mirror of
https://github.com/qgis/QGIS.git
synced 2025-10-06 00:07:29 -04:00
* require qwt >=6.2 (and fallback to internal 6.3 if system's qwt doesn't suffice) * debian doesn't have qwt for Qt6 and won't have it for trixie
418 lines
11 KiB
C++
418 lines
11 KiB
C++
/******************************************************************************
|
|
* Qwt Widget Library
|
|
* Copyright (C) 1997 Josef Wilgen
|
|
* Copyright (C) 2002 Uwe Rathmann
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the Qwt License, Version 1.0
|
|
*****************************************************************************/
|
|
|
|
#include "qwt_matrix_raster_data.h"
|
|
#include "qwt_interval.h"
|
|
|
|
#include <qvector.h>
|
|
#include <qnumeric.h>
|
|
#include <qrect.h>
|
|
|
|
static inline double qwtHermiteInterpolate(
|
|
double A, double B, double C, double D, double t )
|
|
{
|
|
const double t2 = t * t;
|
|
const double t3 = t2 * t;
|
|
|
|
const double a = -A / 2.0 + ( 3.0 * B ) / 2.0 - ( 3.0 * C ) / 2.0 + D / 2.0;
|
|
const double b = A - ( 5.0 * B ) / 2.0 + 2.0 * C - D / 2.0;
|
|
const double c = -A / 2.0 + C / 2.0;
|
|
const double d = B;
|
|
|
|
return a * t3 + b * t2 + c * t + d;
|
|
}
|
|
|
|
static inline double qwtBicubicInterpolate(
|
|
double v00, double v10, double v20, double v30,
|
|
double v01, double v11, double v21, double v31,
|
|
double v02, double v12, double v22, double v32,
|
|
double v03, double v13, double v23, double v33,
|
|
double dx, double dy )
|
|
{
|
|
const double v0 = qwtHermiteInterpolate( v00, v10, v20, v30, dx );
|
|
const double v1 = qwtHermiteInterpolate( v01, v11, v21, v31, dx );
|
|
const double v2 = qwtHermiteInterpolate( v02, v12, v22, v32, dx );
|
|
const double v3 = qwtHermiteInterpolate( v03, v13, v23, v33, dx );
|
|
|
|
return qwtHermiteInterpolate( v0, v1, v2, v3, dy );
|
|
}
|
|
|
|
class QwtMatrixRasterData::PrivateData
|
|
{
|
|
public:
|
|
PrivateData()
|
|
: resampleMode( QwtMatrixRasterData::NearestNeighbour )
|
|
, numColumns(0)
|
|
{
|
|
}
|
|
|
|
inline double value(int row, int col) const
|
|
{
|
|
return values.data()[ row * numColumns + col ];
|
|
}
|
|
|
|
QwtInterval intervals[3];
|
|
QwtMatrixRasterData::ResampleMode resampleMode;
|
|
|
|
QVector< double > values;
|
|
int numColumns;
|
|
int numRows;
|
|
|
|
double dx;
|
|
double dy;
|
|
};
|
|
|
|
//! Constructor
|
|
QwtMatrixRasterData::QwtMatrixRasterData()
|
|
{
|
|
m_data = new PrivateData();
|
|
update();
|
|
}
|
|
|
|
//! Destructor
|
|
QwtMatrixRasterData::~QwtMatrixRasterData()
|
|
{
|
|
delete m_data;
|
|
}
|
|
|
|
/*!
|
|
\brief Set the resampling algorithm
|
|
|
|
\param mode Resampling mode
|
|
\sa resampleMode(), value()
|
|
*/
|
|
void QwtMatrixRasterData::setResampleMode( ResampleMode mode )
|
|
{
|
|
m_data->resampleMode = mode;
|
|
}
|
|
|
|
/*!
