QGIS/python/core/auto_generated/geometry/qgsgeometryutils.sip.in

1074 lines
42 KiB
Plaintext

/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsgeometryutils.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/
class QgsGeometryUtils
{
%Docstring(signature="appended")
Contains various geometry utility functions.
%End
%TypeHeaderCode
#include "qgsgeometryutils.h"
%End
public:
static QVector<QgsLineString *> extractLineStrings( const QgsAbstractGeometry *geom ) /Factory/;
%Docstring
Returns list of linestrings extracted from the passed geometry. The returned objects
have to be deleted by the caller.
%End
static QgsPoint closestVertex( const QgsAbstractGeometry &geom, const QgsPoint &pt, QgsVertexId &id /Out/ );
%Docstring
Returns the closest vertex to a geometry for a specified point.
On error null point will be returned and "id" argument will be invalid.
%End
static QgsPoint closestPoint( const QgsAbstractGeometry &geometry, const QgsPoint &point );
%Docstring
Returns the nearest point on a segment of a ``geometry``
for the specified ``point``. The z and m values will be linearly interpolated between
the two neighbouring vertices.
%End
static double distanceToVertex( const QgsAbstractGeometry &geom, QgsVertexId id );
%Docstring
Returns the distance along a geometry from its first vertex to the specified vertex.
:param geom: geometry
:param id: vertex id to find distance to
:return: distance to vertex (following geometry)
%End
static bool verticesAtDistance( const QgsAbstractGeometry &geometry,
double distance,
QgsVertexId &previousVertex /Out/,
QgsVertexId &nextVertex /Out/ );
%Docstring
Retrieves the vertices which are before and after the interpolated point at a specified distance along a linestring
(or polygon boundary).
:param geometry: line or polygon geometry
:param distance: distance to traverse along geometry
:param previousVertex: will be set to previous vertex ID
:return: - ``True`` if vertices were successfully retrieved
- nextVertex: will be set to next vertex ID
.. note::
if the distance coincides exactly with a vertex, then both previousVertex and nextVertex will be set to this vertex
%End
static double distToInfiniteLine( const QgsPoint &point, const QgsPoint &linePoint1, const QgsPoint &linePoint2, double epsilon = 1e-7 );
%Docstring
Returns the distance between a point and an infinite line.
:param point: The point to find the distance to the line
:param linePoint1: The first point of the line
:param linePoint2: The second point of the line
:param epsilon: The tolerance to use
.. versionadded:: 3.26
%End
static bool lineCircleIntersection( const QgsPointXY &center, double radius,
const QgsPointXY &linePoint1, const QgsPointXY &linePoint2,
QgsPointXY &intersection /In,Out/ ) /HoldGIL/;
%Docstring
Compute the intersection of a line and a circle.
If the intersection has two solutions (points),
the closest point to the initial ``intersection`` point is returned.
:param center: the center of the circle
:param radius: the radius of the circle
:param linePoint1: a first point on the line
:param linePoint2: a second point on the line
:param intersection: the initial point and the returned intersection point
:return: ``True`` if an intersection has been found
%End
static int circleCircleIntersections( const QgsPointXY &center1, double radius1,
const QgsPointXY &center2, double radius2,
QgsPointXY &intersection1 /Out/, QgsPointXY &intersection2 /Out/ ) /HoldGIL/;
%Docstring
Calculates the intersections points between the circle with center ``center1`` and
radius ``radius1`` and the circle with center ``center2`` and radius ``radius2``.
If found, the intersection points will be stored in ``intersection1`` and ``intersection2``.
:return: number of intersection points found.
.. versionadded:: 3.2
%End
static bool tangentPointAndCircle( const QgsPointXY &center, double radius,
const QgsPointXY &p, QgsPointXY &pt1 /Out/, QgsPointXY &pt2 /Out/ ) /HoldGIL/;
%Docstring
Calculates the tangent points between the circle with the specified ``center`` and ``radius``
and the point ``p``.
If found, the tangent points will be stored in ``pt1`` and ``pt2``.
.. versionadded:: 3.2
%End
static int circleCircleOuterTangents(
const QgsPointXY &center1, double radius1, const QgsPointXY &center2, double radius2,
QgsPointXY &line1P1 /Out/, QgsPointXY &line1P2 /Out/,
QgsPointXY &line2P1 /Out/, QgsPointXY &line2P2 /Out/ ) /HoldGIL/;
%Docstring
Calculates the outer tangent points for two circles, centered at ``center1`` and
``center2`` and with radii of ``radius1`` and ``radius2`` respectively.
The outer tangent points correspond to the points at which the two lines
which are drawn so that they are tangential to both circles touch
the circles.
The first tangent line is described by the points
stored in ``line1P1`` and ``line1P2``,
and the second line is described by the points stored in ``line2P1``
and ``line2P2``.
