QGIS/python/core/processing/qgsprocessingalgorithm.sip.in
Nyall Dawson 43cd62b62f [processing] Tweak api for QgsProcessingFeatureBasedAlgorithm
Instead of returning a single QgsFeature from processFeature, we now
return a list of features.

This allows feature based algorithms which return multiple features
per input feature, e.g. "explode" type algorithms which split a
single input feature into multiple output features.
2018-02-21 09:16:43 +11:00

904 lines
37 KiB
Plaintext

/************************************************************************
* This file has been generated automatically from *
* *
* src/core/processing/qgsprocessingalgorithm.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/
%ModuleHeaderCode
#include <qgsprocessingmodelalgorithm.h>
%End
class QgsProcessingAlgorithm
{
%Docstring
Abstract base class for processing algorithms.
.. versionadded:: 3.0
%End
%TypeHeaderCode
#include "qgsprocessingalgorithm.h"
%End
%ConvertToSubClassCode
if ( dynamic_cast< QgsProcessingModelAlgorithm * >( sipCpp ) != NULL )
sipType = sipType_QgsProcessingModelAlgorithm;
else if ( dynamic_cast< QgsProcessingFeatureBasedAlgorithm * >( sipCpp ) != NULL )
sipType = sipType_QgsProcessingFeatureBasedAlgorithm;
else
sipType = sipType_QgsProcessingAlgorithm;
%End
public:
enum Flag
{
FlagHideFromToolbox,
FlagHideFromModeler,
FlagSupportsBatch,
FlagCanCancel,
FlagRequiresMatchingCrs,
FlagNoThreading,
FlagDeprecated,
};
typedef QFlags<QgsProcessingAlgorithm::Flag> Flags;
QgsProcessingAlgorithm();
%Docstring
Constructor for QgsProcessingAlgorithm.
initAlgorithm() should be called after creating an algorithm to ensure it can correctly configure
its parameterDefinitions() and outputDefinitions(). Alternatively, calling create() will return
a pre-initialized copy of the algorithm.
%End
virtual ~QgsProcessingAlgorithm();
QgsProcessingAlgorithm *create( const QVariantMap &configuration = QVariantMap() ) const /TransferBack/;
%Docstring
Creates a copy of the algorithm, ready for execution.
This method returns a new, preinitialized copy of the algorithm, ready for
executing.
The ``configuration`` argument allows passing of a map of configuration settings
to the algorithm, allowing it to dynamically adjust its initialized parameters
and outputs according to this configuration. This is generally used only for
algorithms in a model, allowing them to adjust their behavior at run time
according to some user configuration.
.. seealso:: :py:func:`initAlgorithm`
%End
virtual QString name() const = 0;
%Docstring
Returns the algorithm name, used for identifying the algorithm. This string
should be fixed for the algorithm, and must not be localised. The name should
be unique within each provider. Names should contain lowercase alphanumeric characters
only and no spaces or other formatting characters.
.. seealso:: :py:func:`displayName`
.. seealso:: :py:func:`group`
.. seealso:: :py:func:`tags`
%End
QString id() const;
%Docstring
Returns the unique ID for the algorithm, which is a combination of the algorithm
provider's ID and the algorithms unique name (e.g. "qgis:mergelayers" ).
.. seealso:: :py:func:`name`
.. seealso:: :py:func:`provider`
%End
virtual QString displayName() const = 0;
%Docstring
Returns the translated algorithm name, which should be used for any user-visible display
of the algorithm name.
.. seealso:: :py:func:`name`
%End
virtual QStringList tags() const;
%Docstring
Returns a list of tags which relate to the algorithm, and are used to assist users in searching
for suitable algorithms. These tags should be localised.
%End
virtual QString shortHelpString() const;
%Docstring
Returns a localised short helper string for the algorithm. This string should provide a basic description
about what the algorithm does and the parameters and outputs associated with it.