|
|
\return resampling algorithm
|
|
\sa setResampleMode(), value()
|
|
*/
|
|
QwtMatrixRasterData::ResampleMode QwtMatrixRasterData::resampleMode() const
|
|
{
|
|
return m_data->resampleMode;
|
|
}
|
|
|
|
/*!
|
|
\brief Assign the bounding interval for an axis
|
|
|
|
Setting the bounding intervals for the X/Y axis is mandatory
|
|
to define the positions for the values of the value matrix.
|
|
The interval in Z direction defines the possible range for
|
|
the values in the matrix, what is f.e used by QwtPlotSpectrogram
|
|
to map values to colors. The Z-interval might be the bounding
|
|
interval of the values in the matrix, but usually it isn't.
|
|
( f.e a interval of 0.0-100.0 for values in percentage )
|
|
|
|
\param axis X, Y or Z axis
|
|
\param interval Interval
|
|
|
|
\sa QwtRasterData::interval(), setValueMatrix()
|
|
*/
|
|
void QwtMatrixRasterData::setInterval(
|
|
Qt::Axis axis, const QwtInterval& interval )
|
|
{
|
|
if ( axis >= 0 && axis <= 2 )
|
|
{
|
|
m_data->intervals[axis] = interval;
|
|
update();
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\return Bounding interval for an axis
|
|
\sa setInterval
|
|
*/
|
|
QwtInterval QwtMatrixRasterData::interval( Qt::Axis axis ) const
|
|
{
|
|
if ( axis >= 0 && axis <= 2 )
|
|
return m_data->intervals[ axis ];
|
|
|
|
return QwtInterval();
|
|
}
|
|
|
|
/*!
|
|
\brief Assign a value matrix
|
|
|
|
The positions of the values are calculated by dividing
|
|
the bounding rectangle of the X/Y intervals into equidistant
|
|
rectangles ( pixels ). Each value corresponds to the center of
|
|
a pixel.
|
|
|
|
\param values Vector of values
|
|
\param numColumns Number of columns
|
|
|
|
\sa valueMatrix(), numColumns(), numRows(), setInterval()()
|
|
*/
|
|
void QwtMatrixRasterData::setValueMatrix(
|
|
const QVector< double >& values, int numColumns )
|
|
{
|
|
m_data->values = values;
|
|
m_data->numColumns = qMax( numColumns, 0 );
|
|
update();
|
|
}
|
|
|
|
/*!
|
|
\return Value matrix
|
|
\sa setValueMatrix(), numColumns(), numRows(), setInterval()
|
|
*/
|
|
const QVector< double > QwtMatrixRasterData::valueMatrix() const
|
|
{
|
|
return m_data->values;
|
|
}
|
|
|
|
/*!
|
|
\brief Change a single value in the matrix
|
|
|
|
\param row Row index
|
|
\param col Column index
|
|
\param value New value
|
|
|
|
\sa value(), setValueMatrix()
|
|
*/
|
|
void QwtMatrixRasterData::setValue( int row, int col, double value )
|
|
{
|
|
if ( row >= 0 && row < m_data->numRows &&
|
|
col >= 0 && col < m_data->numColumns )
|
|
{
|
|
const int index = row * m_data->numColumns + col;
|
|
m_data->values.data()[ index ] = value;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\return Number of columns of the value matrix
|
|
\sa valueMatrix(), numRows(), setValueMatrix()
|
|
*/
|
|
int QwtMatrixRasterData::numColumns() const
|
|
{
|
|
return m_data->numColumns;
|
|
}
|
|
|
|
/*!
|
|
\return Number of rows of the value matrix
|
|
\sa valueMatrix(), numColumns(), setValueMatrix()
|
|
*/
|
|
int QwtMatrixRasterData::numRows() const
|
|
{
|
|
return m_data->numRows;
|
|
}
|
|
|
|
/*!
|
|
\brief Calculate the pixel hint
|
|
|
|
pixelHint() returns the geometry of a pixel, that can be used
|
|
to calculate the resolution and alignment of the plot item, that is
|
|
representing the data.