Returns the number of tangents (either 0 or 2).
.. versionadded:: 3.2
%End
static int circleCircleInnerTangents(
const QgsPointXY &center1, double radius1, const QgsPointXY &center2, double radius2,
QgsPointXY &line1P1 /Out/, QgsPointXY &line1P2 /Out/,
QgsPointXY &line2P1 /Out/, QgsPointXY &line2P2 /Out/ ) /HoldGIL/;
%Docstring
Calculates the inner tangent points for two circles, centered at \a
center1 and ``center2`` and with radii of ``radius1`` and ``radius2``
respectively.
The inner tangent points correspond to the points at which the two lines
which are drawn so that they are tangential to both circles and are
crossing each other.
The first tangent line is described by the points
stored in ``line1P1`` and ``line1P2``,
and the second line is described by the points stored in ``line2P1``
and ``line2P2``.
Returns the number of tangents (either 0 or 2).
.. versionadded:: 3.6
%End
static QgsPoint projectPointOnSegment( const QgsPoint &p, const QgsPoint &s1, const QgsPoint &s2 ) /HoldGIL/;
%Docstring
Project the point on a segment
:param p: The point
:param s1: The segment start point
:param s2: The segment end point
:return: The projection of the point on the segment
%End
static int leftOfLine( const QgsPoint &point, const QgsPoint &p1, const QgsPoint &p2 ) /HoldGIL/;
%Docstring
Returns a value < 0 if the point ``point`` is left of the line from ``p1`` -> ``p2``.
A positive return value indicates the point is to the right of the line.
If the return value is 0, then the test was unsuccessful (e.g. due to testing a point exactly
on the line, or exactly in line with the segment) and the result is undefined.
.. versionadded:: 3.6
%End
static QgsPoint pointOnLineWithDistance( const QgsPoint &startPoint, const QgsPoint &directionPoint, double distance ) /HoldGIL/;
%Docstring
Returns a point a specified ``distance`` toward a second point.
%End
static QgsPoint interpolatePointOnArc( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double distance ) /HoldGIL/;
%Docstring
Interpolates a point on an arc defined by three points, ``pt1``, ``pt2`` and ``pt3``. The arc will be
interpolated by the specified ``distance`` from ``pt1``.
Any z or m values present in the points will also be linearly interpolated in the output.
.. versionadded:: 3.4
%End
static bool segmentMidPoint( const QgsPoint &p1, const QgsPoint &p2, QgsPoint &result /Out/, double radius, const QgsPoint &mousePos ) /HoldGIL/;
%Docstring
Calculates midpoint on circle passing through ``p1`` and ``p2``, closest to
the given coordinate ``mousePos``. Z dimension is supported and is retrieved from the
first 3D point amongst ``p1`` and ``p2``.
.. seealso:: :py:func:`segmentMidPointFromCenter`
%End
static QgsPoint segmentMidPointFromCenter( const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &center, bool useShortestArc = true ) /HoldGIL/;
%Docstring
Calculates the midpoint on the circle passing through ``p1`` and ``p2``,
with the specified ``center`` coordinate.
If ``useShortestArc`` is ``True``, then the midpoint returned will be that corresponding
to the shorter arc from ``p1`` to ``p2``. If it is ``False``, the longer arc from ``p1``
to ``p2`` will be used (i.e. winding the other way around the circle).
.. seealso:: :py:func:`segmentMidPoint`
.. versionadded:: 3.2
%End
static double circleTangentDirection( const QgsPoint &tangentPoint, const QgsPoint &cp1, const QgsPoint &cp2, const QgsPoint &cp3 ) /HoldGIL/;
%Docstring
Calculates the direction angle of a circle tangent (clockwise from north in radians)
%End
static void segmentizeArc( const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &p3,
QVector<QgsPoint> &points /Out/, double tolerance = M_PI_2 / 90,
QgsAbstractGeometry::SegmentationToleranceType toleranceType = QgsAbstractGeometry::MaximumAngle,
bool hasZ = false, bool hasM = false );
%Docstring
Convert circular arc defined by p1, p2, p3 (p1/p3 being start resp. end point, p2 lies on the arc) into a sequence of points.
%End
static bool pointContinuesArc( const QgsPoint &a1, const QgsPoint &a2, const QgsPoint &a3, const QgsPoint &b, double distanceTolerance,
double pointSpacingAngleTolerance ) /HoldGIL/;
%Docstring
Returns ``True`` if point ``b`` is on the arc formed by points ``a1``, ``a2``, and ``a3``, but not within
that arc portion already described by ``a1``, ``a2`` and ``a3``.
The ``distanceTolerance`` specifies the maximum deviation allowed between the original location
of point \b and where it would fall on the candidate arc.