.. seealso:: :py:func:`helpString`
.. seealso:: :py:func:`helpUrl`
%End
virtual QString helpString() const;
%Docstring
Returns a localised help string for the algorithm. Algorithm subclasses should implement either
helpString() or helpUrl().
.. seealso:: :py:func:`helpUrl`
.. seealso:: :py:func:`shortHelpString`
%End
virtual QString helpUrl() const;
%Docstring
Returns a url pointing to the algorithm's help page.
.. seealso:: :py:func:`helpString`
.. seealso:: :py:func:`shortHelpString`
%End
virtual QIcon icon() const;
%Docstring
Returns an icon for the algorithm.
.. seealso:: :py:func:`svgIconPath`
%End
virtual QString svgIconPath() const;
%Docstring
Returns a path to an SVG version of the algorithm's icon.
.. seealso:: :py:func:`icon`
%End
virtual QString group() const;
%Docstring
Returns the name of the group this algorithm belongs to. This string
should be localised.
.. seealso:: :py:func:`groupId`
.. seealso:: :py:func:`tags`
%End
virtual QString groupId() const;
%Docstring
Returns the unique ID of the group this algorithm belongs to. This string
should be fixed for the algorithm, and must not be localised. The group id
should be unique within each provider. Group id should contain lowercase
alphanumeric characters only and no spaces or other formatting characters.
.. seealso:: :py:func:`group`
%End
virtual Flags flags() const;
%Docstring
Returns the flags indicating how and when the algorithm operates and should be exposed to users.
Default flags are FlagSupportsBatch and FlagCanCancel.
%End
virtual bool canExecute( QString *errorMessage /Out/ = 0 ) const;
%Docstring
Returns true if the algorithm can execute. Algorithm subclasses can return false
here to indicate that they are not able to execute, e.g. as a result of unmet
external dependencies. If specified, the ``errorMessage`` argument will be filled
with a localised error message describing why the algorithm cannot execute.
%End
virtual bool checkParameterValues( const QVariantMap &parameters,
QgsProcessingContext &context, QString *message /Out/ = 0 ) const;
%Docstring
Checks the supplied ``parameter`` values to verify that they satisfy the requirements
of this algorithm in the supplied ``context``. The ``message`` parameter will be
filled with explanatory text if validation fails.
Overridden implementations should also check this base class implementation.
:return: true if parameters are acceptable for the algorithm.
%End
QgsProcessingProvider *provider() const;
%Docstring
Returns the provider to which this algorithm belongs.
%End
QgsProcessingParameterDefinitions parameterDefinitions() const;
%Docstring
Returns an ordered list of parameter definitions utilized by the algorithm.
.. seealso:: :py:func:`addParameter`
.. seealso:: :py:func:`parameterDefinition`
.. seealso:: :py:func:`destinationParameterDefinitions`
%End
const QgsProcessingParameterDefinition *parameterDefinition( const QString &name ) const;
%Docstring
Returns a matching parameter by ``name``. Matching is done in a case-insensitive
manner, but exact case matches will be preferred.
.. seealso:: :py:func:`parameterDefinitions`
%End
int countVisibleParameters() const;
%Docstring
Returns the number of visible (non-hidden) parameters defined by this
algorithm.
%End
QgsProcessingParameterDefinitions destinationParameterDefinitions() const;
%Docstring
Returns a list of destination parameters definitions utilized by the algorithm.
.. seealso:: :py:func:`QgsProcessingParameterDefinition.isDestination`
.. seealso:: :py:func:`parameterDefinitions`
%End
QgsProcessingOutputDefinitions outputDefinitions() const;
%Docstring
Returns an ordered list of output definitions utilized by the algorithm.
.. seealso:: :py:func:`addOutput`
.. seealso:: :py:func:`outputDefinition`
%End
const QgsProcessingOutputDefinition *outputDefinition( const QString &name ) const;
%Docstring
Returns a matching output by ``name``. Matching is done in a case-insensitive
manner.
