mirror of
				https://github.com/qgis/QGIS.git
				synced 2025-11-04 00:04:25 -05:00 
			
		
		
		
	Algorithms are now passed a QgsProcessingFeedback object instead of the loosely defined progress parameter.
		
			
				
	
	
		
			131 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# -*- coding: utf-8 -*-
 | 
						|
 | 
						|
"""
 | 
						|
***************************************************************************
 | 
						|
    RandomSelectionWithinSubsets.py
 | 
						|
    ---------------------
 | 
						|
    Date                 : August 2012
 | 
						|
    Copyright            : (C) 2012 by Victor Olaya
 | 
						|
    Email                : volayaf at gmail dot com
 | 
						|
***************************************************************************
 | 
						|
*                                                                         *
 | 
						|
*   This program is free software; you can redistribute it and/or modify  *
 | 
						|
*   it under the terms of the GNU General Public License as published by  *
 | 
						|
*   the Free Software Foundation; either version 2 of the License, or     *
 | 
						|
*   (at your option) any later version.                                   *
 | 
						|
*                                                                         *
 | 
						|
***************************************************************************
 | 
						|
"""
 | 
						|
from builtins import range
 | 
						|
 | 
						|
__author__ = 'Victor Olaya'
 | 
						|
__date__ = 'August 2012'
 | 
						|
__copyright__ = '(C) 2012, Victor Olaya'
 | 
						|
 | 
						|
# This will get replaced with a git SHA1 when you do a git archive
 | 
						|
 | 
						|
__revision__ = '$Format:%H$'
 | 
						|
 | 
						|
import random
 | 
						|
 | 
						|
from processing.core.GeoAlgorithm import GeoAlgorithm
 | 
						|
from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException
 | 
						|
from processing.core.parameters import ParameterSelection
 | 
						|
from processing.core.parameters import ParameterVector
 | 
						|
from processing.core.parameters import ParameterNumber
 | 
						|
from processing.core.parameters import ParameterTableField
 | 
						|
from processing.core.outputs import OutputVector
 | 
						|
from processing.tools import dataobjects, vector
 | 
						|
 | 
						|
 | 
						|
class RandomExtractWithinSubsets(GeoAlgorithm):
 | 
						|
 | 
						|
    INPUT = 'INPUT'
 | 
						|
    METHOD = 'METHOD'
 | 
						|
    NUMBER = 'NUMBER'
 | 
						|
    FIELD = 'FIELD'
 | 
						|
    OUTPUT = 'OUTPUT'
 | 
						|
 | 
						|
    def defineCharacteristics(self):
 | 
						|
        self.name, self.i18n_name = self.trAlgorithm('Random extract within subsets')
 | 
						|
        self.group, self.i18n_group = self.trAlgorithm('Vector selection tools')
 | 
						|
 | 
						|
        self.methods = [self.tr('Number of selected features'),
 | 
						|
                        self.tr('Percentage of selected features')]
 | 
						|
 | 
						|
        self.addParameter(ParameterVector(self.INPUT,
 | 
						|
                                          self.tr('Input layer')))
 | 
						|
        self.addParameter(ParameterTableField(self.FIELD,
 | 
						|
                                              self.tr('ID field'), self.INPUT))
 | 
						|
        self.addParameter(ParameterSelection(self.METHOD,
 | 
						|
                                             self.tr('Method'), self.methods, 0))
 | 
						|
        self.addParameter(ParameterNumber(self.NUMBER,
 | 
						|
                                          self.tr('Number/percentage of selected features'), 1, None, 10))
 | 
						|
 | 
						|
        self.addOutput(OutputVector(self.OUTPUT, self.tr('Extracted (random stratified)')))
 | 
						|
 | 
						|
    def processAlgorithm(self, feedback):
 | 
						|
        filename = self.getParameterValue(self.INPUT)
 | 
						|
 | 
						|
        layer = dataobjects.getObjectFromUri(filename)
 | 
						|
        field = self.getParameterValue(self.FIELD)
 | 
						|
        method = self.getParameterValue(self.METHOD)
 | 
						|
 | 
						|
        index = layer.fields().lookupField(field)
 | 
						|
 | 
						|
        features = vector.features(layer)
 | 
						|
        featureCount = len(features)
 | 
						|
        unique = vector.getUniqueValues(layer, index)
 | 
						|
        value = int(self.getParameterValue(self.NUMBER))
 | 
						|
        if method == 0:
 | 
						|
            if value > featureCount:
 | 
						|
                raise GeoAlgorithmExecutionException(
 | 
						|
                    self.tr('Selected number is greater that feature count. '
 | 
						|
                            'Choose lesser value and try again.'))
 | 
						|
        else:
 | 
						|
            if value > 100:
 | 
						|
                raise GeoAlgorithmExecutionException(
 | 
						|
                    self.tr("Percentage can't be greater than 100. Set "
 | 
						|
                            "correct value and try again."))
 | 
						|
            value = value / 100.0
 | 
						|
 | 
						|
        writer = self.getOutputFromName(self.OUTPUT).getVectorWriter(
 | 
						|
            layer.fields().toList(), layer.wkbType(), layer.crs())
 | 
						|
 | 
						|
        selran = []
 | 
						|
        current = 0
 | 
						|
        total = 100.0 / (featureCount * len(unique))
 | 
						|
        features = vector.features(layer)
 | 
						|
 | 
						|
        if not len(unique) == featureCount:
 | 
						|
            for classValue in unique:
 | 
						|
                classFeatures = []
 | 
						|
                for i, feature in enumerate(features):
 | 
						|
                    attrs = feature.attributes()
 | 
						|
                    if attrs[index] == classValue:
 | 
						|
                        classFeatures.append(i)
 | 
						|
                    current += 1
 | 
						|
                    feedback.setProgress(int(current * total))
 | 
						|
 | 
						|
                if method == 1:
 | 
						|
                    selValue = int(round(value * len(classFeatures), 0))
 | 
						|
                else:
 | 
						|
                    selValue = value
 | 
						|
 | 
						|
                if selValue >= len(classFeatures):
 | 
						|
                    selFeat = classFeatures
 | 
						|
                else:
 | 
						|
                    selFeat = random.sample(classFeatures, selValue)
 | 
						|
 | 
						|
                selran.extend(selFeat)
 | 
						|
        else:
 | 
						|
            selran = list(range(featureCount))
 | 
						|
 | 
						|
        features = vector.features(layer)
 | 
						|
        total = 100.0 / len(features)
 | 
						|
        for (i, feat) in enumerate(features):
 | 
						|
            if i in selran:
 | 
						|
                writer.addFeature(feat)
 | 
						|
            feedback.setProgress(int(i * total))
 | 
						|
        del writer
 |