This method only consider a segments as continuing an arc if the points are all regularly spaced
on the candidate arc. The ``pointSpacingAngleTolerance`` parameter specifies the maximum
angular deviation (in radians) allowed when testing for regular point spacing.
.. note::
The API is considered EXPERIMENTAL and can be changed without a notice
.. versionadded:: 3.14
%End
static int segmentSide( const QgsPoint &pt1, const QgsPoint &pt3, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
For line defined by points pt1 and pt3, find out on which side of the line is point pt2.
Returns -1 if pt2 on the left side, 1 if pt2 is on the right side or 0 if pt2 lies on the line.
%End
static QgsPoint midpoint( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Returns a middle point between points pt1 and pt2.
Z value is computed if one of this point have Z.
M value is computed if one of this point have M.
:param pt1: first point.
:param pt2: second point.
:return: New point at middle between points pt1 and pt2.
Example
-------
.. code-block:: python
p = QgsPoint( 4, 6 ) # 2D point
pr = midpoint ( p, QgsPoint( 2, 2 ) )
# pr is a 2D point: 'Point (3 4)'
pr = midpoint ( p, QgsPoint( QgsWkbTypes.PointZ, 2, 2, 2 ) )
# pr is a 3D point: 'PointZ (3 4 1)'
pr = midpoint ( p, QgsPoint( QgsWkbTypes.PointM, 2, 2, 0, 2 ) )
# pr is a 3D point: 'PointM (3 4 1)'
pr = midpoint ( p, QgsPoint( QgsWkbTypes.PointZM, 2, 2, 2, 2 ) )
# pr is a 3D point: 'PointZM (3 4 1 1)'
%End
static QgsPointXY interpolatePointOnLine( double x1, double y1, double x2, double y2, double fraction ) /HoldGIL/;
%Docstring
Interpolates the position of a point a ``fraction`` of the way along
the line from (``x1``, ``y1``) to (``x2``, ``y2``).
Usually the ``fraction`` should be between 0 and 1, where 0 represents the
point at the start of the line (``x1``, ``y1``) and 1 represents
the end of the line (``x2``, ``y2``). However, it is possible to
use a ``fraction`` < 0 or > 1, in which case the returned point
is extrapolated from the supplied line.
.. seealso:: :py:func:`interpolatePointOnLineByValue`
%End
static QgsPoint interpolatePointOnLine( const QgsPoint &p1, const QgsPoint &p2, double fraction ) /HoldGIL/;
%Docstring
Interpolates the position of a point a ``fraction`` of the way along
the line from ``p1`` to ``p2``.
Usually the ``fraction`` should be between 0 and 1, where 0 represents the
point at the start of the line (``p1``) and 1 represents
the end of the line (``p2``). However, it is possible to
use a ``fraction`` < 0 or > 1, in which case the returned point
is extrapolated from the supplied line.
Any Z or M values present in the input points will also be interpolated
and present in the returned point.
.. seealso:: :py:func:`interpolatePointOnLineByValue`
%End
static QgsPointXY interpolatePointOnLineByValue( double x1, double y1, double v1, double x2, double y2, double v2, double value ) /HoldGIL/;
%Docstring
Interpolates the position of a point along the line from (``x1``, ``y1``)
to (``x2``, ``y2``).
The position is interpolated using a supplied target ``value`` and the value
at the start of the line (``v1``) and end of the line (``v2``). The returned
point will be linearly interpolated to match position corresponding to
the target ``value``.
.. seealso:: :py:func:`interpolatePointOnLine`
%End
static double gradient( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Returns the gradient of a line defined by points ``pt1`` and ``pt2``.
:param pt1: first point.
:param pt2: second point.
:return: The gradient of this linear entity, or infinity if vertical
%End
static void coefficients( const QgsPoint &pt1, const QgsPoint &pt2,
double &a /Out/, double &b /Out/, double &c /Out/ ) /HoldGIL/;
%Docstring
Returns the coefficients (a, b, c for equation "ax + by + c = 0") of a line defined by points ``pt1`` and ``pt2``.
:param pt1: first point.
:param pt2: second point.
%End
static QgsLineString perpendicularSegment( const QgsPoint &p, const QgsPoint &s1, const QgsPoint &s2 ) /HoldGIL/;
%Docstring
Create a perpendicular line segment from p to segment [s1, s2]
:param p: The point
:param s1: The segment start point
:param s2: The segment end point
:return: A line (segment) from p to perpendicular point on segment [s1, s2]
%End
static bool setZValueFromPoints( const QgsPointSequence &points, QgsPoint &point ) /Deprecated/;
%Docstring
A Z dimension is added to ``point`` if one of the point in the list
``points`` is in 3D. Moreover, the Z value of ``point`` is updated
with the first Z value found in list ``points`` even if ``point``
already contains a Z value.