.. seealso:: :py:func:`outputDefinitions`
%End
bool hasHtmlOutputs() const;
%Docstring
Returns true if this algorithm generates HTML outputs.
%End
QVariantMap run( const QVariantMap &parameters,
QgsProcessingContext &context, QgsProcessingFeedback *feedback, bool *ok /Out/ = 0 ) const;
%Docstring
Executes the algorithm using the specified ``parameters``. This method internally
creates a copy of the algorithm before running it, so it is safe to call
on algorithms directly retrieved from QgsProcessingRegistry and :py:class:`QgsProcessingProvider`.
The ``context`` argument specifies the context in which the algorithm is being run.
Algorithm progress should be reported using the supplied ``feedback`` object.
If specified, ``ok`` will be set to true if algorithm was successfully run.
:return: A map of algorithm outputs. These may be output layer references, or calculated
values such as statistical calculations.
.. note::
this method can only be called from the main thread. Use prepare(), runPrepared() and postProcess()
if you need to run algorithms from a background thread, or use the QgsProcessingAlgRunnerTask class.
%End
bool prepare( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback );
%Docstring
Prepares the algorithm for execution. This must be run in the main thread, and allows the algorithm
to pre-evaluate input parameters in a thread-safe manner. This must be called before
calling runPrepared() (which is safe to do in any thread).
.. seealso:: :py:func:`runPrepared`
.. seealso:: :py:func:`postProcess`
.. note::
This method modifies the algorithm instance, so it is not safe to call
on algorithms directly retrieved from QgsProcessingRegistry and :py:class:`QgsProcessingProvider`. Instead, a copy
of the algorithm should be created with clone() and prepare()/runPrepared() called on the copy.
%End
QVariantMap runPrepared( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback );
%Docstring
Runs the algorithm, which has been prepared by an earlier call to prepare().
This method is safe to call from any thread. Returns true if the algorithm was successfully executed.
After runPrepared() has finished, the postProcess() method should be called from the main thread
to allow the algorithm to perform any required cleanup tasks and return its final result.
.. seealso:: :py:func:`prepare`
.. seealso:: :py:func:`postProcess`
.. note::
This method modifies the algorithm instance, so it is not safe to call
on algorithms directly retrieved from QgsProcessingRegistry and :py:class:`QgsProcessingProvider`. Instead, a copy
of the algorithm should be created with clone() and prepare()/runPrepared() called on the copy.
%End
QVariantMap postProcess( QgsProcessingContext &context, QgsProcessingFeedback *feedback );
%Docstring
Should be called in the main thread following the completion of runPrepared(). This method
allows the algorithm to perform any required cleanup tasks. The returned variant map
includes the results evaluated by the algorithm.
.. note::
This method modifies the algorithm instance, so it is not safe to call
on algorithms directly retrieved from QgsProcessingRegistry and :py:class:`QgsProcessingProvider`. Instead, a copy
of the algorithm should be created with clone() and prepare()/runPrepared() called on the copy.
%End
virtual QWidget *createCustomParametersWidget( QWidget *parent = 0 ) const /Factory/;
%Docstring
If an algorithm subclass implements a custom parameters widget, a copy of this widget
should be constructed and returned by this method.
The base class implementation returns None, which indicates that an autogenerated
parameters widget should be used.
%End
QgsExpressionContext createExpressionContext( const QVariantMap &parameters,
QgsProcessingContext &context, QgsProcessingFeatureSource *source = 0 ) const;
%Docstring
Creates an expression context relating to the algorithm. This can be called by algorithms
to create a new expression context ready for evaluating expressions within the algorithm.
Optionally, a ``source`` can be specified which will be used to populate the context if it
implements the QgsExpressionContextGenerator interface.
%End
virtual bool validateInputCrs( const QVariantMap &parameters,
QgsProcessingContext &context ) const;
%Docstring
Checks whether the coordinate reference systems for the specified set of ``parameters``
are valid for the algorithm. For instance, the base implementation performs
checks to ensure that all input CRS are equal
Returns true if ``parameters`` have passed the CRS check.
