureRequest()
.setFlags(QgsFeatureRequest.Flag.NoGeometry)
.setSubsetOfAttributes([index])
)
for i, feature in enumerate(features):
if feedback.isCanceled():
break
classes[feature[index]].append(feature.id())
feedback.setProgress(int(i * total))
selran = []
for k, subset in classes.items():
if feedback.isCanceled():
break
selValue = value if method != 1 else int(round(value * len(subset), 0))
if selValue > len(subset):
selValue = len(subset)
feedback.reportError(
self.tr(
'Subset "{}" is smaller than requested number of features.'
).format(k)
)
selran.extend(random.sample(subset, selValue))
layer.selectByIds(selran)
else:
layer.selectByIds(
list(range(featureCount))
) # FIXME: implies continuous feature ids
return {self.OUTPUT: parameters[self.INPUT]}