|
|
|
|
- NearestNeighbour\n
|
|
pixelHint() returns the surrounding pixel of the top left value
|
|
in the matrix.
|
|
|
|
- BilinearInterpolation\n
|
|
Returns an empty rectangle recommending
|
|
to render in target device ( f.e. screen ) resolution.
|
|
|
|
\param area Requested area, ignored
|
|
\return Calculated hint
|
|
|
|
\sa ResampleMode, setMatrix(), setInterval()
|
|
*/
|
|
QRectF QwtMatrixRasterData::pixelHint( const QRectF& area ) const
|
|
{
|
|
Q_UNUSED( area )
|
|
|
|
QRectF rect;
|
|
if ( m_data->resampleMode == NearestNeighbour )
|
|
{
|
|
const QwtInterval intervalX = interval( Qt::XAxis );
|
|
const QwtInterval intervalY = interval( Qt::YAxis );
|
|
if ( intervalX.isValid() && intervalY.isValid() )
|
|
{
|
|
rect = QRectF( intervalX.minValue(), intervalY.minValue(),
|
|
m_data->dx, m_data->dy );
|
|
}
|
|
}
|
|
|
|
return rect;
|
|
}
|
|
|
|
/*!
|
|
\return the value at a raster position
|
|
|
|
\param x X value in plot coordinates
|
|
\param y Y value in plot coordinates
|
|
|
|
\sa ResampleMode
|
|
*/
|
|
double QwtMatrixRasterData::value( double x, double y ) const
|
|
{
|
|
const QwtInterval xInterval = interval( Qt::XAxis );
|
|
const QwtInterval yInterval = interval( Qt::YAxis );
|
|
|
|
if ( !( xInterval.contains(x) && yInterval.contains(y) ) )
|
|
return qQNaN();
|
|
|
|
double value;
|
|
|
|
switch( m_data->resampleMode )
|
|
{
|
|
case BicubicInterpolation:
|
|
{
|
|
const double colF = ( x - xInterval.minValue() ) / m_data->dx;
|
|
const double rowF = ( y - yInterval.minValue() ) / m_data->dy;
|
|
|
|
const int col = qRound( colF );
|
|
const int row = qRound( rowF );
|
|
|
|
int col0 = col - 2;
|
|
int col1 = col - 1;
|
|
int col2 = col;
|
|
int col3 = col + 1;
|
|
|
|
if ( col1 < 0 )
|
|
col1 = col2;
|
|
|
|
if ( col0 < 0 )
|
|
col0 = col1;
|
|
|
|
if ( col2 >= m_data->numColumns )
|
|
col2 = col1;
|
|
|
|
if ( col3 >= m_data->numColumns )
|
|
col3 = col2;
|
|
|
|
int row0 = row - 2;
|
|
int row1 = row - 1;
|
|
int row2 = row;
|
|
int row3 = row + 1;
|
|
|
|
if ( row1 < 0 )
|
|
row1 = row2;
|
|
|
|
if ( row0 < 0 )
|
|
row0 = row1;
|
|
|
|
if ( row2 >= m_data->numRows )
|
|
row2 = row1;
|
|
|
|
if ( row3 >= m_data->numRows )
|
|
row3 = row2;
|
|
|
|
// First row
|
|
const double v00 = m_data->value( row0, col0 );
|
|
const double v10 = m_data->value( row0, col1 );
|
|
const double v20 = m_data->value( row0, col2 );
|
|
const double v30 = m_data->value( row0, col3 );
|
|
|
|
// Second row
|
|
const double v01 = m_data->value( row1, col0 );
|
|
const double v11 = m_data->value( row1, col1 );
|
|
const double v21 = m_data->value( row1, col2 );
|
|
const double v31 = m_data->value( row1, col3 );
|
|
|
|
// Third row
|
|
const double v02 = m_data->value( row2, col0 );
|
|
const double v12 = m_data->value( row2, col1 );