%End
virtual QString asPythonCommand( const QVariantMap &parameters, QgsProcessingContext &context ) const;
%Docstring
Returns a Python command string which can be executed to run the algorithm
using the specified ``parameters``.
Algorithms which cannot be run from a Python command should return an empty
string.
%End
void setProvider( QgsProcessingProvider *provider );
%Docstring
Associates this algorithm with its provider. No transfer of ownership is involved.
%End
protected:
virtual QgsProcessingAlgorithm *createInstance() const = 0 /Factory/;
%Docstring
Creates a new instance of the algorithm class.
This method should return a 'pristine' instance of the algorithm class.
%End
virtual void initAlgorithm( const QVariantMap &configuration = QVariantMap() ) = 0;
%Docstring
Initializes the algorithm using the specified ``configuration``.
This should be called directly after creating algorithms and before retrieving
any parameterDefinitions() or outputDefinitions().
Subclasses should use their implementations to add all required input parameter and output
definitions (which can be dynamically adjusted according to ``configuration``).
Dynamic configuration can be used by algorithms which alter their behavior
when used inside processing models. For instance, a "feature router" type
algorithm which sends input features to one of any number of outputs sinks
based on some preconfigured filter parameters can use the init method to
create these outputs based on the specified ``configuration``.
.. seealso:: :py:func:`addParameter`
.. seealso:: :py:func:`addOutput`
%End
bool addParameter( QgsProcessingParameterDefinition *parameterDefinition /Transfer/, bool createOutput = true );
%Docstring
Adds a parameter ``definition`` to the algorithm. Ownership of the definition is transferred to the algorithm.
Returns true if parameter could be successfully added, or false if the parameter could not be added (e.g.
as a result of a duplicate name).
This should usually be called from a subclass' initAlgorithm() implementation.
If the ``createOutput`` argument is true, then a corresponding output definition will also be created
(and added to the algorithm) where appropriate. E.g. when adding a :py:class:`QgsProcessingParameterVectorDestination`
and ``createOutput`` is true, then a QgsProcessingOutputVectorLayer output will be created and
added to the algorithm. There is no need to call addOutput() to manually add a corresponding output
for this vector. If ``createOutput`` is false then this automatic output creation will not
occur.
.. seealso:: :py:func:`initAlgorithm`
.. seealso:: :py:func:`addOutput`
%End
void removeParameter( const QString &name );
%Docstring
Removes the parameter with matching ``name`` from the algorithm, and deletes any existing
definition.
%End
bool addOutput( QgsProcessingOutputDefinition *outputDefinition /Transfer/ );
%Docstring
Adds an output ``definition`` to the algorithm. Ownership of the definition is transferred to the algorithm.
Returns true if the output could be successfully added, or false if the output could not be added (e.g.
as a result of a duplicate name).
This should usually be called from a subclass' initAlgorithm() implementation.
Note that in some cases output creation can be automatically performed when calling addParameter().
See the notes in addParameter() for a description of when this occurs.
.. seealso:: :py:func:`addParameter`
.. seealso:: :py:func:`initAlgorithm`
%End
virtual bool prepareAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback ) /VirtualErrorHandler=processing_exception_handler/;
%Docstring
Prepares the algorithm to run using the specified ``parameters``. Algorithms should implement
their logic for evaluating parameter values here. The evaluated parameter results should
be stored in member variables ready for a call to processAlgorithm().
The ``context`` argument specifies the context in which the algorithm is being run.
prepareAlgorithm should be used to handle any thread-sensitive preparation which is required
by the algorithm. It will always be called from the same thread that ``context`` has thread
affinity with. While this will generally be the main thread, it is not guaranteed. For instance,
algorithms which are run as a step in a larger model or as a subcomponent of a script-based algorithm
will call prepareAlgorithm from the same thread as that model/script it being executed in.
