QGIS/python/plugins/processing/algs/qgis/ServiceAreaFromPoint.py
Nyall Dawson ccb72ebce2 [processing] Fixes for Service Area algorithms
- Output interpolated points when travel cost falls mid-way along
an edge
- Output all intermediate reachable points also
- Make outputting upper/lower bound points optional, and non-default.
Now by default we just output all definitely reachable points and
the interpolated points along edges which correspond to the travel cost.
This allows the output to be used to correctly generate service areas
e.g. by concave/convex polygons and all reachable nodes will be
included in the area.
- Allow algorithm to optionally output a line layer (and make the
point layer optional too, and default to just the line layer output)
containing all reachable line segments (including interpolated
segments of lines when the travel cost sits midway along that
edge). This output is more easily understandably for users.
2018-04-06 12:43:52 +10:00

327 lines
15 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
ServiceAreaFromPoint.py
---------------------
Date : December 2016
Copyright : (C) 2016 by Alexander Bruy
Email : alexander dot bruy at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Alexander Bruy'
__date__ = 'December 2016'
__copyright__ = '(C) 2016, Alexander Bruy'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
from collections import OrderedDict
from qgis.PyQt.QtCore import QVariant, QCoreApplication
from qgis.PyQt.QtGui import QIcon
from qgis.core import (QgsWkbTypes,
QgsUnitTypes,
QgsFeature,
QgsFeatureSink,
QgsGeometry,
QgsGeometryUtils,
QgsFields,
QgsField,
QgsProcessing,
QgsProcessingParameterBoolean,
QgsProcessingParameterEnum,
QgsProcessingParameterPoint,
QgsProcessingParameterField,
QgsProcessingParameterNumber,
QgsProcessingParameterString,
QgsProcessingParameterFeatureSink,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterDefinition)
from qgis.analysis import (QgsVectorLayerDirector,
QgsNetworkDistanceStrategy,
QgsNetworkSpeedStrategy,
QgsGraphBuilder,
QgsGraphAnalyzer
)
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class ServiceAreaFromPoint(QgisAlgorithm):
INPUT = 'INPUT'
START_POINT = 'START_POINT'
STRATEGY = 'STRATEGY'
TRAVEL_COST = 'TRAVEL_COST'
DIRECTION_FIELD = 'DIRECTION_FIELD'
VALUE_FORWARD = 'VALUE_FORWARD'
VALUE_BACKWARD = 'VALUE_BACKWARD'
VALUE_BOTH = 'VALUE_BOTH'
DEFAULT_DIRECTION = 'DEFAULT_DIRECTION'
SPEED_FIELD = 'SPEED_FIELD'
DEFAULT_SPEED = 'DEFAULT_SPEED'
TOLERANCE = 'TOLERANCE'
INCLUDE_BOUNDS = 'INCLUDE_BOUNDS'
OUTPUT = 'OUTPUT'
OUTPUT_LINES = 'OUTPUT_LINES'
def icon(self):
return QIcon(os.path.join(pluginPath, 'images', 'networkanalysis.svg'))
def group(self):
return self.tr('Network analysis')
def groupId(self):
return 'networkanalysis'
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.DIRECTIONS = OrderedDict([
(self.tr('Forward direction'), QgsVectorLayerDirector.DirectionForward),
(self.tr('Backward direction'), QgsVectorLayerDirector.DirectionBackward),
(self.tr('Both directions'), QgsVectorLayerDirector.DirectionBoth)])
self.STRATEGIES = [self.tr('Shortest'),
self.tr('Fastest')
]
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
self.tr('Vector layer representing network'),
[QgsProcessing.TypeVectorLine]))
self.addParameter(QgsProcessingParameterPoint(self.START_POINT,
self.tr('Start point')))
self.addParameter(QgsProcessingParameterEnum(self.STRATEGY,
self.tr('Path type to calculate'),
self.STRATEGIES,
defaultValue=0))
self.addParameter(QgsProcessingParameterNumber(self.TRAVEL_COST,
self.tr('Travel cost (distance for "Shortest", time for "Fastest")'),