|
|
const double v22 = m_data->value( row2, col2 );
|
|
const double v32 = m_data->value( row2, col3 );
|
|
|
|
// Fourth row
|
|
const double v03 = m_data->value( row3, col0 );
|
|
const double v13 = m_data->value( row3, col1 );
|
|
const double v23 = m_data->value( row3, col2 );
|
|
const double v33 = m_data->value( row3, col3 );
|
|
|
|
value = qwtBicubicInterpolate(
|
|
v00, v10, v20, v30, v01, v11, v21, v31,
|
|
v02, v12, v22, v32, v03, v13, v23, v33,
|
|
colF - col + 0.5, rowF - row + 0.5 );
|
|
|
|
break;
|
|
}
|
|
case BilinearInterpolation:
|
|
{
|
|
int col1 = qRound( ( x - xInterval.minValue() ) / m_data->dx ) - 1;
|
|
int row1 = qRound( ( y - yInterval.minValue() ) / m_data->dy ) - 1;
|
|
int col2 = col1 + 1;
|
|
int row2 = row1 + 1;
|
|
|
|
if ( col1 < 0 )
|
|
col1 = col2;
|
|
else if ( col2 >= m_data->numColumns )
|
|
col2 = col1;
|
|
|
|
if ( row1 < 0 )
|
|
row1 = row2;
|
|
else if ( row2 >= m_data->numRows )
|
|
row2 = row1;
|
|
|
|
const double v11 = m_data->value( row1, col1 );
|
|
const double v21 = m_data->value( row1, col2 );
|
|
const double v12 = m_data->value( row2, col1 );
|
|
const double v22 = m_data->value( row2, col2 );
|
|
|
|
const double x2 = xInterval.minValue() + ( col2 + 0.5 ) * m_data->dx;
|
|
const double y2 = yInterval.minValue() + ( row2 + 0.5 ) * m_data->dy;
|
|
|
|
const double rx = ( x2 - x ) / m_data->dx;
|
|
const double ry = ( y2 - y ) / m_data->dy;
|
|
|
|
const double vr1 = rx * v11 + ( 1.0 - rx ) * v21;
|
|
const double vr2 = rx * v12 + ( 1.0 - rx ) * v22;
|
|
|
|
value = ry * vr1 + ( 1.0 - ry ) * vr2;
|
|
|
|
break;
|
|
}
|
|
case NearestNeighbour:
|
|
default:
|
|
{
|
|
int row = int( ( y - yInterval.minValue() ) / m_data->dy );
|
|
int col = int( ( x - xInterval.minValue() ) / m_data->dx );
|
|
|
|
// In case of intervals, where the maximum is included
|
|
// we get out of bound for row/col, when the value for the
|
|
// maximum is requested. Instead we return the value
|
|
// from the last row/col
|
|
|
|
if ( row >= m_data->numRows )
|
|
row = m_data->numRows - 1;
|
|
|
|
if ( col >= m_data->numColumns )
|
|
col = m_data->numColumns - 1;
|
|
|
|
value = m_data->value( row, col );
|
|
}
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
void QwtMatrixRasterData::update()
|
|
{
|
|
m_data->numRows = 0;
|
|
m_data->dx = 0.0;
|
|
m_data->dy = 0.0;
|
|
|
|
if ( m_data->numColumns > 0 )
|
|
{
|
|
m_data->numRows = m_data->values.size() / m_data->numColumns;
|
|
|
|
const QwtInterval xInterval = interval( Qt::XAxis );
|
|
const QwtInterval yInterval = interval( Qt::YAxis );
|
|
if ( xInterval.isValid() )
|
|
m_data->dx = xInterval.width() / m_data->numColumns;
|
|
if ( yInterval.isValid() )
|
|
m_data->dy = yInterval.width() / m_data->numRows;
|
|
}
|
|
}
|