Note that the processAlgorithm step uses a temporary context with affinity for the thread in
which the algorithm is executed, making it safe for processAlgorithm implementations to load
sources and sinks without issue. Implementing prepareAlgorithm is only required if special
thread safe handling is required by the algorithm.
Algorithm preparation progress should be reported using the supplied ``feedback`` object. Additionally,
well-behaved algorithms should periodically check ``feedback`` to determine whether the
algorithm should be canceled and exited early.
If the preparation was successful algorithms must return true. If a false value is returned
this indicates that the preparation could not be completed, and the algorithm execution
will be canceled.
:return: true if preparation was successful.
.. seealso:: :py:func:`processAlgorithm`
.. seealso:: :py:func:`postProcessAlgorithm`
%End
virtual QVariantMap processAlgorithm( const QVariantMap &parameters, QgsProcessingContext &context, QgsProcessingFeedback *feedback ) = 0 /VirtualErrorHandler=processing_exception_handler/;
%Docstring
Runs the algorithm using the specified ``parameters``. Algorithms should implement
their custom processing logic here.
The ``context`` argument gives a temporary context with thread affinity matching the thread
in which the algorithm is being run. This is a cut-back copy of the context passed to
the prepareAlgorithm() and postProcessAlgorithm() steps, but it is generally safe
for most algorithms to utilize this context for loading layers and creating sinks.
Any loaded layers or sinks created within this temporary context will be transferred
back to the main execution context upon successful completion of the processAlgorithm()
step.
Algorithm progress should be reported using the supplied ``feedback`` object. Additionally,
well-behaved algorithms should periodically check ``feedback`` to determine whether the
algorithm should be canceled and exited early.
This method will not be called if the prepareAlgorithm() step failed (returned false).
c++ implementations of processAlgorithm can throw the QgsProcessingException exception
to indicate that a fatal error occurred within the execution. Python based subclasses
should raise GeoAlgorithmExecutionException for the same purpose.
:return: A map of algorithm outputs. These may be output layer references, or calculated
values such as statistical calculations. Unless the algorithm subclass overrides
the postProcessAlgorithm() step this returned map will be used as the output for the
algorithm.
.. seealso:: :py:func:`prepareAlgorithm`
.. seealso:: :py:func:`postProcessAlgorithm`
%End
virtual QVariantMap postProcessAlgorithm( QgsProcessingContext &context, QgsProcessingFeedback *feedback ) /VirtualErrorHandler=processing_exception_handler/;
%Docstring
Allows the algorithm to perform any required cleanup tasks. The returned variant map
includes the results evaluated by the algorithm. These may be output layer references, or calculated
values such as statistical calculations.
The ``context`` argument specifies the context in which the algorithm was run.
Postprocess progress should be reported using the supplied ``feedback`` object. Additionally,
well-behaved algorithms should periodically check ``feedback`` to determine whether the
post processing should be canceled and exited early.
postProcessAlgorithm should be used to handle any thread-sensitive cleanup which is required
by the algorithm. It will always be called from the same thread that ``context`` has thread
affinity with. While this will generally be the main thread, it is not guaranteed. For instance,
algorithms which are run as a step in a larger model or as a subcomponent of a script-based algorithm
will call postProcessAlgorithm from the same thread as that model/script it being executed in.
postProcessAlgorithm will not be called if the prepareAlgorithm() step failed (returned false),
or if an exception was raised by the processAlgorithm() step.
:return: A map of algorithm outputs. These may be output layer references, or calculated
values such as statistical calculations. Implementations which return a non-empty
map will override any results returned by processAlgorithm().
.. seealso:: :py:func:`prepareAlgorithm`
.. seealso:: :py:func:`processAlgorithm`
%End
QString parameterAsString( const QVariantMap &parameters, const QString &name, const QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a static string value.
%End
QString parameterAsExpression( const QVariantMap &parameters, const QString &name, const QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to an expression.