:param points: List of points in which a 3D point is searched.
:param point: The point to update with Z dimension and value.
:return: ``True`` if the point is updated, ``False`` otherwise
.. warning::
This method does not copy the z value of the coordinate from the
points whose z value is closest to the original x/y point, but only the first one found.
.. deprecated:: QGIS 3.20
use transferFirstZValueToPoint( const :py:class:`QgsPointSequence` &points, :py:class:`QgsPoint` &point ) instead
%End
static bool transferFirstZValueToPoint( const QgsPointSequence &points, QgsPoint &point );
%Docstring
A Z dimension is added to ``point`` if one of the point in the list
``points`` is in 3D. Moreover, the Z value of ``point`` is updated
with the first Z value found in list ``points`` even if ``point``
already contains a Z value.
:param points: List of points in which a 3D point is searched.
:param point: The point to update with Z dimension and value.
:return: ``True`` if the point is updated, ``False`` otherwise
.. warning::
This method does not copy the z value of the coordinate from the
points whose z value is closest to the original x/y point, but only the first one found.
.. versionadded:: 3.20
%End
static bool transferFirstMValueToPoint( const QgsPointSequence &points, QgsPoint &point );
%Docstring
A M dimension is added to ``point`` if one of the points in the list
``points`` contains an M value. Moreover, the M value of ``point`` is
updated with the first M value found in list ``points`` even if ``point``
already contains a M value.
:param points: List of points in which a M point is searched.
:param point: The point to update with M dimension and value.
:return: ``True`` if the point is updated, ``False`` otherwise
.. warning::
This method does not copy the m value of the coordinate from the
points whose m value is closest to the original x/y point, but only the first one found.
.. versionadded:: 3.20
%End
static bool transferFirstZOrMValueToPoint( const QgsPointSequence &points, QgsPoint &point );
%Docstring
A Z or M dimension is added to ``point`` if one of the points in the list
``points`` contains Z or M value.
This method is equivalent to successively calling Z and M but avoiding
looping twice over the set of points.
:param points: List of points in which a M point is searched.
:param point: The point to update with Z or M dimension and value.
:return: ``True`` if the point is updated, ``False`` otherwise
.. warning::
This method does not copy the z or m value of the coordinate from the
points whose z or m value is closest to the original x/y point, but only the first one found.
.. versionadded:: 3.20
%End
static bool transferFirstZOrMValueToPoint( const QgsGeometry &geom, QgsPoint &point );
%Docstring
A Z or M dimension is added to ``point`` if one of the points in the list
``points`` contains Z or M value.
This method is equivalent to successively calling Z and M but avoiding
looping twice over the set of points.
:param geom: geometry in which a M point is searched.
:param point: The point to update with Z or M dimension and value.
:return: ``True`` if the point is updated, ``False`` otherwise
.. warning::
This method does not copy the z or m value of the coordinate from the
points whose z or m value is closest to the original x/y point, but only the first one found.
.. versionadded:: 3.20
%End
static double sqrDistance2D( double x1, double y1, double x2, double y2 ) /Deprecated,HoldGIL/;
%Docstring
Returns the squared 2D distance between (``x1``, ``y1``) and (``x2``, ``y2``).
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double sqrDistance2D( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Returns the squared 2D distance between two points.
%End
static double sqrDistance3D( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Returns the squared 3D distance between two points.
.. warning::
No check is done if z contains NaN value. This is the caller's responsibility.
.. versionadded:: 3.36
%End
static double distance2D( double x1, double y1, double x2, double y2 ) /Deprecated,HoldGIL/;
%Docstring
Returns the 2D distance between (``x1``, ``y1``) and (``x2``, ``y2``).
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double distance2D( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Returns the 2D distance between two points.
%End
static double distance3D( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Returns the 3D distance between two points.
.. warning::
No check is done if z contains NaN value. This is the caller's responsibility.
.. versionadded:: 3.36
%End
static double sqrDistToLine( double ptX, double ptY, double x1, double y1, double x2, double y2, double &minDistX /Out/, double &minDistY /Out/, double epsilon ) /Deprecated,HoldGIL/;
%Docstring
Returns the squared distance between a point and a line.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static int leftOfLine( const double x, const double y, const double x1, const double y1, const double x2, const double y2 ) /Deprecated,HoldGIL/;
%Docstring
Returns a value < 0 if the point (``x``, ``y``) is left of the line from (``x1``, ``y1``) -> (``x2``, ``y2``).
A positive return value indicates the point is to the right of the line.
If the return value is 0, then the test was unsuccessful (e.g. due to testing a point exactly
on the line, or exactly in line with the segment) and the result is undefined.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static void perpendicularOffsetPointAlongSegment( double x1, double y1, double x2, double y2, double proportion, double offset, double *x /Out/, double *y /Out/ );
%Docstring
Calculates a point a certain ``proportion`` of the way along the segment from (``x1``, ``y1``) to (``x2``, ``y2``),
offset from the segment by the specified ``offset`` amount.