QgsProcessingParameterNumber.Double,
0.0, False, 0, 99999999.99))
params = []
params.append(QgsProcessingParameterField(self.DIRECTION_FIELD,
self.tr('Direction field'),
None,
self.INPUT,
optional=True))
params.append(QgsProcessingParameterString(self.VALUE_FORWARD,
self.tr('Value for forward direction'),
optional=True))
params.append(QgsProcessingParameterString(self.VALUE_BACKWARD,
self.tr('Value for backward direction'),
optional=True))
params.append(QgsProcessingParameterString(self.VALUE_BOTH,
self.tr('Value for both directions'),
optional=True))
params.append(QgsProcessingParameterEnum(self.DEFAULT_DIRECTION,
self.tr('Default direction'),
list(self.DIRECTIONS.keys()),
defaultValue=2))
params.append(QgsProcessingParameterField(self.SPEED_FIELD,
self.tr('Speed field'),
None,
self.INPUT,
optional=True))
params.append(QgsProcessingParameterNumber(self.DEFAULT_SPEED,
self.tr('Default speed (km/h)'),
QgsProcessingParameterNumber.Double,
5.0, False, 0, 99999999.99))
params.append(QgsProcessingParameterNumber(self.TOLERANCE,
self.tr('Topology tolerance'),
QgsProcessingParameterNumber.Double,
0.0, False, 0, 99999999.99))
params.append(QgsProcessingParameterBoolean(self.INCLUDE_BOUNDS,
self.tr('Include upper/lower bound points'),
defaultValue=False))
for p in params:
p.setFlags(p.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(p)
lines_output = QgsProcessingParameterFeatureSink(self.OUTPUT_LINES,
self.tr('Service area (lines)'),
QgsProcessing.TypeVectorLine, optional=True)
lines_output.setCreateByDefault(True)
self.addParameter(lines_output)
nodes_output = QgsProcessingParameterFeatureSink(self.OUTPUT,
self.tr('Service area (boundary nodes)'),
QgsProcessing.TypeVectorPoint, optional=True)
nodes_output.setCreateByDefault(False)
self.addParameter(nodes_output)
def name(self):
return 'serviceareafrompoint'
def displayName(self):
return self.tr('Service area (from point)')
def processAlgorithm(self, parameters, context, feedback):
network = self.parameterAsSource(parameters, self.INPUT, context)
startPoint = self.parameterAsPoint(parameters, self.START_POINT, context, network.sourceCrs())
strategy = self.parameterAsEnum(parameters, self.STRATEGY, context)
travelCost = self.parameterAsDouble(parameters, self.TRAVEL_COST, context)
directionFieldName = self.parameterAsString(parameters, self.DIRECTION_FIELD, context)
forwardValue = self.parameterAsString(parameters, self.VALUE_FORWARD, context)
backwardValue = self.parameterAsString(parameters, self.VALUE_BACKWARD, context)
bothValue = self.parameterAsString(parameters, self.VALUE_BOTH, context)
defaultDirection = self.parameterAsEnum(parameters, self.DEFAULT_DIRECTION, context)
speedFieldName = self.parameterAsString(parameters, self.SPEED_FIELD, context)
defaultSpeed = self.parameterAsDouble(parameters, self.DEFAULT_SPEED, context)
tolerance = self.parameterAsDouble(parameters, self.TOLERANCE, context)
include_bounds = True # default to true to maintain 3.0 API
if self.INCLUDE_BOUNDS in parameters:
include_bounds = self.parameterAsBool(parameters, self.INCLUDE_BOUNDS, context)
directionField = -1
if directionFieldName:
directionField = network.fields().lookupField(directionFieldName)
speedField = -1
if speedFieldName:
speedField = network.fields().lookupField(speedFieldName)
director = QgsVectorLayerDirector(network,
directionField,
forwardValue,
backwardValue,
bothValue,
defaultDirection)
distUnit = context.project().crs().mapUnits()
multiplier = QgsUnitTypes.fromUnitToUnitFactor(distUnit, QgsUnitTypes.DistanceMeters)
if strategy == 0:
strategy = QgsNetworkDistanceStrategy()