%End
double parameterAsDouble( const QVariantMap &parameters, const QString &name, const QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a static double value.
%End
int parameterAsInt( const QVariantMap &parameters, const QString &name, const QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a static integer value.
%End
int parameterAsEnum( const QVariantMap &parameters, const QString &name, const QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a enum value.
%End
QList<int> parameterAsEnums( const QVariantMap &parameters, const QString &name, const QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to list of enum values.
%End
bool parameterAsBool( const QVariantMap &parameters, const QString &name, const QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a static boolean value.
%End
QgsFeatureSink *parameterAsSink( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context, QString &destinationIdentifier /Out/,
const QgsFields &fields, QgsWkbTypes::Type geometryType = QgsWkbTypes::NoGeometry, const QgsCoordinateReferenceSystem &crs = QgsCoordinateReferenceSystem() ) const /Factory/;
%Docstring
Evaluates the parameter with matching ``name`` to a feature sink.
Sinks will either be taken from ``context``'s active project, or created from external
providers and stored temporarily in the ``context``.
The ``fields``, ``geometryType`` and ``crs`` parameters dictate the properties
of the resulting feature sink.
The ``destinationIdentifier`` argument will be set to a string which can be used to retrieve the layer corresponding
to the sink, e.g. via calling :py:func:`QgsProcessingUtils.mapLayerFromString()`
This function creates a new object and the caller takes responsibility for deleting the returned object.
%End
QgsProcessingFeatureSource *parameterAsSource( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const /Factory/;
%Docstring
Evaluates the parameter with matching ``name`` to a feature source.
Sources will either be taken from ``context``'s active project, or loaded from external
sources and stored temporarily in the ``context``.
This function creates a new object and the caller takes responsibility for deleting the returned object.
%End
QString parameterAsCompatibleSourceLayerPath( const QVariantMap &parameters, const QString &name,
QgsProcessingContext &context, const QStringList &compatibleFormats, const QString &preferredFormat = QString( "shp" ), QgsProcessingFeedback *feedback = 0 );
%Docstring
Evaluates the parameter with matching ``name`` to a source vector layer file path of compatible format.
If the parameter is evaluated to an existing layer, and that layer is not of the format listed in the
``compatibleFormats`` argument, then the layer will first be exported to a compatible format
in a temporary location. The function will then return the path to that temporary file.
``compatibleFormats`` should consist entirely of lowercase file extensions, e.g. 'shp'.
The ``preferredFormat`` argument is used to specify to desired file extension to use when a temporary
layer export is required.
%End
QgsMapLayer *parameterAsLayer( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a map layer.
Layers will either be taken from ``context``'s active project, or loaded from external
sources and stored temporarily in the ``context``. In either case, callers do not
need to handle deletion of the returned layer.
%End
QgsRasterLayer *parameterAsRasterLayer( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a raster layer.
Layers will either be taken from ``context``'s active project, or loaded from external
sources and stored temporarily in the ``context``. In either case, callers do not
need to handle deletion of the returned layer.
%End
QString parameterAsOutputLayer( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a output layer destination.
%End
QString parameterAsFileOutput( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a file based output destination.
%End
QgsVectorLayer *parameterAsVectorLayer( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a vector layer.
Layers will either be taken from ``context``'s active project, or loaded from external
sources and stored temporarily in the ``context``. In either case, callers do not
need to handle deletion of the returned layer.
%End
QgsCoordinateReferenceSystem parameterAsCrs( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a coordinate reference system.
%End
QgsRectangle parameterAsExtent( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context,
const QgsCoordinateReferenceSystem &crs = QgsCoordinateReferenceSystem() ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a rectangular extent.
If ``crs`` is set, and the original coordinate reference system of the parameter can be determined, then the extent will be automatically
reprojected so that it is in the specified ``crs``. In this case the extent of the reproject rectangle will be returned.