:param x1: x-coordinate of start of segment
:param y1: y-coordinate of start of segment
:param x2: x-coordinate of end of segment
:param y2: y-coordinate of end of segment
:param proportion: proportion of the segment's length at which to place the point (between 0.0 and 1.0)
:param offset: perpendicular offset from segment to apply to point. A negative ``offset`` shifts the point to the left of the segment, while a positive ``offset`` will shift it to the right of the segment.
Example
-------
.. code-block:: python
# Offset point at center of segment by 2 units to the right
x, y = QgsGeometryUtils.perpendicularOffsetPointAlongSegment( 1, 5, 11, 5, 0.5, 2 )
# (6.0, 3.0)
# Offset point at center of segment by 2 units to the left
x, y = QgsGeometryUtils.perpendicularOffsetPointAlongSegment( 1, 5, 11, 5, 0.5, -2 )
# (6.0, 7.0)
:return: - x: calculated point x-coordinate
- y: calculated point y-coordinate
.. versionadded:: 3.20
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double ccwAngle( double dy, double dx ) /Deprecated,HoldGIL/;
%Docstring
Returns the counter clockwise angle between a line with components dx, dy and the line with dx > 0 and dy = 0
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool circleClockwise( double angle1, double angle2, double angle3 ) /Deprecated,HoldGIL/;
%Docstring
Returns ``True`` if the circle defined by three angles is ordered clockwise.
The angles are defined counter-clockwise from the origin, i.e. using
Euclidean angles as opposed to geographic "North up" angles.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool circleAngleBetween( double angle, double angle1, double angle2, bool clockwise ) /Deprecated,HoldGIL/;
%Docstring
Returns ``True`` if, in a circle, angle is between angle1 and angle2
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool angleOnCircle( double angle, double angle1, double angle2, double angle3 ) /Deprecated,HoldGIL/;
%Docstring
Returns ``True`` if an angle is between angle1 and angle3 on a circle described by
angle1, angle2 and angle3.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double circleLength( double x1, double y1, double x2, double y2, double x3, double y3 ) /Deprecated,HoldGIL/;
%Docstring
Length of a circular string segment defined by pt1, pt2, pt3
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double sweepAngle( double centerX, double centerY, double x1, double y1, double x2, double y2, double x3, double y3 ) /Deprecated,HoldGIL/;
%Docstring
Calculates angle of a circular string part defined by pt1, pt2, pt3
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double interpolateArcValue( double angle, double a1, double a2, double a3, double zm1, double zm2, double zm3 ) /Deprecated,HoldGIL/;
%Docstring
Interpolate a value at given angle on circular arc given values (zm1, zm2, zm3) at three different angles (a1, a2, a3).
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double normalizedAngle( double angle ) /Deprecated,HoldGIL/;
%Docstring
Ensures that an angle is in the range 0 <= angle < 2 pi.
:param angle: angle in radians
:return: equivalent angle within the range [0, 2 pi)
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double lineAngle( double x1, double y1, double x2, double y2 ) /Deprecated,HoldGIL/;
%Docstring
Calculates the direction of line joining two points in radians, clockwise from the north direction.
:param x1: x-coordinate of line start
:param y1: y-coordinate of line start
:param x2: x-coordinate of line end
:param y2: y-coordinate of line end
:return: angle in radians. Returned value is undefined if start and end point are the same.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double angleBetweenThreePoints( double x1, double y1, double x2, double y2, double x3, double y3 ) /Deprecated,HoldGIL/;
%Docstring
Calculates the angle between the lines AB and BC, where AB and BC described
by points a, b and b, c.
:param x1: x-coordinate of point a
:param y1: y-coordinate of point a
:param x2: x-coordinate of point b
:param y2: y-coordinate of point b
:param x3: x-coordinate of point c
:param y3: y-coordinate of point c
:return: angle between lines in radians. Returned value is undefined if two or more points are equal.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double linePerpendicularAngle( double x1, double y1, double x2, double y2 ) /Deprecated,HoldGIL/;
%Docstring
Calculates the perpendicular angle to a line joining two points. Returned angle is in radians,
clockwise from the north direction.
:param x1: x-coordinate of line start
:param y1: y-coordinate of line start
:param x2: x-coordinate of line end
:param y2: y-coordinate of line end
:return: angle in radians. Returned value is undefined if start and end point are the same.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double averageAngle( double x1, double y1, double x2, double y2, double x3, double y3 ) /Deprecated,HoldGIL/;
%Docstring
Calculates the average angle (in radians) between the two linear segments from
(``x1``, ``y1``) to (``x2``, ``y2``) and (``x2``, ``y2``) to (``x3``, ``y3``).
