QGIS/plugins/georeferencer/qgsleastsquares.cpp

149 lines
4.9 KiB
C++

#include <cmath>
#include <stdexcept>
#include <gsl/gsl_linalg.h>
#include "qgsleastsquares.h"
void QgsLeastSquares::linear(std::vector<QgsPoint> mapCoords,
std::vector<QgsPoint> pixelCoords,
QgsPoint& origin, double& pixelSize) {
int n = mapCoords.size();
if (n < 2) {
throw std::domain_error("Fit to a linear transform requires at "
"least 2 points.");
}
double sumPx(0), sumPy(0), sumPx2(0), sumPy2(0), sumPxMx(0), sumPyMy(0),
sumMx(0), sumMy(0);
for (int i = 0; i < n; ++i) {
sumPx += pixelCoords[i].x();
sumPy += pixelCoords[i].y();
sumPx2 += std::pow(pixelCoords[i].x(), 2);
sumPy2 += std::pow(pixelCoords[i].y(), 2);
sumPxMx += pixelCoords[i].x() * mapCoords[i].x();
sumPyMy += pixelCoords[i].y() * mapCoords[i].y();
sumMx += mapCoords[i].x();
sumMy += mapCoords[i].y();
}
double deltaX = n * sumPx2 - std::pow(sumPx, 2);
double deltaY = n * sumPy2 - std::pow(sumPy, 2);
double aX = (sumPx2 * sumMx - sumPx * sumPxMx) / deltaX;
double aY = (sumPy2 * sumMy - sumPy * sumPyMy) / deltaY;
double bX = (n * sumPxMx - sumPx * sumMx) / deltaX;
double bY = (n * sumPyMy - sumPy * sumMy) / deltaY;
origin.setX(aX);
origin.setY(aY);
pixelSize = (std::abs(bX) + std::abs(bY)) / 2;
}
void QgsLeastSquares::helmert(std::vector<QgsPoint> mapCoords,
std::vector<QgsPoint> pixelCoords,
QgsPoint& origin, double& pixelSize,
double& rotation) {
int n = mapCoords.size();
if (n < 2) {
throw std::domain_error("Fit to a Helmert transform requires at "
"least 2 points.");
}
double A = 0, B = 0, C = 0, D = 0, E = 0, F = 0, G = 0, H = 0, I = 0, J = 0;
for (int i = 0; i < n; ++i) {
A += pixelCoords[i].x();
B += pixelCoords[i].y();
C += mapCoords[i].x();
D += mapCoords[i].y();
E += mapCoords[i].x() * pixelCoords[i].x();
F += mapCoords[i].y() * pixelCoords[i].y();
G += std::pow(pixelCoords[i].x(), 2);
H += std::pow(pixelCoords[i].y(), 2);
I += mapCoords[i].x() * pixelCoords[i].y();
J += pixelCoords[i].x() * mapCoords[i].y();
}
/* The least squares fit for the parameters { a, b, x0, y0 } is the solution
to the matrix equation Mx = b, where M and b is given below. I *think*
that this is correct but I derived it myself late at night. Look at
helmert.jpg if you suspect bugs. */
double MData[] = { A, -B, n, 0,
B, A, 0, n,
G+H, 0, A, B,
0, G+H, -B, A };
double bData[] = { C, D, E+F, J-I };
// we want to solve the equation M*x = b, where x = [a b x0 y0]
gsl_matrix_view M = gsl_matrix_view_array(MData, 4, 4);
gsl_vector_view b = gsl_vector_view_array(bData, 4);
gsl_vector* x = gsl_vector_alloc(4);
gsl_permutation* p = gsl_permutation_alloc(4);
int s;
gsl_linalg_LU_decomp(&M.matrix, p, &s);
gsl_linalg_LU_solve(&M.matrix, p, &b.vector, x);
gsl_permutation_free(p);
origin.setX(gsl_vector_get(x, 2));
origin.setY(gsl_vector_get(x, 3));
pixelSize = std::sqrt(std::pow(gsl_vector_get(x, 0), 2) +
std::pow(gsl_vector_get(x, 1), 2));
rotation = std::atan2(gsl_vector_get(x, 1), gsl_vector_get(x, 0));
}
void QgsLeastSquares::affine(std::vector<QgsPoint> mapCoords,
std::vector<QgsPoint> pixelCoords) {
int n = mapCoords.size();
if (n < 4) {
throw std::domain_error("Fit to an affine transform requires at "
"least 4 points.");
}
double A = 0, B = 0, C = 0, D = 0, E = 0, F = 0,
G = 0, H = 0, I = 0, J = 0, K = 0;
for (int i = 0; i < n; ++i) {
A += pixelCoords[i].x();
B += pixelCoords[i].y();
C += mapCoords[i].x();
D += mapCoords[i].y();
E += std::pow(pixelCoords[i].x(), 2);
F += std::pow(pixelCoords[i].y(), 2);
G += pixelCoords[i].x() * pixelCoords[i].y();
H += pixelCoords[i].x() * mapCoords[i].x();
I += pixelCoords[i].y() * mapCoords[i].y();
J += pixelCoords[i].x() * mapCoords[i].y();
K += mapCoords[i].x() * pixelCoords[i].y();
}
/* The least squares fit for the parameters { a, b, c, d, x0, y0 } is the
solution to the matrix equation Mx = b, where M and b is given below.
I *think* that this is correct but I derived it myself late at night.
Look at affine.jpg if you suspect bugs. */
double MData[] = { A, B, 0, 0, n, 0,
0, 0, A, B, 0, n,
E, G, 0, 0, A, 0,
G, F, 0, 0, B, 0,
0, 0, E, G, 0, A,
0, 0, G, F, 0, B };
double bData[] = { C, D, H, K, J, I };
// we want to solve the equation M*x = b, where x = [a b c d x0 y0]
gsl_matrix_view M = gsl_matrix_view_array(MData, 6, 6);
gsl_vector_view b = gsl_vector_view_array(bData, 6);
gsl_vector* x = gsl_vector_alloc(6);
gsl_permutation* p = gsl_permutation_alloc(6);
int s;
gsl_linalg_LU_decomp(&M.matrix, p, &s);
gsl_linalg_LU_solve(&M.matrix, p, &b.vector, x);
gsl_permutation_free(p);
}