.. seealso:: :py:func:`parameterAsExtentGeometry`
%End
QgsGeometry parameterAsExtentGeometry( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context,
const QgsCoordinateReferenceSystem &crs = QgsCoordinateReferenceSystem() );
%Docstring
Evaluates the parameter with matching ``name`` to a rectangular extent, and returns a geometry covering this extent.
If ``crs`` is set, and the original coordinate reference system of the parameter can be determined, then the extent will be automatically
reprojected so that it is in the specified ``crs``. Unlike parameterAsExtent(), the reprojected rectangle returned by this function
will no longer be a rectangle itself (i.e. this method returns the geometry of the actual reprojected rectangle, while parameterAsExtent() returns
just the extent of the reprojected rectangle).
.. seealso:: :py:func:`parameterAsExtent`
%End
QgsCoordinateReferenceSystem parameterAsExtentCrs( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context );
%Docstring
Returns the coordinate reference system associated with an extent parameter value.
.. seealso:: :py:func:`parameterAsExtent`
%End
QgsPointXY parameterAsPoint( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context,
const QgsCoordinateReferenceSystem &crs = QgsCoordinateReferenceSystem() ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a point.
If ``crs`` is set then the point will be automatically
reprojected so that it is in the specified ``crs``.
.. seealso:: :py:func:`parameterAsPointCrs`
%End
QgsCoordinateReferenceSystem parameterAsPointCrs( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context );
%Docstring
Returns the coordinate reference system associated with an point parameter value.
.. seealso:: :py:func:`parameterAsPoint`
%End
QString parameterAsFile( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a file/folder name.
%End
QVariantList parameterAsMatrix( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a matrix/table of values.
Tables are collapsed to a 1 dimensional list.
%End
QList< QgsMapLayer *> parameterAsLayerList( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a list of map layers.
%End
QList<double> parameterAsRange( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a range of values.
%End
QStringList parameterAsFields( const QVariantMap &parameters, const QString &name, QgsProcessingContext &context ) const;
%Docstring
Evaluates the parameter with matching ``name`` to a list of fields.
%End
private:
QgsProcessingAlgorithm( const QgsProcessingAlgorithm &other );
};
QFlags<QgsProcessingAlgorithm::Flag> operator|(QgsProcessingAlgorithm::Flag f1, QFlags<QgsProcessingAlgorithm::Flag> f2);
class QgsProcessingFeatureBasedAlgorithm : QgsProcessingAlgorithm
{
%Docstring
An abstract QgsProcessingAlgorithm base class for processing algorithms which operate "feature-by-feature".
Feature based algorithms are algorithms which operate on individual features in isolation. These
are algorithms where one feature is output for each input feature, and the output feature result
for each input feature is not dependent on any other features present in the source.
For instance, algorithms like "centroids" and "buffers" are feature based algorithms since the centroid
or buffer of a feature is calculated for each feature in isolation. An algorithm like "dissolve"
is NOT suitable for a feature based algorithm as the dissolved output depends on multiple input features
and these features cannot be processed in isolation.
Using QgsProcessingFeatureBasedAlgorithm as the base class for feature based algorithms allows
shortcutting much of the common algorithm code for handling iterating over sources and pushing
features to output sinks. It also allows the algorithm execution to be optimised in future
(for instance allowing automatic multi-thread processing of the algorithm, or use of the
algorithm in "chains", avoiding the need for temporary outputs in multi-step models).
.. versionadded:: 3.0
%End
%TypeHeaderCode
#include "qgsprocessingalgorithm.h"
%End
public:
QgsProcessingFeatureBasedAlgorithm();
%Docstring
Constructor for QgsProcessingFeatureBasedAlgorithm.
%End
protected:
virtual void initAlgorithm( const QVariantMap &configuration = QVariantMap() );
virtual QString outputName() const = 0;
%Docstring
Returns the translated, user visible name for any layers created by this algorithm.
This name will be used as the default name when loading the resultant layer into a
QGIS project.