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double averageAngle( double a1, double a2 ) /Deprecated,HoldGIL/;
%Docstring
Averages two angles, correctly handling negative angles and ensuring the result is between 0 and 2 pi.
:param a1: first angle (in radians)
:param a2: second angle (in radians)
:return: average angle (in radians)
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static int closestSideOfRectangle( double right, double bottom, double left, double top, double x, double y );
%Docstring
Returns a number representing the closest side of a rectangle defined by /a right,
``bottom``, ``left``, ``top`` to the point at (``x``, ``y``), where
the point may be in the interior of the rectangle or outside it.
The returned value may be:
1. Point is closest to top side of rectangle
2. Point is located on the top-right diagonal of rectangle, equally close to the top and right sides
3. Point is closest to right side of rectangle
4. Point is located on the bottom-right diagonal of rectangle, equally close to the bottom and right sides
5. Point is closest to bottom side of rectangle
6. Point is located on the bottom-left diagonal of rectangle, equally close to the bottom and left sides
7. Point is closest to left side of rectangle
8. Point is located on the top-left diagonal of rectangle, equally close to the top and left sides
.. note::
This method effectively partitions the space outside of the rectangle into Voronoi cells, so a point
to the top left of the rectangle may be assigned to the left or top sides based on its position relative
to the diagonal line extended from the rectangle's top-left corner.
.. versionadded:: 3.20
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static void perpendicularCenterSegment( double centerPointX, double centerPointY,
double segmentPoint1x, double segmentPoint1y,
double segmentPoint2x, double segmentPoint2y,
double &perpendicularSegmentPoint1x /Out/, double &perpendicularSegmentPoint1y /Out/,
double &perpendicularSegmentPoint2x /Out/, double &perpendicularSegmentPoint2y /Out/,
double segmentLength = 0 ) /HoldGIL/;
%Docstring
Create a perpendicular line segment to a given segment [``segmentPoint1``,``segmentPoint2``] with its center at ``centerPoint``.
May be used to split geometries. Unless ``segmentLength`` is specified the new centered perpendicular line segment will have double the length of the input segment.
The result is a line (segment) centered in point p and perpendicular to segment [segmentPoint1, segmentPoint2].
:param centerPointX: x-coordinate of the point where the center of the perpendicular should be located
:param centerPointY: y-coordinate of the point where the center of the perpendicular should be located
:param segmentPoint1x: : x-coordinate of segmentPoint1, the segment's start point
:param segmentPoint1y: : y-coordinate of segmentPoint1, the segment's start point
:param segmentPoint2x: : x-coordinate of segmentPoint2, the segment's end point
:param segmentPoint2y: : y-coordinate of segmentPoint2, the segment's end point
:param perpendicularSegmentPoint1x: : x-coordinate of the perpendicularCenterSegment's start point
:param perpendicularSegmentPoint1y: : y-coordinate of the perpendicularCenterSegment's start point
:param perpendicularSegmentPoint2x: : x-coordinate of the perpendicularCenterSegment's end point
:param perpendicularSegmentPoint2y: : y-coordinate of the perpendicularCenterSegment's end point
:param segmentLength: (optional) Trims to given length. A segmentLength value of 0 refers to the default length which is double the length of the input segment. Set to 1 for a normalized length.
.. versionadded:: 3.24
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double skewLinesDistance( const QgsVector3D &P1, const QgsVector3D &P12, const QgsVector3D &P2, const QgsVector3D &P22 ) /Deprecated,HoldGIL/;
%Docstring
An algorithm to calculate the shortest distance between two skew lines.
:param P1: is the first point of the first line,
:param P12: is the second point on the first line,
:param P2: is the first point on the second line,
:param P22: is the second point on the second line.
:return: the shortest distance
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool skewLinesProjection( const QgsVector3D &P1, const QgsVector3D &P12,
const QgsVector3D &P2, const QgsVector3D &P22,
QgsVector3D &X1 /Out/,
double epsilon = 0.0001 ) /HoldGIL/;
%Docstring
A method to project one skew line onto another.
:param P1: is a first point that belonds to first skew line,
:param P12: is the second point that belongs to first skew line,
:param P2: is the first point that belongs to second skew line,
:param P22: is the second point that belongs to second skew line,
:param X1: is the result projection point of line P2P22 onto line P1P12,
:param epsilon: the tolerance to use.
:return: ``True`` if such point exists, ``False`` - otherwise.
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool linesIntersection3D( const QgsVector3D &La1, const QgsVector3D &La2,
const QgsVector3D &Lb1, const QgsVector3D &Lb2,
QgsVector3D &intersection /Out/ ) /HoldGIL/;
%Docstring
An algorithm to calculate an (approximate) intersection of two lines in 3D.
