Nyall Dawson 1e13d733c2 Move declaration of algorithm parameters/outputs to a new virtual
initAlgorithm() method

This allows 2 benefits:
- algorithms can be subclassed and have subclasses add additional
parameters/outputs to the algorithm. With the previous approach
of declaring parameters/outputs in the constructor, it's not
possible to call virtual methods to add additional parameters/
outputs (since you can't call virtual methods from a constructor).

- initAlgorithm takes a variant map argument, allowing the algorithm
to dynamically adjust its declared parameters and outputs according
to this configuration map. This potentially allows model algorithms which
can be configured to have variable numbers of parameters and
outputs at run time. E.g. a "router" algorithm which directs
features to one of any number of output sinks depending on some
user configured criteria.
2017-07-10 16:31:14 +10:00

108 lines
3.8 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
BarPlot.py
---------------------
Date : March 2015
Copyright : (C) 2017 by Matteo Ghetta
Email : matteo dot ghetta at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Matteo Ghetta'
__date__ = 'March 2017'
__copyright__ = '(C) 2017, Matteo Ghetta'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import plotly as plt
import plotly.graph_objs as go
from qgis.core import (QgsApplication,
QgsFeatureSink,
QgsProcessingUtils)
from processing.core.parameters import ParameterTable
from processing.core.parameters import ParameterTableField
from processing.core.parameters import ParameterSelection
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
from processing.core.outputs import OutputHTML
from processing.tools import vector
class BoxPlot(QgisAlgorithm):
INPUT = 'INPUT'
OUTPUT = 'OUTPUT'
NAME_FIELD = 'NAME_FIELD'
VALUE_FIELD = 'VALUE_FIELD'
MSD = 'MSD'
def group(self):
return self.tr('Graphics')
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.addParameter(ParameterTable(self.INPUT, self.tr('Input table')))
self.addParameter(ParameterTableField(self.NAME_FIELD,
self.tr('Category name field'),
self.INPUT,
ParameterTableField.DATA_TYPE_ANY))
self.addParameter(ParameterTableField(self.VALUE_FIELD,
self.tr('Value field'),
self.INPUT,
ParameterTableField.DATA_TYPE_NUMBER))
msd = [self.tr('Show Mean'),
self.tr('Show Standard Deviation'),
self.tr('Don\'t show Mean and Standard Deviation')
]
self.addParameter(ParameterSelection(
self.MSD,
self.tr('Additional Statistic Lines'),
msd, default=0))
self.addOutput(OutputHTML(self.OUTPUT, self.tr('Box plot')))
def name(self):
return 'boxplot'
def displayName(self):
return self.tr('Box plot')
def processAlgorithm(self, parameters, context, feedback):
layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.INPUT), context)
namefieldname = self.getParameterValue(self.NAME_FIELD)
valuefieldname = self.getParameterValue(self.VALUE_FIELD)
output = self.getOutputValue(self.OUTPUT)
values = vector.values(layer, valuefieldname)
x_var = [i[namefieldname] for i in layer.getFeatures()]
msdIndex = self.getParameterValue(self.MSD)
msd = True
if msdIndex == 1:
msd = 'sd'
elif msdIndex == 2:
msd = False
data = [go.Box(
x=x_var,
y=values[valuefieldname],
boxmean=msd)]
plt.offline.plot(data, filename=output, auto_open=False)