%End
virtual QList<int> inputLayerTypes() const;
%Docstring
Returns the valid input layer types for the source layer for this algorithm.
By default vector layers with any geometry types (excluding non-spatial, geometryless layers)
are accepted.
%End
virtual QgsProcessing::SourceType outputLayerType() const;
%Docstring
Returns the layer type for layers generated by this algorithm, if
this is possible to determine in advance.
%End
virtual QgsProcessingFeatureSource::Flag sourceFlags() const;
%Docstring
Returns the processing feature source flags to be used in the algorithm.
%End
virtual QgsWkbTypes::Type outputWkbType( QgsWkbTypes::Type inputWkbType ) const;
%Docstring
Maps the input WKB geometry type (``inputWkbType``) to the corresponding
output WKB type generated by the algorithm. The default behavior is that the algorithm maintains
the same WKB type.
This is called once by the base class when creating the output sink for the algorithm (i.e. it is
not called once per feature processed).
%End
virtual QgsFields outputFields( const QgsFields &inputFields ) const;
%Docstring
Maps the input source fields (``inputFields``) to corresponding
output fields generated by the algorithm. The default behavior is that the algorithm maintains
the same fields as are input.
Algorithms which add, remove or modify existing fields should override this method and
implement logic here to indicate which fields are output by the algorithm.
This is called once by the base class when creating the output sink for the algorithm (i.e. it is
not called once per feature processed).
%End
virtual QgsCoordinateReferenceSystem outputCrs( const QgsCoordinateReferenceSystem &inputCrs ) const;
%Docstring
Maps the input source coordinate reference system (``inputCrs``) to a corresponding
output CRS generated by the algorithm. The default behavior is that the algorithm maintains
the same CRS as the input source.
This is called once by the base class when creating the output sink for the algorithm (i.e. it is
not called once per feature processed).
%End
virtual void initParameters( const QVariantMap &configuration = QVariantMap() );
%Docstring
Initializes any extra parameters added by the algorithm subclass. There is no need
to declare the input source or output sink, as these are automatically created by
QgsProcessingFeatureBasedAlgorithm.
%End
QgsCoordinateReferenceSystem sourceCrs() const;
%Docstring
Returns the source's coordinate reference system. This will only return a valid CRS when
called from a subclasses' processFeature() implementation.
%End
virtual QgsFeatureList processFeature( const QgsFeature &feature, QgsProcessingContext &context, QgsProcessingFeedback *feedback ) = 0;
%Docstring
Processes an individual input ``feature`` from the source. Algorithms should implement their
logic in this method for performing the algorithm's operation (e.g. replacing the feature's
geometry with the centroid of the original feature geometry for a 'centroid' type
algorithm).
Implementations should return a list containing the modified feature. Returning an empty an list
will indicate that this feature should be 'skipped', and will not be added to the algorithm's output.
Subclasses can use this approach to filter the incoming features as desired.
Additionally, multiple features can be returned for a single input feature. Each returned feature
will be added to the algorithm's output. This allows for "explode" type algorithms where a single
input feature results in multiple output features.
The provided ``feedback`` object can be used to push messages to the log and for giving feedback
to users. Note that handling of progress reports and algorithm cancelation is handled by
the base class and subclasses do not need to reimplement this logic.
Algorithms can throw a QgsProcessingException if a fatal error occurred which should
prevent the algorithm execution from continuing. This can be annoying for users though as it
can break valid model execution - so use with extreme caution, and consider using
``feedback`` to instead report non-fatal processing failures for features instead.
%End
virtual QVariantMap processAlgorithm( const QVariantMap &parameters,
QgsProcessingContext &context, QgsProcessingFeedback *feedback );
virtual QgsFeatureRequest request() const;
%Docstring
Returns the feature request used for fetching features to process from the
source layer. The default implementation requests all attributes and geometry.
%End
};
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/processing/qgsprocessingalgorithm.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/