:param La1: is the first point on the first line,
:param La2: is the second point on the first line,
:param Lb1: is the first point on the second line,
:param Lb2: is the second point on the second line,
:return: - ``True`` if the intersection can be found, ``False`` - otherwise.
- intersection: is the result intersection, of it can be found.
Example
-------
.. code-block:: python
QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(2,1,0), QgsVector3D(2,3,0))
# (True, PyQt5.QtGui.QgsVector3D(2.0, 0.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(2,1,0), QgsVector3D(2,0,0))
# (True, PyQt5.QtGui.QgsVector3D(2.0, 0.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(0,1,0), QgsVector3D(0,3,0))
# (True, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(0,1,0), QgsVector3D(0,0,0))
# (True, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(5,1,0), QgsVector3D(5,3,0))
# (False, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(5,1,0), QgsVector3D(5,0,0))
# (False, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(1,1,0), QgsVector3D(2,2,0), QgsVector3D(3,1,0), QgsVector3D(3,2,0))
# (True, PyQt5.QtGui.QgsVector3D(3.0, 3.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(1,1,0), QgsVector3D(2,2,0), QgsVector3D(3,2,0), QgsVector3D(3,1,0))
# (True, PyQt5.QtGui.QgsVector3D(3.0, 3.0, 0.0))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(5,5,5), QgsVector3D(0,0,0), QgsVector3D(0,5,5), QgsVector3D(5,0,0))
# (True, PyQt5.QtGui.QgsVector3D(2.5, 2.5, 2.5))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(2.5,2.5,2.5), QgsVector3D(0,5,0), QgsVector3D(2.5,2.5,2.5), QgsVector3D(5,0,0))
# (True, PyQt5.QtGui.QgsVector3D(2.5, 2.5, 2.5))
QgsGeometryUtils.linesIntersection3D(QgsVector3D(2.5,2.5,2.5), QgsVector3D(5,0,0), QgsVector3D(0,5,5), QgsVector3D(5,5,5))
# (True, PyQt5.QtGui.QgsVector3D(0.0, 5.0, 5.0))
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double triangleArea( double aX, double aY, double bX, double bY, double cX, double cY ) /Deprecated,HoldGIL/;
%Docstring
Returns the area of the triangle denoted by the points (``aX``, ``aY``), (``bX``, ``bY``) and
(``cX``, ``cY``).
.. versionadded:: 3.10
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static double pointFractionAlongLine( double x1, double y1, double x2, double y2, double px, double py );
%Docstring
Given the line (``x1``, ``y1``) to (``x2``, ``y2``) and a point (``px``, ``py``) returns the fraction
of the line length at which the point lies.
.. warning::
this method requires that the point definitely lies on the line!
.. versionadded:: 3.32
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static void weightedPointInTriangle( double aX, double aY, double bX, double bY, double cX, double cY,
double weightB, double weightC, double &pointX /Out/, double &pointY /Out/ ) /HoldGIL/;
%Docstring
Returns a weighted point inside the triangle denoted by the points (``aX``, ``aY``), (``bX``, ``bY``) and
(``cX``, ``cY``).
:param aX: x-coordinate of first vertex in triangle
:param aY: y-coordinate of first vertex in triangle
:param bX: x-coordinate of second vertex in triangle
:param bY: y-coordinate of second vertex in triangle
:param cX: x-coordinate of third vertex in triangle
:param cY: y-coordinate of third vertex in triangle
:param weightB: weighting factor along axis A-B (between 0 and 1)
:param weightC: weighting factor along axis A-C (between 0 and 1)
:return: - pointX: x-coordinate of generated point
- pointY: y-coordinate of generated point
.. versionadded:: 3.10
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool pointsAreCollinear( double x1, double y1, double x2, double y2, double x3, double y3, double epsilon );
%Docstring
Given the points (``x1``, ``y1``), (``x2``, ``y2``) and (``x3``, ``y3``) returns ``True`` if these
points can be considered collinear with a specified tolerance ``epsilon``.
.. versionadded:: 3.32
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool angleBisector( double aX, double aY, double bX, double bY, double cX, double cY, double dX, double dY,
double &pointX /Out/, double &pointY /Out/, double &angle /Out/ ) /HoldGIL/;
%Docstring
Returns the point (``pointX``, ``pointY``) forming the bisector from segment (``aX`` ``aY``) (``bX`` ``bY``)
and segment (``bX``, ``bY``) (``dX``, ``dY``).
