QGIS/python/plugins/processing/algs/qgis/HypsometricCurves.py
Nyall Dawson 1e13d733c2 Move declaration of algorithm parameters/outputs to a new virtual
initAlgorithm() method

This allows 2 benefits:
- algorithms can be subclassed and have subclasses add additional
parameters/outputs to the algorithm. With the previous approach
of declaring parameters/outputs in the constructor, it's not
possible to call virtual methods to add additional parameters/
outputs (since you can't call virtual methods from a constructor).

- initAlgorithm takes a variant map argument, allowing the algorithm
to dynamically adjust its declared parameters and outputs according
to this configuration map. This potentially allows model algorithms which
can be configured to have variable numbers of parameters and
outputs at run time. E.g. a "router" algorithm which directs
features to one of any number of output sinks depending on some
user configured criteria.
2017-07-10 16:31:14 +10:00

227 lines
8.4 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
HypsometricCurves.py
---------------------
Date : November 2014
Copyright : (C) 2014 by Alexander Bruy
Email : alexander dot bruy at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from builtins import str
__author__ = 'Alexander Bruy'
__date__ = 'November 2014'
__copyright__ = '(C) 2014, Alexander Bruy'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
import numpy
from osgeo import gdal, ogr, osr
from qgis.core import (QgsRectangle,
QgsFeatureSink,
QgsGeometry,
QgsApplication,
QgsProcessingUtils)
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
from processing.core.parameters import ParameterRaster
from processing.core.parameters import ParameterVector
from processing.core.parameters import ParameterNumber
from processing.core.parameters import ParameterBoolean
from processing.core.outputs import OutputDirectory
from processing.tools import raster, vector, dataobjects
class HypsometricCurves(QgisAlgorithm):
INPUT_DEM = 'INPUT_DEM'
BOUNDARY_LAYER = 'BOUNDARY_LAYER'
STEP = 'STEP'
USE_PERCENTAGE = 'USE_PERCENTAGE'
OUTPUT_DIRECTORY = 'OUTPUT_DIRECTORY'
def group(self):
return self.tr('Raster tools')
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.addParameter(ParameterRaster(self.INPUT_DEM,
self.tr('DEM to analyze')))
self.addParameter(ParameterVector(self.BOUNDARY_LAYER,
self.tr('Boundary layer'), dataobjects.TYPE_VECTOR_POLYGON))
self.addParameter(ParameterNumber(self.STEP,
self.tr('Step'), 0.0, 999999999.999999, 100.0))
self.addParameter(ParameterBoolean(self.USE_PERCENTAGE,
self.tr('Use % of area instead of absolute value'), False))
self.addOutput(OutputDirectory(self.OUTPUT_DIRECTORY,
self.tr('Hypsometric curves')))
def name(self):
return 'hypsometriccurves'
def displayName(self):
return self.tr('Hypsometric curves')
def processAlgorithm(self, parameters, context, feedback):
rasterPath = self.getParameterValue(self.INPUT_DEM)
layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.BOUNDARY_LAYER), context)
step = self.getParameterValue(self.STEP)
percentage = self.getParameterValue(self.USE_PERCENTAGE)
outputPath = self.getOutputValue(self.OUTPUT_DIRECTORY)
rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
geoTransform = rasterDS.GetGeoTransform()
rasterBand = rasterDS.GetRasterBand(1)
noData = rasterBand.GetNoDataValue()
cellXSize = abs(geoTransform[1])
cellYSize = abs(geoTransform[5])
