QGIS/python/plugins/processing/otb/description/FusionOfClassifications-dempstershafer.xml
2014-01-31 16:16:13 +01:00

75 lines
3.5 KiB
XML

<root>
<key>FusionOfClassifications-dempstershafer</key>
<exec>otbcli_FusionOfClassifications</exec>
<longname>FusionOfClassifications (dempstershafer)</longname>
<group>Learning</group>
<description>Fuses several classifications maps of the same image on the basis of class labels.</description>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
<key>il</key>
<name>Input classifications</name>
<description>List of input classification maps to fuse. Labels in each classification image must represent the same class.</description>
<datatype />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>method</key>
<name>Fusion method</name>
<description>Selection of the fusion method and its parameters.</description>
<options>
<choices>
<choice>dempstershafer</choice>
</choices>
</options>
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputFilenameList">ParameterMultipleExternalInput</parameter_type>
<key>method.dempstershafer.cmfl</key>
<name>Confusion Matrices</name>
<description>A list of confusion matrix files (*.CSV format) to define the masses of belief and the class labels. Each file should be formatted the following way: the first line, beginning with a '#' symbol, should be a list of the class labels present in the corresponding input classification image, organized in the same order as the confusion matrix rows/columns.</description>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>method.dempstershafer.mob</key>
<name>Mass of belief measurement</name>
<description>Type of confusion matrix measurement used to compute the masses of belief of each classifier.</description>
<options>
<choices>
<choice>precision</choice>
<choice>recall</choice>
<choice>accuracy</choice>
<choice>kappa</choice>
</choices>
</options>
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>nodatalabel</key>
<name>Label for the NoData class</name>
<description>Label for the NoData class. Such input pixels keep their NoData label in the output image and are not handled in the fusion process. By default, 'nodatalabel = 0'.</description>
<minValue />
<maxValue />
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>undecidedlabel</key>
<name>Label for the Undecided class</name>
<description>Label for the Undecided class. Pixels with more than 1 fused class are marked as Undecided. Please note that the Undecided value must be different from existing labels in the input classifications. By default, 'undecidedlabel = 0'.</description>
<minValue />
<maxValue />
<default>0</default>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_OutputImage">OutputRaster</parameter_type>
<key>out</key>
<name>The output classification image</name>
<description>The output classification image resulting from the fusion of the input classification images.</description>
<hidden />
</parameter>
</root>