The bisector segment of AB-CD is (point, projection of point by ``angle``)
:param aX: x-coordinate of first vertex of the segment ab
:param aY: y-coordinate of first vertex of the segment ab
:param bX: x-coordinate of second vertex of the segment ab
:param bY: y-coordinate of second vertex of the segment ab
:param cX: x-coordinate of first vertex of the segment cd
:param cY: y-coordinate of first vertex of the segment cd
:param dX: x-coordinate of second vertex of the segment cd
:param dY: y-coordinate of second vertex of the segment cd
:return: - ``True`` if the bisector exists (A B and C D are not collinear)
- pointX: x-coordinate of generated point
- pointY: y-coordinate of generated point
- angle: angle of the bisector from pointX, pointY origin on [ab-cd]
.. versionadded:: 3.18
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static bool bisector( double aX, double aY, double bX, double bY, double cX, double cY,
double &pointX /Out/, double &pointY /Out/ ) /HoldGIL/;
%Docstring
Returns the point (``pointX``, ``pointY``) forming the bisector from point (``aX``, ``aY``) to the segment (``bX``, ``bY``) (``cX``, ``cY``).
The bisector segment of ABC is (A-point)
:param aX: x-coordinate of first vertex in triangle
:param aY: y-coordinate of first vertex in triangle
:param bX: x-coordinate of second vertex in triangle
:param bY: y-coordinate of second vertex in triangle
:param cX: x-coordinate of third vertex in triangle
:param cY: y-coordinate of third vertex in triangle
:return: - ``True`` if the bisector exists (A B and C are not collinear)
- pointX: x-coordinate of generated point
- pointY: y-coordinate of generated point
.. versionadded:: 3.18
.. deprecated::
Use :py:class:`QgsGeometryUtilsBase` methods instead.
%End
static void circleCenterRadius( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double &radius /Out/,
double &centerX /Out/, double &centerY /Out/ ) /HoldGIL/;
%Docstring
Returns radius and center of the circle through pt1, pt2, pt3
%End
static bool lineIntersection( const QgsPoint &p1, QgsVector v1, const QgsPoint &p2, QgsVector v2, QgsPoint &intersection /Out/ ) /HoldGIL/;
%Docstring
Computes the intersection between two lines. Z dimension is
supported and is retrieved from the first 3D point amongst ``p1`` and
``p2``.
:param p1: Point on the first line
:param v1: Direction vector of the first line
:param p2: Point on the second line
:param v2: Direction vector of the second line
:return: - Whether the lines intersect
- intersection: Output parameter, the intersection point
%End
static bool segmentIntersection( const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &q1, const QgsPoint &q2, QgsPoint &intersectionPoint /Out/, bool &isIntersection /Out/, double tolerance = 1e-8, bool acceptImproperIntersection = false ) /HoldGIL/;
%Docstring
Compute the intersection between two segments
:param p1: First segment start point
:param p2: First segment end point
:param q1: Second segment start point
:param q2: Second segment end point
:param tolerance: The tolerance to use
:param acceptImproperIntersection: By default, this method returns ``True`` only if segments have proper intersection. If set true, returns also ``True`` if segments have improper intersection (end of one segment on other segment ; continuous segments).
:return: - Whether the segments intersect
- intersectionPoint: Output parameter, the intersection point
- isIntersection: Output parameter, return ``True`` if an intersection is found
Example
-------
.. code-block:: python
ret = QgsGeometryUtils.segmentIntersection( QgsPoint( 0, 0 ), QgsPoint( 0, 1 ), QgsPoint( 1, 1 ), QgsPoint( 1, 0 ) )
ret[0], ret[1].asWkt(), ret[2]
# Whether the segments intersect, the intersection point, is intersect
# (False, 'Point (0 0)', False)
ret = QgsGeometryUtils.segmentIntersection( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 0, 5 ), QgsPoint( 1, 5 ) )
ret[0], ret[1].asWkt(), ret[2]
# (False, 'Point (0 5)', True)
ret = QgsGeometryUtils.segmentIntersection( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 0, 5 ), QgsPoint( 1, 5 ), acceptImproperIntersection=True )
ret[0], ret[1].asWkt(), ret[2]
# (True, 'Point (0 5)', True)
ret = QgsGeometryUtils.segmentIntersection( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 0, 2 ), QgsPoint( 1, 5 ) )
ret[0], ret[1].asWkt(), ret[2]
# (False, 'Point (0 2)', True)
ret = QgsGeometryUtils.segmentIntersection( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 0, 2 ), QgsPoint( 1, 5 ), acceptImproperIntersection=True )
ret[0], ret[1].asWkt(), ret[2]
# (True, 'Point (0 2)', True)
ret = QgsGeometryUtils.segmentIntersection( QgsPoint( 0, -5 ), QgsPoint( 0, 5 ), QgsPoint( 2, 0 ), QgsPoint( -1, 0 ) )
ret[0], ret[1].asWkt(), ret[2]
# (True, 'Point (0 0)', True)
%End
};
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgsgeometryutils.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.pl again *
************************************************************************/