else:
strategy = QgsNetworkSpeedStrategy(speedField,
defaultSpeed,
multiplier * 1000.0 / 3600.0)
director.addStrategy(strategy)
builder = QgsGraphBuilder(network.sourceCrs(),
True,
tolerance)
feedback.pushInfo(QCoreApplication.translate('ServiceAreaFromPoint', 'Building graph…'))
snappedPoints = director.makeGraph(builder, [startPoint], feedback)
feedback.pushInfo(QCoreApplication.translate('ServiceAreaFromPoint', 'Calculating service area…'))
graph = builder.graph()
idxStart = graph.findVertex(snappedPoints[0])
tree, cost = QgsGraphAnalyzer.dijkstra(graph, idxStart, 0)
vertices = set()
points = []
lines = []
for vertex, start_vertex_cost in enumerate(cost):
inbound_edge_index = tree[vertex]
if inbound_edge_index == -1 and vertex != idxStart:
# unreachable vertex
continue
if start_vertex_cost > travelCost:
# vertex is too expensive, discard
continue
vertices.add(vertex)
start_point = graph.vertex(vertex).point()
# find all edges coming from this vertex
for edge_id in graph.vertex(vertex).outgoingEdges():
edge = graph.edge(edge_id)
end_vertex_cost = start_vertex_cost + edge.cost(0)
end_point = graph.vertex(edge.toVertex()).point()
if end_vertex_cost <= travelCost:
# end vertex is cheap enough to include
vertices.add(edge.toVertex())
lines.append([start_point, end_point])
else:
# travelCost sits somewhere on this edge, interpolate position
interpolated_end_point = QgsGeometryUtils.interpolatePointOnLineByValue(start_point.x(), start_point.y(), start_vertex_cost,
end_point.x(), end_point.y(), end_vertex_cost, travelCost)
points.append(interpolated_end_point)
lines.append([start_point, interpolated_end_point])
for i in vertices:
points.append(graph.vertex(i).point())
feedback.pushInfo(QCoreApplication.translate('ServiceAreaFromPoint', 'Writing results…'))
fields = QgsFields()
fields.append(QgsField('type', QVariant.String, '', 254, 0))
fields.append(QgsField('start', QVariant.String, '', 254, 0))
feat = QgsFeature()
feat.setFields(fields)
(point_sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
fields, QgsWkbTypes.MultiPoint, network.sourceCrs())
results = {}
if point_sink is not None:
results[self.OUTPUT] = dest_id
geomPoints = QgsGeometry.fromMultiPointXY(points)
feat.setGeometry(geomPoints)
feat['type'] = 'within'
feat['start'] = startPoint.toString()
point_sink.addFeature(feat, QgsFeatureSink.FastInsert)
if include_bounds:
upperBoundary = []
lowerBoundary = []
vertices = []
for i, v in enumerate(cost):
if v > travelCost and tree[i] != -1:
vertexId = graph.edge(tree[i]).fromVertex()
if cost[vertexId] <= travelCost:
vertices.append(i)
for i in vertices:
upperBoundary.append(graph.vertex(graph.edge(tree[i]).toVertex()).point())
lowerBoundary.append(graph.vertex(graph.edge(tree[i]).fromVertex()).point())
geomUpper = QgsGeometry.fromMultiPointXY(upperBoundary)
geomLower = QgsGeometry.fromMultiPointXY(lowerBoundary)
feat.setGeometry(geomUpper)
feat['type'] = 'upper'
feat['start'] = startPoint.toString()
point_sink.addFeature(feat, QgsFeatureSink.FastInsert)
feat.setGeometry(geomLower)
feat['type'] = 'lower'
feat['start'] = startPoint.toString()
point_sink.addFeature(feat, QgsFeatureSink.FastInsert)
(line_sink, line_dest_id) = self.parameterAsSink(parameters, self.OUTPUT_LINES, context,
fields, QgsWkbTypes.MultiLineString, network.sourceCrs())
if line_sink is not None:
results[self.OUTPUT_LINES] = line_dest_id
geom_lines = QgsGeometry.fromMultiPolylineXY(lines)
feat.setGeometry(geom_lines)
feat['type'] = 'lines'
feat['start'] = startPoint.toString()
line_sink.addFeature(feat, QgsFeatureSink.FastInsert)
return results