rasterXSize = rasterDS.RasterXSize
rasterYSize = rasterDS.RasterYSize
rasterBBox = QgsRectangle(geoTransform[0],
geoTransform[3] - cellYSize * rasterYSize,
geoTransform[0] + cellXSize * rasterXSize,
geoTransform[3])
rasterGeom = QgsGeometry.fromRect(rasterBBox)
crs = osr.SpatialReference()
crs.ImportFromProj4(str(layer.crs().toProj4()))
memVectorDriver = ogr.GetDriverByName('Memory')
memRasterDriver = gdal.GetDriverByName('MEM')
features = QgsProcessingUtils.getFeatures(layer, context)
total = 100.0 / layer.featureCount() if layer.featureCount() else 0
for current, f in enumerate(features):
geom = f.geometry()
intersectedGeom = rasterGeom.intersection(geom)
if intersectedGeom.isEmpty():
feedback.pushInfo(
self.tr('Feature {0} does not intersect raster or '
'entirely located in NODATA area').format(f.id()))
continue
fName = os.path.join(
outputPath, 'hystogram_%s_%s.csv' % (layer.name(), f.id()))
ogrGeom = ogr.CreateGeometryFromWkt(intersectedGeom.exportToWkt())
bbox = intersectedGeom.boundingBox()
xMin = bbox.xMinimum()
xMax = bbox.xMaximum()
yMin = bbox.yMinimum()
yMax = bbox.yMaximum()
(startColumn, startRow) = raster.mapToPixel(xMin, yMax, geoTransform)
(endColumn, endRow) = raster.mapToPixel(xMax, yMin, geoTransform)
width = endColumn - startColumn
height = endRow - startRow
srcOffset = (startColumn, startRow, width, height)
srcArray = rasterBand.ReadAsArray(*srcOffset)
if srcOffset[2] == 0 or srcOffset[3] == 0:
feedback.pushInfo(
self.tr('Feature {0} is smaller than raster '
'cell size').format(f.id()))
continue
newGeoTransform = (
geoTransform[0] + srcOffset[0] * geoTransform[1],
geoTransform[1],
0.0,
geoTransform[3] + srcOffset[1] * geoTransform[5],
0.0,
geoTransform[5]
)
memVDS = memVectorDriver.CreateDataSource('out')
memLayer = memVDS.CreateLayer('poly', crs, ogr.wkbPolygon)
ft = ogr.Feature(memLayer.GetLayerDefn())
ft.SetGeometry(ogrGeom)
memLayer.CreateFeature(ft)
ft.Destroy()
rasterizedDS = memRasterDriver.Create('', srcOffset[2],
srcOffset[3], 1, gdal.GDT_Byte)
rasterizedDS.SetGeoTransform(newGeoTransform)
gdal.RasterizeLayer(rasterizedDS, [1], memLayer, burn_values=[1])
rasterizedArray = rasterizedDS.ReadAsArray()
srcArray = numpy.nan_to_num(srcArray)
masked = numpy.ma.MaskedArray(srcArray,
mask=numpy.logical_or(srcArray == noData,
numpy.logical_not(rasterizedArray)))
self.calculateHypsometry(f.id(), fName, feedback, masked,
cellXSize, cellYSize, percentage, step)
memVDS = None
rasterizedDS = None
feedback.setProgress(int(current * total))
rasterDS = None
def calculateHypsometry(self, fid, fName, feedback, data, pX, pY,
percentage, step):
out = dict()
d = data.compressed()
if d.size == 0:
feedback.pushInfo(
self.tr('Feature {0} does not intersect raster or '
'entirely located in NODATA area').format(fid))
return
minValue = d.min()
maxValue = d.max()
startValue = minValue
tmpValue = minValue + step
while startValue < maxValue:
out[tmpValue] = ((startValue <= d) & (d < tmpValue)).sum()
startValue = tmpValue
tmpValue += step
if percentage:
multiplier = 100.0 / len(d.flat)
else:
multiplier = pX * pY
for k, v in list(out.items()):
out[k] = v * multiplier
prev = None
for i in sorted(out.items()):
if prev is None:
out[i[0]] = i[1]
else:
out[i[0]] = i[1] + out[prev]
prev = i[0]
writer = vector.TableWriter(fName, 'utf-8', [self.tr('Area'), self.tr('Elevation')])
for i in sorted(out.items()):
writer.addRecord([i[1], i[0]])
del writer